TIAN Yiming, XU Chun, YANG Qiao, et al. Effect of Drying Method on Sulfur Dioxide Content in Edible Mushrooms and Endogenous Transformation Factors[J]. Science and Technology of Food Industry, 2025, 46(5): 248−254. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030487.
Citation: TIAN Yiming, XU Chun, YANG Qiao, et al. Effect of Drying Method on Sulfur Dioxide Content in Edible Mushrooms and Endogenous Transformation Factors[J]. Science and Technology of Food Industry, 2025, 46(5): 248−254. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030487.

Effect of Drying Method on Sulfur Dioxide Content in Edible Mushrooms and Endogenous Transformation Factors

More Information
  • Received Date: March 31, 2024
  • Available Online: January 03, 2025
  • In this study, dietary risk assessment of sulfur dioxide content in both fresh and dried commercially available edible mushrooms (Tremella fuciformis, Lentinus edodes, and Agaricus blazei) was conducted through risk quotient and point assessment methods. Furthermore, to elucidate the factors governing endogenous sulfur dioxide transformation in edible mushrooms, the effects of different drying methods (hot air drying, natural air drying, and vacuum freeze drying) on key parameters such as sulfur dioxide content, glutamic acid-oxaloacetate aminotransferase activity, sulfur-containing amino acids content, and sulfur-containing volatile compounds content, were further analyzed. The results revealed that the sulfur dioxide levels in fresh commercially available edible mushrooms adhered to the national standard (50 mg/kg), while the dried varieties of Tremella fuciformis, Lentinus edodes, and Agaricus blazei exceeded the national standard by 16.54%, 30.00%, and 26.67% respectively, and the dietary risk of these edible mushrooms were found to be an acceptable risk. Post-treatment with various drying techniques, the sulfur dioxide residues in the dried edible mushrooms conformed to the standard and were significantly elevated compared to their fresh counterparts (P<0.05). The levels of glutamate-oxaloacetate transaminase, sulfur-containing amino acids, and sulfur-containing volatile compounds in dried edible mushrooms all increased, which suggested that different drying methods could promote the conversion of sulfur-containing amino acids and the formation of sulfur-containing volatile compounds, leading to an increase in sulfur dioxide content in dried edible mushrooms. This study provides solid theoretical guidance for industrialized processing technology and high-quality sustainable development of edible mushrooms.
  • [1]
    SUN L B, ZHANG Z Y, XIN G, et al. Advances in umami taste and aroma of edible mushrooms[J]. Trends in Food Science & Technology,2020,96:176−187.
    [2]
    SUN Y N, ZHANG M, FANG Z X. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities:A review[J]. Trends in Food Science & Technology,2020,105:468−482.
    [3]
    陈建胜, 杨正友, 王延圣, 等. 食用菌营养组成、功能活性及加工现状研究进展[J]. 食品工业科技,2024,45(12):358−366. [CHEN J S, YANG Z Y, WANG Y S, et al. Research progress in nutrient composition, functional activity and processing status of edible fungi[J]. Science and Technology of Food Industry,2024,45(12):358−366.]

    CHEN J S, YANG Z Y, WANG Y S, et al. Research progress in nutrient composition, functional activity and processing status of edible fungi[J]. Science and Technology of Food Industry, 2024, 45(12): 358−366.
    [4]
    李娜, 吕爽, 董建国, 等. 常见食用菌营养成分及风味物质分析[J]. 食品工业科技,2023,44(18):441−448. [LI N, LÜ S, DONG J G, et al. Analysis of nutritional components and volatile flavor compounds in common edible fungi[J]. Science and Technology of Food Industry,2023,44(18):441−448.]

    LI N, LÜ S, DONG J G, et al. Analysis of nutritional components and volatile flavor compounds in common edible fungi[J]. Science and Technology of Food Industry, 2023, 44(18): 441−448.
    [5]
    LI H, TIAN Y, MENOLLI N, et al. Reviewing the world's edible mushroom species:A new evidence-based classification system[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(2):1982−2014. doi: 10.1111/1541-4337.12708
    [6]
    中国食用菌协会. 2022年度全国食用菌统计调查结果分析[J]. 中国食用菌,2024,43(1):118−126. [China Edible Fungi Association. Analysis of the results of the 2022 national edible mushroom statistical survey[J]. Edible Fungi of China,2024,43(1):118−126.]

    China Edible Fungi Association. Analysis of the results of the 2022 national edible mushroom statistical survey[J]. Edible Fungi of China, 2024, 43(1): 118−126.
    [7]
    BRYCHKOVA G, YARMOLINSKY D, FLUHR R, et al. The determination of sulfite levels and its oxidation in plant leaves[J]. Plant Science,2012,190:123−130. doi: 10.1016/j.plantsci.2012.04.004
    [8]
    王虹. 银耳中二氧化硫残留量检测结果分析[J]. 现代食品,2022,28(8):136−139. [[WANG H. Analysis of the detection results of residual sulfur dioxide in Tremella fuciformis[J]. Modern Food,2022,28(8):136−139.]

    [WANG H. Analysis of the detection results of residual sulfur dioxide in Tremella fuciformis[J]. Modern Food, 2022, 28(8): 136−139.
    [9]
    严伟, 夏珍珍, 彭西甜, 等. 市售干制香菇质量安全状况调查与分析[J]. 农产品质量与安全,2019(3):20−24. [YAN W, XIA Z Z, PENG X T, et al. Investigation and analysis on quality and safety of dried Lentinus edodes sold in market[J]. Quality and Safety of Agricultural Products,2019(3):20−24.]

    YAN W, XIA Z Z, PENG X T, et al. Investigation and analysis on quality and safety of dried Lentinus edodes sold in market[J]. Quality and Safety of Agricultural Products, 2019(3): 20−24.
    [10]
    陈涛, 罗翠婷, 张泽泉. 福建省南平市姬松茸中重金属含量及二氧化硫残留量调查与膳食风险评估[J]. 现代疾病预防控制,2023,34(10):796−799. [CHEN T, LUO C T, ZHANG Z Q. Investigation of heavy metal content and sulfur dioxide residues in Agaricus blazei and its dietary risk assessment in Nanping City, Fujian Province[J]. Modern Disease Control and Prevention,2023,34(10):796−799.]

    CHEN T, LUO C T, ZHANG Z Q. Investigation of heavy metal content and sulfur dioxide residues in Agaricus blazei and its dietary risk assessment in Nanping City, Fujian Province[J]. Modern Disease Control and Prevention, 2023, 34(10): 796−799.
    [11]
    POSTE A E, HECKY R E, GUIDFORD S J. Evaluating microcystin exposure risk through fish consumption[J]. Environmental Science & Technology,2011,45(13):5806−5811.
    [12]
    DOWLATI M, SOBHI H R, ESRAFILI A, et al. Heavy metals content in edible mushrooms:A systematic review, meta-analysis and health risk assessment[J]. Trends in Food Science & Technology,2021,109:527−535.
    [13]
    李晓贝, 赵晓燕, 刘海燕, 等. 基于蒙特卡罗模拟技术的食用菌中二氧化硫膳食暴露风险评估[J]. 食品科学,2020,41(12):298−304. [LI X B, ZHAO X Y, LIU H Y, et al. Dietary exposure assessment of sulfur dioxide residue in edible fungi by Monte Carlo simulation[J]. Food Science,2020,41(12):298−304.]

    LI X B, ZHAO X Y, LIU H Y, et al. Dietary exposure assessment of sulfur dioxide residue in edible fungi by Monte Carlo simulation[J]. Food Science, 2020, 41(12): 298−304.
    [14]
    KOPRIVA S, KOPRIVOVA A. Plant adenosine 5’-phosphosulphate reductase:The past, the present, and the future[J]. Journal of Experimental Botany,2004,55(404):1775−1783. doi: 10.1093/jxb/erh185
    [15]
    BROSNAN J T, BROSNAN M E. The sulfur-containing amino acids:An overview[J]. The Journal of Nutrition,2006,136(6):1636S−1640S. doi: 10.1093/jn/136.6.1636S
    [16]
    UBUKA T, YUASA S, OHTA J, et al. Formation of sulfate from L-cysteine in rat liver mitochondria[J]. Acta Medica Okayama,1990,44(2):55−64.
    [17]
    XU B, ZHOU H, MEI Q, et al. Real-time visualization of cysteine metabolism in living cells with ratiometric fluorescence probes[J]. Analytical Chemistry,2018,90(4):2686−2691. doi: 10.1021/acs.analchem.7b04493
    [18]
    KIM G, LEVINE R L. A methionine residue promotes hyperoxidation of the catalytic cysteine of mouse methionine sulfoxide reductase A[J]. Biochemistry,2016,55(25):3586−3593. doi: 10.1021/acs.biochem.6b00180
    [19]
    MELLIA A T, MISKO A L, ARJUNE S, et al. The role of glutamate oxaloacetate transaminases in sulfite biosynthesis and H2S metabolism[J]. Redox Biology,2021,38:101800. doi: 10.1016/j.redox.2020.101800
    [20]
    陈登辉, 韦雅芳, 黎蓝聪, 等. 不同干燥方式对香菇内源性二氧化硫含量的影响[J]. 食用菌,2024,46(2):60−63,72. [CHEN D H, WEI Y F, LI L C, et al. Effect of different drying methods on content of endogenous sulfur dioxide in Lentinula edodes[J]. Edible Fungi,2024,46(2):60−63,72.]

    CHEN D H, WEI Y F, LI L C, et al. Effect of different drying methods on content of endogenous sulfur dioxide in Lentinula edodes[J]. Edible Fungi, 2024, 46(2): 60−63,72.
    [21]
    刘芹, 胡素娟, 崔筱, 等. 不同干燥温度对金针菇菇根挥发性特征和口感特性的影响[J]. 食品科学,2023,44(7):104−113. [LIU Q, HU S J, CUI X, et al. Effect of drying temperature on the volatile profile and taste properties of Flammulina velutipes root[J]. Food Science,2023,44(7):104−113.]

    LIU Q, HU S J, CUI X, et al. Effect of drying temperature on the volatile profile and taste properties of Flammulina velutipes root[J]. Food Science, 2023, 44(7): 104−113.
    [22]
    李文, 杨焱, 陈万超, 等. 不同干燥方式对香菇含硫风味化合物的影响[J]. 食用菌学报,2018,25(4):71−79. [LI W, YANG Y, CHEN W C, et al. Effect of drying method on sulfur-containing components in Lentinula edodes[J]. Acta Edulis Fungi,2018,25(4):71−79.]

    LI W, YANG Y, CHEN W C, et al. Effect of drying method on sulfur-containing components in Lentinula edodes[J]. Acta Edulis Fungi, 2018, 25(4): 71−79.
    [23]
    中华人民共和国国家卫生健康委员会. GB 5009.34-2022食品安全国家标准 食品中二氧化硫的测定[S]. 北京:中国标准出版社, 2022. [National Health and Hygiene Commission of the People's Republic of China. GB 5009.34-2022 National Standard for Food Safety-Determination of sulfur dioxide in food[S]. Beijing:China Standard Press, 2022.]

    National Health and Hygiene Commission of the People's Republic of China. GB 5009.34-2022 National Standard for Food Safety-Determination of sulfur dioxide in food[S]. Beijing: China Standard Press, 2022.
    [24]
    方志飞. 笋制品中二氧化硫的风险评估[D]. 海口:海南大学, 2010. [FANG Z F. Study on risk assessment of sulfur dioxide in bamboo shoots[D]. Haikou:Hainan University, 2010.]

    FANG Z F. Study on risk assessment of sulfur dioxide in bamboo shoots[D]. Haikou: Hainan University, 2010.
    [25]
    蒋莹, 陈曦, 余波. 辽宁地区部分食品中二氧化硫的膳食暴露风险评估[J]. 食品安全质量检测学报,2021,12(23):9292−9298. [[JIANG Y, CHEN X, YU B. Dietary exposure risk assessment of sulfur dioxide in selected foods in Liaoning area[J]. Journal of Food Safety and Quality Testing,2021,12(23):9292−9298.]

    [JIANG Y, CHEN X, YU B. Dietary exposure risk assessment of sulfur dioxide in selected foods in Liaoning area[J]. Journal of Food Safety and Quality Testing, 2021, 12(23): 9292−9298.
    [26]
    中华人民共和国国家卫生健康委员会. GB 5009.124-2016食品安全国家标准 食品中氨基酸的测定[S]. 北京:中国标准出版社, 2016. [National Health and Hygiene Commission of the People's Republic of China. GB 5009.124-2016 National Standard for Food Safety-Determination of amino acids in food[S]. Beijing:China Standard Press, 2016.]

    National Health and Hygiene Commission of the People's Republic of China. GB 5009.124-2016 National Standard for Food Safety-Determination of amino acids in food[S]. Beijing: China Standard Press, 2016.
    [27]
    郭磊, 李为兰, 鲁斌, 等. 响应面优化HS-SPME-GC-MS法分析美味牛肝菌挥发性风味物质[J]. 中国调味品,2023,48(2):163−168. [GUO L, LI W L, LU B, et al. Response surface optimization HS-SPME-GC-MS method was used to analyze volatile flavor compounds of delicious porcini mushrooms[J]. Chinese Condiments,2023,48(2):163−168.]

    GUO L, LI W L, LU B, et al. Response surface optimization HS-SPME-GC-MS method was used to analyze volatile flavor compounds of delicious porcini mushrooms[J]. Chinese Condiments, 2023, 48(2): 163−168.
    [28]
    朱华玲, 班立桐, 戴建良, 等. 我国鲜香菇二氧化硫残留超标问题的现状、原因及建议[J]. 中国食用菌,2022,41(12):1−4. [ZHU H L, BANG L T, DAI J L, et al. Current situation, causes and suggestions of excessive sulfur dioxide residues in fresh Lentinus edodes in China[J]. Chinese Edible Mushrooms,2022,41(12):1−4.]

    ZHU H L, BANG L T, DAI J L, et al. Current situation, causes and suggestions of excessive sulfur dioxide residues in fresh Lentinus edodes in China[J]. Chinese Edible Mushrooms, 2022, 41(12): 1−4.
    [29]
    BEELMAN R B, BARDEN C L, EDWARDS C G. Total Sulfur dioxide residuals in fresh mushrooms washed in sulfite solutions[J]. Journal of Food Protection,1988,51(11):903−905. doi: 10.4315/0362-028X-51.11.903
    [30]
    鲍文辉, 辛养生. 香菇二氧化硫超标现象刍议[J]. 食药用菌,2020,28(6):389−392. [BAO W H, XIN Y S. Discussion on the phenomenon of excessive sulfur dioxide of Lentinula edodes[J]. Edible and Medicinal Mushroom,2020,28(6):389−392.]

    BAO W H, XIN Y S. Discussion on the phenomenon of excessive sulfur dioxide of Lentinula edodes[J]. Edible and Medicinal Mushroom, 2020, 28(6): 389−392.
    [31]
    田耿智, 白新明, 刘晓庆, 等. 农药残留风险评估在蔬菜水果和食用菌监测中的应用研究[J]. 核农学报,2022,36(2):402−413. [TIAN G Z, BAI X M, LIU X Q, et al. Application of pesticide residue risk assessment in the monitoring of vegetables, fruits and edible fungi[J]. Journal of Nuclear Agricultural Sciences,2022,36(2):402−413.]

    TIAN G Z, BAI X M, LIU X Q, et al. Application of pesticide residue risk assessment in the monitoring of vegetables, fruits and edible fungi[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 402−413.
    [32]
    刘文, 李强, 刘鹏, 等. 食品安全指数的构建研究与实证分析[J]. 食品科学,2015,36(11):191−196. [LIU W, LI Q, LIU P, et al. Research and empirical analysis on the construction of food safety index[J]. Food Science,2015,36(11):191−196.]

    LIU W, LI Q, LIU P, et al. Research and empirical analysis on the construction of food safety index[J]. Food Science, 2015, 36(11): 191−196.
  • Related Articles

    [1]WANG Ruo-cheng, XIN Yu, ZHANG Liang. Recombinant Expression of Tachyplesin Ⅰ in E.coli and Its Antibacterial Activity[J]. Science and Technology of Food Industry, 2020, 41(19): 94-98. DOI: 10.13386/j.issn1002-0306.2020.19.015
    [2]ZHANG Dan-yang, LV Yu-cai, TIAN Yi-hong, GONG Da-chun, REN Li-wei, GUO Jin-ling. Cloning,Expression and Characterization of Recombinant β-mannanase from Bacillus subtilis[J]. Science and Technology of Food Industry, 2020, 41(6): 88-93,105. DOI: 10.13386/j.issn1002-0306.2020.06.015
    [3]GU Zhang-hui, LAI Jiang-li, WANG Shu-jun, JIAO Yu-liang, LIU Shu, FANG Yao-wei. Expression of Protease Gene sph of Bacillus sphaericus 2297 in Pichia pastoris and Characterization of the Recombinant Enzyme[J]. Science and Technology of Food Industry, 2019, 40(7): 114-118,130. DOI: 10.13386/j.issn1002-0306.2019.07.020
    [4]CHENG Yuan-yuan, CHEN Qing-min, LI Jun-ge, LI Shu-huan, WANG Yan-hui, HAN Wen-jun. High Expression and Enzymatic Characterization of an Exo-type Agarase AgaO[J]. Science and Technology of Food Industry, 2019, 40(7): 107-113. DOI: 10.13386/j.issn1002-0306.2019.07.019
    [5]CHEN Zhi-lin, LIN Qing-jun, WANG Peng, YE Xiu-yun, LI Ren-kuan. Expression a Cutinase from Fusarium oxysporum in Pichia pastoris and Characterization[J]. Science and Technology of Food Industry, 2018, 39(18): 87-92. DOI: 10.13386/j.issn1002-0306.2018.18.017
    [6]SONG Yan, CUI Tang-bing. Study on Gene Cloning and Expression of β-mannanase from Enterobacter aerogenes B19 and Characterization of the Recombinant Enzyme[J]. Science and Technology of Food Industry, 2018, 39(13): 142-149. DOI: 10.13386/j.issn1002-0306.2018.13.026
    [7]DU Yuan-yuan, GUO Xiao-yu, LI He, WANG Ya-fang, YANG Fan, LI Xian-zhen. Heterologous expression and characterization of a novel xanthan lyase[J]. Science and Technology of Food Industry, 2017, (02): 175-181. DOI: 10.13386/j.issn1002-0306.2017.02.025
    [8]WEI Tao, DU Cong-cong, MAO Duo-bin, MA Ge-li. Cloning,expression and characterization of the esterase Tm1350 from hyperthermophilic bacteria Thermotoga maritima[J]. Science and Technology of Food Industry, 2015, (09): 179-183. DOI: 10.13386/j.issn1002-0306.2015.09.031
    [9]His-tag effect on solubility of linoleic acid isomerase produced in E.coli[J]. Science and Technology of Food Industry, 2012, (18): 217-220. DOI: 10.13386/j.issn1002-0306.2012.18.003
    [10]Cloning and expression of isomannanase gene and characterization of the enzyme[J]. Science and Technology of Food Industry, 2012, (16): 213-216. DOI: 10.13386/j.issn1002-0306.2012.16.003
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return