Citation: | WANG Yihan, XIE Qingyun, TENG Jianwen, et al. Effects of Separation and Purification on the Structure and Lipid-lowering Activity in Vitro of Tremella fuciformis Polysaccharide[J]. Science and Technology of Food Industry, 2025, 46(5): 81−90. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030318. |
[1] |
许欢怡, 李泉岑, 郑明锋, 等. 银耳多糖的结构、功能性及应用研究进展[J]. 食品工业科技,2024,45(4):362−370. [XU H Y, LI Q C, ZHENG M F, et al. Research progress on structure, function and application of Tremella fuciformis polysaccharide[J]. Science and Technology of Food Industry,2024,45(4):362−370.]
XU H Y, LI Q C, ZHENG M F, et al. Research progress on structure, function and application of Tremella fuciformis polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(4): 362−370.
|
[2] |
CHIU C, CHIU K, YANG L, et al. Amelioration of obesity in mice fed a high-fat diet with uronic acid-rich polysaccharides derived from Tremella fuciformis[J]. Polymers,2022,14(8):1514. doi: 10.3390/polym14081514
|
[3] |
苏静. 古田银耳多糖体外消化特性及凝胶软糖产品开发[D]. 济南:山东农业大学, 2023. [SU J. Characteristics of in vitro digestion of Tremella fuciformis polysaccharide from gutian and development of gel gummy products[D]. Jinan:Shandong Agricultural University, 2023.]
SU J. Characteristics of in vitro digestion of Tremella fuciformis polysaccharide from gutian and development of gel gummy products[D]. Jinan: Shandong Agricultural University, 2023.
|
[4] |
PICARD F, STEG P G. Cardiovascular disease risk reduction in mild-moderate hypertriglyceridemia:Integrating prescription of Omega-3 with standard treatment[J]. Current Atherosclerosis Reports,2021,23(6):27. doi: 10.1007/s11883-021-00919-2
|
[5] |
LIU Y, XIANG Z, CHEN C, et al. Hypolipidemic and hepatoprotective effects of polysaccharides extracted from Liriope spicata var. prolifera in C57BL/6J mice with high-fat diet-induced hyperlipidemia[J]. Evidence-based Complementary and Alternative Medicine,2020,2020:8013189.
|
[6] |
YANG Y, LIN L, ZHAO M, et al. The hypoglycemic and hypolipemic potentials of Moringa oleifera leaf polysaccharide and polysaccharide-flavonoid complex[J]. International Journal of Biological Macromolecules,2022,210:518−529. doi: 10.1016/j.ijbiomac.2022.04.206
|
[7] |
NAQASH F, MASOODI F A, RATHER S A, et al. Emerging concepts in the nutraceutical and functional properties of pectin-A review[J]. Carbohydrate Polymers,2017,168:227−239. doi: 10.1016/j.carbpol.2017.03.058
|
[8] |
AGUILERA-ANGEL E, ESPINAL-RUIZ M, NARVAEZ-CUENCA C. Pectic polysaccharides with different structural characteristics as inhibitors of pancreatic lipase[J]. Food Hydrocolloids,2018,83:229−238. doi: 10.1016/j.foodhyd.2018.05.009
|
[9] |
WU Y, WEI Z, ZHANG F, et al. Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom:A review[J]. International Journal of Biological Macromolecules,2019,121:1005−1010. doi: 10.1016/j.ijbiomac.2018.10.117
|
[10] |
LI Q, DOU Z, DUAN Q, et al. A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:Antioxidant and bile acid-binding capacity[J]. Food Science and Human Wellness,2024,13(1):494−505. doi: 10.26599/FSHW.2022.9250043
|
[11] |
CHEUNG Y, SIU K, LIU Y, et al. Molecular properties and antioxidant activities of polysaccharide-protein complexes from selected mushrooms by ultrasound-assisted extraction[J]. Process Biochemistry,2012,47(5):892−895. doi: 10.1016/j.procbio.2012.02.004
|
[12] |
陈丽娟. 银耳多糖快速提取及可控降解的研究[D]. 广州:华南理工大学, 2017. [CHENG L J. Study on rapid extraction and controlled degradation of Tremella fuciformis polysaccharide[D]. Guangzhou:South China University of Technology, 2017.]
CHENG L J. Study on rapid extraction and controlled degradation of Tremella fuciformis polysaccharide[D]. Guangzhou: South China University of Technology, 2017.
|
[13] |
王迎香, 唐子惟, 彭腾, 等. 苯酚-硫酸法测定酒蒸多花黄精多糖含量的优化[J]. 食品工业科技,2021,42(18):308−316. [WANG Y X, TANG Z W, PENG T, et al. Optimization of phenol-sulfuric acid method for the determination of polysaccharide content of polygonum extract in wine steaming[J]. Science and Technology of Food Industry,2021,42(18):308−316.]
WANG Y X, TANG Z W, PENG T, et al. Optimization of phenol-sulfuric acid method for the determination of polysaccharide content of polygonum extract in wine steaming[J]. Science and Technology of Food Industry, 2021, 42(18): 308−316.
|
[14] |
陈巧巧, 万琴, 王振中, 等. 人参多糖中糖醛酸含量测定方法的建立[J]. 中国实验方剂学杂志,2012,18(8):121−124. [CHENG Q Q, WANG Q, WANG Z Z, et al. Establishment of a method for determination of uronic acid in ginseng polysaccharide[J]. Journal of Chinese Experimental Formulae,2012,18(8):121−124.] doi: 10.3969/j.issn.1005-9903.2012.08.038
CHENG Q Q, WANG Q, WANG Z Z, et al. Establishment of a method for determination of uronic acid in ginseng polysaccharide[J]. Journal of Chinese Experimental Formulae, 2012, 18(8): 121−124. doi: 10.3969/j.issn.1005-9903.2012.08.038
|
[15] |
JIANG H, ZHU H, HUO G, et al. Oudemansiella raphanipies polysaccharides improve lipid metabolism disorders in murine high-fat diet-induced non-alcoholic fatty liver disease[J]. Nutrients,2022,14(19):4092. doi: 10.3390/nu14194092
|
[16] |
SONG Y, ZHU M, HAO H, et al. Structure characterization of a novel polysaccharide from Chinese wild fruits (Passiflora foetida) and its immune-enhancing activity[J]. International Journal of Biological Macromolecules,2019,1(136):324−331.
|
[17] |
CHEN Juncheng, ZHANG Xia, HUO Da, et al. Preliminary characterization , antioxidant and α-glucosidase inhibitory activities of polysaccharides from Mallotus furetianus[J]. Carbohydrate Polymers,2019,215:307−315.
|
[18] |
GONG Y, MA Y, CHEUNG P C, et al. Structural characteristics and anti-inflammatory activity of UV/H2O2-treated algal sulfated polysaccharide from Gracilaria lemaneiformis[J]. Food and Chemical Toxicology,2021,152:112157. doi: 10.1016/j.fct.2021.112157
|
[19] |
KAHLON T S, SMITH G E. In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragariaa X ananass), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris)[J]. Food Chemistry,2007,100(3):1182−1187. doi: 10.1016/j.foodchem.2005.10.066
|
[20] |
FU Y, YUAN Q, LIN S, et al. Physicochemical characteristics and biological activities of polysaccharides from the leaves of different loquat (Eriobotrya japonica) cultivars[J]. International Journal of Biological Macromolecules,2019,135:274−281. doi: 10.1016/j.ijbiomac.2019.05.157
|
[21] |
CAI S, WANG O, WANG M, et al. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented oats (Avena sativa L.) and synergistic effect of three phenolic acids[J]. Journal of Agricultural and Food Chemistry,2012,60(29):7245−7251. doi: 10.1021/jf3009958
|
[22] |
CHEN B. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro[J]. Carbohydrate Polymers,2010,81(2):420−424. doi: 10.1016/j.carbpol.2010.02.039
|
[23] |
ZHU X, CHEN J, WANG H, et al. Mechanism of viscosity reduction of okra pectic polysaccharide by ascorbic acid[J]. Carbohydrate Polymers,2022,284:119196. doi: 10.1016/j.carbpol.2022.119196
|
[24] |
XU X, CHEN A, GE X, et al. Chain conformation and physicochemical properties of polysaccharide (glucuronoxylomannan) from fruit bodies of Tremella fuciformis[J]. Carbohydrate Polymers,2020,245:116354. doi: 10.1016/j.carbpol.2020.116354
|
[25] |
YANG Y, ZHAO M, LIN L. Effects of extraction methods on structural characteristics and bile acid-binding capacities of Moringa oleifera leaf polysaccharide fractions[J]. International Journal of Food Science and Technology,2020,55(4):1539−1546. doi: 10.1111/ijfs.14430
|
[26] |
WANG Y, XIN Y, YIN J, et al. Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler[J]. Food Chemistry,2022,368:130772.
|
[27] |
TANG H, CHEN C, WANG S, et al. Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L[J]. International Journal of Biological Macromolecules,2015,77:235−242. doi: 10.1016/j.ijbiomac.2015.03.026
|
[28] |
ZHANG H, ZOU P, ZHAO H, et al. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis[J]. Carbohydrate Polymers,2021,251:117078. doi: 10.1016/j.carbpol.2020.117078
|
[29] |
SHI X, FENG J, WANG S, et al. Primary structure, physicochemical properties, and digestive properties of four sequentially extracted polysaccharides from Tremella fuciformis[J]. Journal of Food Composition and Analysis,2023,115:105005. doi: 10.1016/j.jfca.2022.105005
|
[30] |
REN Y, LIU S. Effects of separation and purification on structural characteristics of polysaccharide from quinoa (Chenopodium quinoa willd)[J]. Biochemical and Biophysical Research Communications,2020,522(2):286−291. doi: 10.1016/j.bbrc.2019.10.030
|
[31] |
GU J, ZHANG H, WEN C, et al. Purification, characterization, antioxidant and immunological activity of polysaccharide from Sagittaria sagittifolia L.[J]. Food Research International,2020,136:109345. doi: 10.1016/j.foodres.2020.109345
|
[32] |
WU C, ZHAO M, BU X, et al. Preparation, characterization, antioxidant and antiglycation activities of selenized polysaccharides from blackcurrant[J]. Rsc Advances,2020,10(54):32616−32627. doi: 10.1039/D0RA06462A
|
[33] |
WALLER J R. Drugs for lipid disorders, antiplatelet drugs and fibrinolytics[J]. Medicine,2022,50(7):460−464. doi: 10.1016/j.mpmed.2022.04.012
|
[34] |
ZHENG M, TIAN X, LI Z, et al. Effects of ultra-high pressure assisted extraction on the structure, antioxidant and hypolipidemic activities of Porphyra haitanensis polysaccharides[J]. Food Chemistry,2024,437(2):137856.
|
[35] |
YAN J, YU Y, WANG C, et al. Production, physicochemical characteristics, and in vitro biological activities of polysaccharides obtained from fresh bitter gourd (Momordica charantia L.) via room temperature extraction techniques[J]. Food Chemistry,2021,337:127798.
|
[36] |
NIE X, LI H, DU G, et al. Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China[J]. International Journal of Biological Macromolecules,2019,139:459−467. doi: 10.1016/j.ijbiomac.2019.08.016
|
[37] |
HUANG Y, MA Y, TSAI Y, et al. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion[J]. International Journal of Biological Macromolecules,2019,124:796−801. doi: 10.1016/j.ijbiomac.2018.11.249
|
[38] |
RAZAK N Q A, GAN C, SHAFIE M H. Unlocking the potential of Garcinia atroviridis fruit polysaccharides:A synergistic approach for obesity and hypertension management[J]. Food Bioscience,2024,57:103553. doi: 10.1016/j.fbio.2023.103553
|
[39] |
MCCLEMENTS D J. Food hydrocolloids:Application as functional ingredients to control lipid digestion and bioavailability[J]. Food Hydrocolloids,2021,111:106404. doi: 10.1016/j.foodhyd.2020.106404
|
[40] |
GUO H, LIN S, LU M, et al. Characterization, in vitro binding properties, and inhibitory activity on pancreatic lipase of β-glucans from different Qingke (Tibetan hulless barley) cultivars[J]. International Journal of Biological Macromolecules,2018,120:2517−2522. doi: 10.1016/j.ijbiomac.2018.09.023
|
[41] |
QIN H, HUANG L, TENG J, et al. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation[J]. Food Chemistry,2021,353:129419. doi: 10.1016/j.foodchem.2021.129419
|
[42] |
常相娜. 酶解改性苹果渣中多糖的制备、结构解析及脂质代谢调控机制[D]. 西安:陕西科技大学, 2022. [CHANG X N. Preparation, structure analysis and lipid metabolism regulation mechanism of polysaccharides from apple residue modified by enzymatic hydrolysis[D]. Xi'an:Shannxi University of Science and Technology, 2022.]
CHANG X N. Preparation, structure analysis and lipid metabolism regulation mechanism of polysaccharides from apple residue modified by enzymatic hydrolysis[D]. Xi'an: Shannxi University of Science and Technology, 2022.
|
[43] |
MAITY P, SEN I K, CHAKRABORTY I, et al. Biologically active polysaccharide from edible mushrooms:A review[J]. International Journal of Biological Macromolecules,2021,172:408−417. doi: 10.1016/j.ijbiomac.2021.01.081
|
[44] |
KHAN A A, YAO F, CUI F, et al. Comparative analysis of physicochemical properties and biological activities of crude polysaccharides isolated from selected Auricularia cornea strains[J]. Food Bioscience,2024,60:104486. doi: 10.1016/j.fbio.2024.104486
|
1. |
顾宇翔,周羽,刘恕. 护肤类化妆品功效评价理化试验方法的现状和分析. 日用化学工业(中英文). 2024(06): 727-732 .
![]() | |
2. |
岳开妍,毛丙永,唐鑫,张秋香,赵建新,崔树茂. 乳酸菌发酵对花生衣抗糖化缓解皮肤衰老功能的影响. 上海理工大学学报. 2024(04): 364-374 .
![]() | |
3. |
王国凯,龚荣英,杨灵丽,刘文龙,晋海军,田维毅. 槐花水提液发酵工艺优化及其抗氧化活性分析. 食品工业科技. 2024(20): 196-204 .
![]() | |
4. |
夏俊英,余海霞,戚仕梅,张富娜,邬婧,肖卫华. 长双歧杆菌胞外多糖对非酶糖基化的抑制作用. 生物学杂志. 2024(05): 6-13+47 .
![]() | |
5. |
谢圆芳,袁道欢,张丽山,黄嘉敏,林霁,田佳佳,贺锐,解勇. 黑松露提取物紧致抗皱功效. 香料香精化妆品. 2024(05): 73-77+149 .
![]() | |
6. |
曾贝贝,吕静,鲁杏茹,智文博,李带根. 牡丹花酶解肽的理化性质及促进皮肤健康功效. 食品工业科技. 2024(22): 314-321 .
![]() |