Citation: | JIA Jianhui, DOU Boxin, GAO Man, et al. Inhibitory Effect of Genistein on α-Glucosidase and Its Molecular Mechanism[J]. Science and Technology of Food Industry, 2025, 46(5): 63−71. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030182. |
[1] |
HERNANDEZ T R, ESETADA J M, SANSININER A J J, et al. Chia (Salvia hispanica L.), a pre-hispanic food in the treatment of diabetes mellitus:Hypoglycemic, antioxidant, anti-inflammatory, and inhibitory properties of α-glucosidase and α-amylase, and in the prevention of cardiovascular disease[J]. Molecules,2023,28(24):8069. doi: 10.3390/molecules28248069
|
[2] |
ZHENG Y, LEY S H, HU F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nature Reviews Endocrinology,2018,14(2):88−98. doi: 10.1038/nrendo.2017.151
|
[3] |
WAHAB M, JANASWAMY S. Porous corn starch granules as effective host matrices for encapsulation and sustained release of curcumin and resveratrol[J]. Carbohydrate Polymers,2024,333:121967. doi: 10.1016/j.carbpol.2024.121967
|
[4] |
ZHOU D T, MA Z, YIN X X, et al. Structural characteristics and physicochemical properties of field pea starch modified by physical, enzymatic, and acid treatments[J]. Food Hydrocolloid,2019(93):386−394.
|
[5] |
CHI C D, LI X X, ZHANG Y P, et al. Modulating the in vitro digestibility and predicted glycemic index of rice starch gels by complexation with gallic acid[J]. Food Hydrocolloid,2019(89):821−828.
|
[6] |
LEE K S, RYU H S, TURK A, et al. Characterization of α-glucosidase inhibitory constituents of the fruiting body of lion’s mane mushroom (Hericium erinaceus)[J]. Journal of Ethnopharmacology,2020,262:113197. doi: 10.1016/j.jep.2020.113197
|
[7] |
SMIRNOVA I E, GALIMOVA Z I, SAPOZHNIKOVA T A, et al. New dipterocarpol-based molecules with α-glucosidase inhibitory and hypoglycemic activity[J]. Chembiochem:A European Journal of Chemical Biology,2023,25(3):e202300716.
|
[8] |
LUMADHAR C S, JULIO M, GUADALUPE J R, et al. Design, synthesis, in silico, and in vitro evaluation of benzylbenzimidazolone derivatives as potential drugs on α-glucosidase and glucokinase as pharmacological targets[J]. RSC Advances,2023,13(31):21153−21162. doi: 10.1039/D3RA02916F
|
[9] |
JARED B, MICHAEL E, WU G J, et al. The human microbiome encodes resistance to the antidiabetic drug acarbose[J]. Nature,2021,600(7887):110−115. doi: 10.1038/s41586-021-04091-0
|
[10] |
JAEHYUN B, YOUNG J L, EUGENE S, et al. The effects of the voglibose on non-alcoholic fatty liver disease in mice model[J]. Scientific Reports,2022,12(1):13595. doi: 10.1038/s41598-022-15550-7
|
[11] |
AHMED S, AHMED S, M. M E, et al. Miglitol-PMO nanoparticles, an alpha-glucosidase inhibitor, has prolonged action on blood glucose level in diabetic rats[J]. Journal of Drug Delivery Science and Technology, 2022, 72:103388.
|
[12] |
ISMAN A, NYQUIST A, MOEL M, et al. The efficacy and tolerability of intermittent prandial acarbose to reduce glucose spikes in healthy individuals[J]. Translational Medicine of Aging,2023,7:12−19. doi: 10.1016/j.tma.2023.04.002
|
[13] |
PATEL P, SHAH D, BAMBHAROLIYA T, et al. A review on the development of novel heterocycles as α-glucosidase inhibitors for the treatment of type-2 diabetes mellitus[J]. Medicinal Chemistry (Shariqah (United Arab Emirates)),2024,20(5):503−536. doi: 10.2174/0115734064264591231031065639
|
[14] |
THUPAKULA S, NIMMALA R S S, DAWOOD M S, et al. Synergistic anti-diabetic effect of phloroglucinol and total procyanidin dimer isolated from Vitis vinifera methanolic seed extract potentiates via suppressing oxidative stress:In-vitro evaluation studies[J]. Biotechniques,2024,14(3):76.
|
[15] |
SHAHWAN M, ALHUMAYDHI F, ASHRAF G M, et al. Role of polyphenols in combating type 2 diabetes and insulin resistance[J]. International Journal of Biological Macromolecules,2022(206):567−579.
|
[16] |
APARNA B, BOMMANAMANE H P. Screening of novel source for genistein by rapid and sensitive UPLC-APCI-TOF mass spectrometry[J]. International Journal of Food Science, 2021:5537917.
|
[17] |
EWA G, JUDYTA C, MAGDALENA K, et al. Genistein-opportunities related to an interesting molecule of natural origin[J]. Molecules,2022,27(3):815. doi: 10.3390/molecules27030815
|
[18] |
SANCHEZ F B, PEDRO J W, DOMINIK S, et al. A green approach for genistein and apigenin extraction optimization from by-products of soybean crops[J]. Sustainable Chemistry and Pharmacy,2024,37:101343. doi: 10.1016/j.scp.2023.101343
|
[19] |
李勇, 芦冬涛, 董川, 等. 黑豆皮中天然产物抗氧化及降糖活性筛选[J]. 山西大学学报(自然科学版),2021,44(6):1186−1192. [LI Y, LU D T, DONG C, et al. Antioxidant activity and hypoglycemic screening of natural products from black soybean hulls[J]. Journal of Shanxi University (Natural Science Edition),2021,44(6):1186−1192.]
LI Y, LU D T, DONG C, et al. Antioxidant activity and hypoglycemic screening of natural products from black soybean hulls[J]. Journal of Shanxi University (Natural Science Edition), 2021, 44(6): 1186−1192.
|
[20] |
SON H, YOON E, YOO C, et al. Effects of synergistic inhibition on α-glucosidase by phytoalexins in soybeans[J]. Biomolecules,2019,9(12):828. doi: 10.3390/biom9120828
|
[21] |
王宇. 基于分子模拟探究五种类黄酮抑制hIAPP聚集与NtMGAM活性的机制[D]. 重庆:重庆大学, 2022. [WANG Y. Study on mechanism of five flavonoids inhibiting hIAPP aggregation and NtMGAM activity based on molecular simulation[D]. Chongqing:Chongqing University, 2022.]
WANG Y. Study on mechanism of five flavonoids inhibiting hIAPP aggregation and NtMGAM activity based on molecular simulation[D]. Chongqing: Chongqing University, 2022.
|
[22] |
高嫚, 贾健辉, 周迅, 等. 基于AOAC法对Englyst法测定粳米淀粉消化特性的优化[J]. 食品工业科技,2023,44(10):264−269. [GAO M, JIA J H, ZHOU X, et al. Optimization of Englyst method for determination of starch digestibility of japonica rice based on AOAC method[J]. Science and Technology of Food Industry,2023,44(10):264−269.]
GAO M, JIA J H, ZHOU X, et al. Optimization of Englyst method for determination of starch digestibility of japonica rice based on AOAC method[J]. Science and Technology of Food Industry, 2023, 44(10): 264−269.
|
[23] |
WANG X S, ZHANG J M, WANG P X, et al. Evaluation of alpha-glucosidase inhibition activity and glycosides in the Syringa pubescens Turcz from different geographical origin[J]. Scientia Horticulturae,2023,320:112198. doi: 10.1016/j.scienta.2023.112198
|
[24] |
DONG Q, HU N, YUE H L, et al. Inhibitory activity and mechanism investigation of hypericin as a novel α-glucosidase inhibitor[J]. Molecules,2021,26(15):4566. doi: 10.3390/molecules26154566
|
[25] |
MORTEZA S, MEHRAN M, MUSTAFA G, et al. Exploring the inhibitory properties between biflavonoids and α-glucosidase; computational and experimental approaches[J]. International Journal of Biological Macromolecules,2023,253(P7):127380.
|
[26] |
覃亚娟, 王萍, 陈小爱, 等. 3种黄酮类化合物对α-淀粉酶的抑制机制[J]. 食品科学技术学报,2023,41(5):110−122. [QIN Y J, WANG P, CHEN X A, et al. Study on the mechanism of flavonoids with different structures inhibiting α-amylase[J]. Journal of Food Science and Technology,2023,41(5):110−122.] doi: 10.12301/spxb202200834
QIN Y J, WANG P, CHEN X A, et al. Study on the mechanism of flavonoids with different structures inhibiting α-amylase[J]. Journal of Food Science and Technology, 2023, 41(5): 110−122. doi: 10.12301/spxb202200834
|
[27] |
YU Q, TIAN Y, FAN L P. Inhibition mechanisms of wounded okra on the α-glucosidase/α-amylase[J]. Food Bioscience,2023,51:102333. doi: 10.1016/j.fbio.2022.102333
|
[28] |
ZHENG Y, ZHANG R F, HUANG F, et al. α-Glucosidase inhibitors derived from black soybean and their inhibitory mechanisms[J]. LWT,2023,189:115502. doi: 10.1016/j.lwt.2023.115502
|
[29] |
DESSEAUX V, STOCKER P, BROUANT P, et al. The mechanisms of alpha-amylase inhibition by flavan-3-Ols and the possible impacts of drinking green tea on starch digestion[J]. Journal of Food Science,2018,83(11):2858−2865. doi: 10.1111/1750-3841.14353
|
[30] |
ADASME M F, LINNEMANN K L, BOLZ S N, et al. PLIP 2021:Expanding the scope of the protein-ligand interaction profiler to DNA and RNA[J]. Nucleic Acids Research,2021,49(1):530−534.
|
[31] |
VO T N, HOANG M H. Inhibition kinetics and mechanism of genistein against α-glucosidase[J]. Vietnam Journal of Chemistry,2024,62(4):493−499. doi: 10.1002/vjch.202200173
|
[32] |
WANG Y F, MA L, LI Z, et al. Synergetic inhibition of metal ions and genistein on α-glucosidase[J]. FEBS Letters,2004,576(1-2):46−50. doi: 10.1016/j.febslet.2004.08.059
|
[33] |
LEE D S, LEE S H. Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor[J]. FEBS Letters,2001,501(1):84−86. doi: 10.1016/S0014-5793(01)02631-X
|
[34] |
SUBAITHA A Z, PRIYADARSHINI S, YOHA K, et al. Impact of post-harvest processing techniques on the glycemic index of millets[J]. Food Chemistry Advances,2024(4):100636.
|
[35] |
XU T, LI X X, JI S Y, et al. Starch modification with phenolics:Methods, physicochemical property alteration, and mechanisms of glycaemic control[J]. Trends in Food Science Technology,2021(111):12−26.
|
[36] |
GARBIEC E, ROSIAK N, ZALEWSKI P, et al. Genistein co-amorphous systems with amino acids:An investigation into enhanced solubility and biological activity[J]. Pharmaceutics,2023,15(12):2653. doi: 10.3390/pharmaceutics15122653
|
[37] |
杨荣武, 丁智, 杨艳, 等. 基础生物化学原理[M]. 北京:高等教育出版社, 2021:129-130. [YANG R W, DING Z, YANG Y, et al. Fundamentals of biochemistry[M]. Beijing:Higher Education Press, 2021:129-130.]
YANG R W, DING Z, YANG Y, et al. Fundamentals of biochemistry[M]. Beijing: Higher Education Press, 2021: 129-130.
|
[38] |
G D A, GABRIEL V, ERIKA S, et al. Synthesis and molecular docking studies of alkoxy- and imidazole-substituted xanthones as α-amylase and α-glucosidase inhibitors[J]. Molecules (Basel, Switzerland), 2023, 28(10).
|
[39] |
KANAE S, TAIJI K, NOZOMI I, et al. Cover feature:Fluorescence quenching‐based assay for measuring Golgi endo‐α‐mannosidase[J]. Chemistry-An Asian Journal,2019,14(11):1887. doi: 10.1002/asia.201900459
|
[40] |
ARPITA D, KUMUD P, MALA N, et al. Binding characterization of anthraquinone derivatives by stabilizing G-quadruplex DNA leads to an anticancerous activity[J]. Molecular Therapy-Nucleic Acids,2022(30):648−662.
|
[41] |
CHEN X, HE X, ZHANG B, et al. Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis[J]. International Journal of Biological Macromolecules,2019,129:433−441. doi: 10.1016/j.ijbiomac.2019.01.215
|
[42] |
YANG Y, ZHANG J L, SHEN L H, et al. Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against α-amylase and α-glucosidase[J]. Food Chemistry,2021,359(35):129934.
|
[43] |
THAKOR K P, LUNAGARIYA M V, BHATT B S, et al. Fluorescence and absorption studies of DNA-Pd(II) complex interaction:Synthesis, spectroanalytical investigations and biological activities[J]. Luminescence:The Journal of Biological and Chemical Luminescence,2019,34(1):113−124. doi: 10.1002/bio.3587
|
[44] |
SINGH I R, YESYLEVSKYY S O, MITRA S. Dietary polyphenols inhibit plasma protein arabinosylation:Biomolecular interaction of genistein and ellagic acid with serum albumins[J]. Biophysical Chemistry,2021,277:106651. doi: 10.1016/j.bpc.2021.106651
|
[45] |
ELAHEH I, SIAVASH R, ZEINAB A R, et al. A simple and robust model to predict the inhibitory activity of α-glucosidase inhibitors through combined QSAR modeling and molecular docking techniques[J]. Molecular Diversity,2021,25(3):1−15.
|
[46] |
LI W, SONG Y, SUN W S, et al. Both acidic pH value and binding interactions of tartaric acid with α-glucosidase cause the enzyme inhibition:the mechanism in α-glucosidase inhibition of four caffeic and tartaric acid derivates[J]. Frontiers in Nutrition,2021,8:766756. doi: 10.3389/fnut.2021.766756
|