XIA Zhangchen, MENG Xiaohui, FANG Ru, et al. Inhibition Mechanism of Pleurotus citrinipileatus Sing. Ergothioneine on Pancreatic Lipase Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 80−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030119.
Citation: XIA Zhangchen, MENG Xiaohui, FANG Ru, et al. Inhibition Mechanism of Pleurotus citrinipileatus Sing. Ergothioneine on Pancreatic Lipase Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 80−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030119.

Inhibition Mechanism of Pleurotus citrinipileatus Sing. Ergothioneine on Pancreatic Lipase Activity

More Information
  • Received Date: March 07, 2024
  • Available Online: December 07, 2024
  • The interaction between Pleurotus citrinipileatus Sing. ergothioneine (PCEGT) and pancreatic lipase (PL) was studied by analyzing multiple spectroscopies including enzyme kinetics, ultraviolet absorption (UV), fluorescence spectroscopy, synchronous fluorescence spectroscopy and 3D fluorescence spectroscopy as well as the PCEGR-PL interaction mechanism by molecular docking in order to clarify its inhibitory mechanism. The results showed that the inhibition process of PCEGT on PL was reversible non-competitive with 15.29 mg/mL of the half-maximal inhibitory concentration (IC50). The UV spectrum indicated there was a π→π* transition produced by the peptide bond C=O group of PL as the mass concentration of PCEGT increased, which could reflect the reinforcement of polarity and hydrophilicity. Fluorescence spectra data revealed PCEGT could efficiently static-quench the intrinsic fluorescence of PL by changing its space structure. Based on the Lineweaver-Burk equation, the binding constants (Ka) under three different temperatures were obtained. Among them the Ka value was estimated to be 1.55×103 L/mol with approximately 1 binding site at 298 K. The thermodynamic parameters including enthalpy change and enthopy change calculated by Van't Hoff's law were to be −8.57 kJ/mol and 2.55 J/(mol·K), respectively. PCEGT might combine with the amino acid residues of PL via hydrogen bonding and electrostatic force. With the increase of the concentration of PCEGT, synchronous fluorescence intensity and 3D fluorescence spectra demonstrated that the failing hydrophobicity and incremental polarity of PL could be achieved evidencing by obvious redshifts of maximum absorption peaks (6 and 3 nm) and descent fluorescence intensities (32.2% and 25.6%). Molecular docking results further reinforced that PCEGT interacted with amino acids outside catalytic site of PL via hydrogen bonding, charge attraction and van der waals' force, resulting in the inhibition of PL. This study was beneficial for the deep understanding the hyperlipidemia of PCEGT from molecular mechanism and boosted the future health food processing of Pleurotus citrinipileatus Sing..
  • [1]
    BIALECKA-FLORJANCZYK E, FABISZEWSKA A U, KRZYCZKOWSKA J, et al. Synthetic and natural lipase inhibitors[J]. Mini Reviews in Medicinal Chemistry,2018,18(8):672−683. doi: 10.2174/1389557516666160630123356
    [2]
    LI S, PAN J H, HU X, et al. Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat[J]. Journal of Functional Foods, 2020, 72: 1−11.
    [3]
    DECHAKHAMPHU A, WONGCHUM N. Investigation of the kinetic properties of Phyllanthus chamaepeuce Ridl. extracts for the inhibition of pancreatic lipase activity[J]. Journal of Herbal Medicine,2022,32:100508. doi: 10.1016/j.hermed.2021.100508
    [4]
    孙茹欣, 吉日木图, 伊丽. 驼血蛋白胰脂肪酶抑制肽的分离纯化及鉴定[J]. 食品科技,2021,46(5):128−136. [SUN Ruxin, JIRIMUTU, YI Li. Purification and identification of camel blood protein pancreatic lipase inhibitory peptide[J]. Food Science and Technology,2021,46(5):128−136.]

    SUN Ruxin, JIRIMUTU, YI Li. Purification and identification of camel blood protein pancreatic lipase inhibitory peptide[J]. Food Science and Technology, 2021, 46(5): 128−136.
    [5]
    王雪. 刺囊酸衍生物的制备及抑制胰脂肪酶活性研究[D]. 长春:吉林农业大学, 2019. [WANG Xue. Studies on the synthesis of echinocystic acid derivatives and their lipases inhibition activities[D]. Changchun:Jilin Agricultural University, 2019.]

    WANG Xue. Studies on the synthesis of echinocystic acid derivatives and their lipases inhibition activities[D]. Changchun: Jilin Agricultural University, 2019.
    [6]
    冷檬. 坛紫菜胰脂肪酶抑制肽制备及其作用机理研究[D]. 厦门:集美大学, 2022. [LENG Meng. Preparation and interaction mechanism of pancreatic lipase inhibitory peptide from Porphyra haitanensis[D]. Xiamen:Jimei University, 2022.]

    LENG Meng. Preparation and interaction mechanism of pancreatic lipase inhibitory peptide from Porphyra haitanensis[D]. Xiamen: Jimei University, 2022.
    [7]
    米佳, 张渌淘, 禄璐, 等. 中压制备色谱法分离黑果枸杞中2个矮牵牛素花色苷及其对胰脂肪酶的抑制活性[J]. 食品科学,2023,44(22):16−23. [MI Jia, ZHANG Lutao, LU Lu, et al. Separation and pancreatic lipase inhibitory activity of two Petunidin anthocyanins from Lycium ruthenicum Murr. by preparative medium-pressure liquid chromatography[J]. Food Science,2023,44(22):16−23.] doi: 10.7506/spkx1002-6630-20221111-125

    MI Jia, ZHANG Lutao, LU Lu, et al. Separation and pancreatic lipase inhibitory activity of two Petunidin anthocyanins from Lycium ruthenicum Murr. by preparative medium-pressure liquid chromatography[J]. Food Science, 2023, 44(22): 16−23. doi: 10.7506/spkx1002-6630-20221111-125
    [8]
    宋鸽. 金顶侧耳营养成分评价及药理活性的研究[D]. 长春:吉林农业大学, 2013. [SONG G. Evaluation of nutritional components and pharmacological activities of Pleurotus ostreatus[D]. Changchun:Jilin Agricultural University, 2013.]

    SONG G. Evaluation of nutritional components and pharmacological activities of Pleurotus ostreatus[D]. Changchun: Jilin Agricultural University, 2013.
    [9]
    GRIGAT S. Probing the substrate specificity of the ergothioneine transporter with methimazole, hercynine, and organic carbon[J]. Biochemical Pharmacology, 2007, 74(2):309−316.
    [10]
    AMES B N. Prolonging healthy aging:longevity vitamins and proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(43):10836−10844.
    [11]
    姜文侠, 刘琦, 王洪宇, 等. 麦角硫因的提取及纯化方法:天津, CN104774182A8[P]. 2018-01-09. [JIANG Wenxia, LIU Qi, WANG Hongyu, et al. Extraction and purification method of ergothioneine:Tianjin, CN104774182A8[P]. 2018-01-09.]

    JIANG Wenxia, LIU Qi, WANG Hongyu, et al. Extraction and purification method of ergothioneine: Tianjin, CN104774182A8[P]. 2018-01-09.
    [12]
    梅洁, 李芳, 王晓雯, 等. 核桃谷蛋白多肽及其肽锌螯合物的分离纯化、鉴定与结合位点分析[J]. 食品科学,2024,45(22):2208−2216. [MEI Jie, LI Fang, WANG Xiaowen, et al. Isolation, purification, identification and binding site analysis of walnut glutelin peptide and its peptide zinc chelate[J]. Food Science,2024,45(22):2208−2216.] doi: 10.7506/spkx1002-6630-20231201-005

    MEI Jie, LI Fang, WANG Xiaowen, et al. Isolation, purification, identification and binding site analysis of walnut glutelin peptide and its peptide zinc chelate[J]. Food Science, 2024, 45(22): 2208−2216. doi: 10.7506/spkx1002-6630-20231201-005
    [13]
    廖家乐, 方甜, 范艳丽. 枸杞叶黄酮对胰脂肪酶活性的抑制作用[J]. 中国食品学报,2022,22(5):43−53. [LIAO Jiale, FANG Tian, FAN Yanli. Inhibitory effects of Lycium barbarum leaves flavonoids on pancreatic lipase activity[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(5):43−53.]

    LIAO Jiale, FANG Tian, FAN Yanli. Inhibitory effects of Lycium barbarum leaves flavonoids on pancreatic lipase activity[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(5): 43−53.
    [14]
    辛相余. 黑豆芽多酚体外模拟消化的生物可及性及其对消化酶的抑制作用研究[D]. 西安:陕西师范大学, 2021. [XIN Xiangyu. Studies on the bioaccessibility of black bean sprouts polyphenols for simulated digestionin vitro and their inhibitory effect on digestive enzymes[D]. Xi'an:Shaanxi Normal University, 2021.]

    XIN Xiangyu. Studies on the bioaccessibility of black bean sprouts polyphenols for simulated digestion in vitro and their inhibitory effect on digestive enzymes[D]. Xi'an: Shaanxi Normal University, 2021.
    [15]
    ELSHIHAWY H, HELAL M A, SAID M, et al. Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors[J]. Bioorganic & Medicinal Chemistry,2014,22(1):550−558.
    [16]
    陈永丽, 黄俊僮, 王玲, 等. 桑叶多糖的化学组成及其对胰脂肪酶的抑制作用研究[J]. 食品科技,2021,46(3):162−166. [CHEN Yongli, HUANG Juntong, WANG Ling, et al. Chemical composition of mulberry leaf polysaccharide and its inhibitory effect on pancreatic lipase[J]. Food Science and Technology,2021,46(3):162−166.]

    CHEN Yongli, HUANG Juntong, WANG Ling, et al. Chemical composition of mulberry leaf polysaccharide and its inhibitory effect on pancreatic lipase[J]. Food Science and Technology, 2021, 46(3): 162−166.
    [17]
    张楠, 胡童霞, 朱鑫麗, 等. 紫外和荧光光谱法研究油菜蜂花粉多酚对胰脂肪酶的作用过程[J]. 食品工业科技,2023,44(22):36−42. [ZHANG Nan, HU Tongxia, ZHU Xinli, et al. Study on the interaction process between rape bee pollen polyphenols and pancreatic lipase by ultraviolet and fluorescence spectroscopy[J]. Science and Technology of Food Industry,2023,44(22):36−42.]

    ZHANG Nan, HU Tongxia, ZHU Xinli, et al. Study on the interaction process between rape bee pollen polyphenols and pancreatic lipase by ultraviolet and fluorescence spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(22): 36−42.
    [18]
    周素珍, 邢莉, 范金波, 等. 分子对接结合荧光光谱法探究3种类胡萝卜素与HSA的相互作用[J]. 中国食品学报,2023,23(2):61−71. [ZHOU Suzhen, XING Li, FAN Jinbo, et al. Exploring the interaction between three carotenes and HSA by molecular docking and fluorescence spectroscopy[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(2):61−71.]

    ZHOU Suzhen, XING Li, FAN Jinbo, et al. Exploring the interaction between three carotenes and HSA by molecular docking and fluorescence spectroscopy[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(2): 61−71.
    [19]
    倪丹, 蒋新元, 唐玉莲, 等. 鞣花酸抑制酪氨酸酶的动力学、荧光光谱分析及分子对接[J]. 食品科学,2024,45(2):104−112. [NI Dan, JIANG Xinyuan, TANG Yulian, et al. Kinetics, fluorescence spectroscopy analysis and molecular docking of tyrosinase inhibition by ellagic acid[J]. Food Science,2024,45(2):104−112.]

    NI Dan, JIANG Xinyuan, TANG Yulian, et al. Kinetics, fluorescence spectroscopy analysis and molecular docking of tyrosinase inhibition by ellagic acid[J]. Food Science, 2024, 45(2): 104−112.
    [20]
    申炳俊, 柳婷婷. 光谱法和分子对接技术研究胡桃醌与人血清白蛋白的相互作用[J]. 分析化学,2020,48(10):1383−1391. [SHEN Bingjun, LIU Tingting. Spectroscopy and molecular docking technique for investigation of interaction between juglone and human serum albumin[J]. Chinese Journal of Analytical Chemistry,2020,48(10):1383−1391.]

    SHEN Bingjun, LIU Tingting. Spectroscopy and molecular docking technique for investigation of interaction between juglone and human serum albumin[J]. Chinese Journal of Analytical Chemistry, 2020, 48(10): 1383−1391.
    [21]
    张孟丽, 陈慧慧, 郑世杰, 等. 鹅膏蕈氨酸与人血清蛋白相互作用机制的研究[J]. 化学研究与应用,2021,33(11):2222−2227. [ZHANG Mengli, CHEN Huihui, ZHENG Shijie, et al. Study on the mechanism of interaction between ibotenic acid and human serum albumin[J]. Chemical Research and Application,2021,33(11):2222−2227.]

    ZHANG Mengli, CHEN Huihui, ZHENG Shijie, et al. Study on the mechanism of interaction between ibotenic acid and human serum albumin[J]. Chemical Research and Application, 2021, 33(11): 2222−2227.
    [22]
    张钊维, 宋雨欣, 王艺蓉, 等. 金纳米花的合成及其与人血清白蛋白相互作用的研究[J]. 化学通报,2022,85(4):490−495. [ZHANG Zhaowei, SONG Yuxin, WANG Yirong, et al. Study on the synthesis of gold nanoflower and its interaction with human serum albumin[J]. Chemistry,2022,85(4):490−495.]

    ZHANG Zhaowei, SONG Yuxin, WANG Yirong, et al. Study on the synthesis of gold nanoflower and its interaction with human serum albumin[J]. Chemistry, 2022, 85(4): 490−495.
    [23]
    李佳欣, 李道亮, 周鸿媛, 等. 荧光光谱法研究链格孢霉毒素TeA与血清白蛋白的互作机理[J]. 食品工业科技,2022,43(8):288−295. [LI Jiaxin, LI Daoliang, ZHOU Hongyuan, et al. Interaction mechanism between Alternaria mycotoxins TeA and serum albumin by fluorescence spectroscopy[J]. Science and Technology of Food Industry,2022,43(8):288−295.]

    LI Jiaxin, LI Daoliang, ZHOU Hongyuan, et al. Interaction mechanism between Alternaria mycotoxins TeA and serum albumin by fluorescence spectroscopy[J]. Science and Technology of Food Industry, 2022, 43(8): 288−295.
    [24]
    翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 北京:化学工业出版社, 2016:370−374. [WEN Shifu, XU Yizhuang. Fourier transform infrared spectroscopy[M]. Beijing:Chemical Industry Press, 2016:370−374.]

    WEN Shifu, XU Yizhuang. Fourier transform infrared spectroscopy[M]. Beijing: Chemical Industry Press, 2016: 370−374.
    [25]
    李雨欣, 胡芸利, 刘聪, 等. 河套麦胚多肽的制备工艺优化及其体外降血脂活性[J]. 食品工业科技,2024,45(17):174−180. [LI Yuxin, HU Yunli, LIU Cong, et al. Preparation optimization of hetao wheat germ polypeptide and its in vitro hypolipidemic activity[J]. [J]. Science and Technology of Food Industry,2024,45(17):174−180.]

    LI Yuxin, HU Yunli, LIU Cong, et al. Preparation optimization of hetao wheat germ polypeptide and its in vitro hypolipidemic activity[J]. [J]. Science and Technology of Food Industry, 2024, 45(17): 174−180.
    [26]
    MEHNAZA M A B, JAGMOHAN S A, ZUHAIB F B, et al. Multifunctional apple seed protein hydrolysates:Impact of enzymolysis on the biochemical, techno-functional and in vitro α-glucosidase, pancreatic lipase and angiotensin-converting enzyme inhibition activities[J]. International Journal of Biological Macromolecules, 2024, 257.
    [27]
    林娈, 柳雯郡, 黄俊媛, 等. 蛋白核小球藻胰脂肪酶抑制肽的分离纯化、鉴定及其降脂活性[J]. 食品科学,2023,44(24):155−163. [LIN Luan, LIU Wenjun, HUANG Junyuan, et al. Isolation, purification, identification and hypolipidemic activity of lipase inhibitory peptide from Chlorella pyrenoidosa[J]. Food Science,2023,44(24):155−163.] doi: 10.7506/spkx1002-6630-20230302-021

    LIN Luan, LIU Wenjun, HUANG Junyuan, et al. Isolation, purification, identification and hypolipidemic activity of lipase inhibitory peptide from Chlorella pyrenoidosa[J]. Food Science, 2023, 44(24): 155−163. doi: 10.7506/spkx1002-6630-20230302-021
    [28]
    安欢, 叶云, 丁华杰, 等. 苦瓜多糖对胰脂肪酶抑制作用的研究[J]. 中国调味品, 2020, 45(2):27−31. [AN Huan, YE Yun, DING Huajie, et al. Study on the inhibitory effect of Momordica charantia polysaccharide on pancreatic lipase[J]. China Condiment, 2020, 45(2):27−31.]

    AN Huan, YE Yun, DING Huajie, et al. Study on the inhibitory effect of Momordica charantia polysaccharide on pancreatic lipase[J]. China Condiment, 2020, 45(2): 27−31.
    [29]
    曹叶霞, 李慧卿, 尹爱萍, 等. 韭菜提取物对胰脂肪酶抑制作用的研究[J]. 粮食与油脂,2023,36(4):141−144,159. [CAO Yexia, LI Huiqing, YIN Aiping, et al. Study on the inhibitory effect of leek extracts on pancreatic lipase[J]. Cereals & Oils,2023,36(4):141−144,159.]

    CAO Yexia, LI Huiqing, YIN Aiping, et al. Study on the inhibitory effect of leek extracts on pancreatic lipase[J]. Cereals & Oils, 2023, 36(4): 141−144,159.
    [30]
    HUANG R, ZHANG Y, SHEN S, et al. Antioxidant andpancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts:an in vitro study[J]. Food Chemistry, 2020, 326: 1−10.
    [31]
    纪慧杰, 朱彩平. 石榴皮多糖的提取及组成、体外降脂活性研究[J]. 食品与发酵工业,2023,49(4):161−168. [JI Huijie, ZHU Caiping. Study on the extraction and composition of pomegranate peel polysaccharide and hypolipidemic activity in vitro[J]. Food and Fermentation Industries,2023,49(4):161−168.]

    JI Huijie, ZHU Caiping. Study on the extraction and composition of pomegranate peel polysaccharide and hypolipidemic activity in vitro[J]. Food and Fermentation Industries, 2023, 49(4): 161−168.
    [32]
    满子意, 凤怡, 吴祥庭. 儿茶素单体EGC对胰脂肪酶的抑制作用及其机理研究[J]. 茶叶科学,2022,42(6):863−874. [MAN Ziyi, FENG Yi, WU Xiangting. Inhibitory effect of catechin monomer EGC on pancreatic lipase and mechanism[J]. Journal of Tea Science,2022,42(6):863−874.] doi: 10.3969/j.issn.1000-369X.2022.06.010

    MAN Ziyi, FENG Yi, WU Xiangting. Inhibitory effect of catechin monomer EGC on pancreatic lipase and mechanism[J]. Journal of Tea Science, 2022, 42(6): 863−874. doi: 10.3969/j.issn.1000-369X.2022.06.010
    [33]
    胡慧娟, 闫巧丽, 卢晓刚, 等. 猪胰脂肪酶催化外消旋P-手性α-羟基磷酸酯类化合物的动力学拆分(英文)[J]. 有机化学,2023,43(8):2815−2825. [HU Huijuan, YAN Qiaoli, LU Xiaogang, et al. Kinetic resolution of racemic P-chiral α-hydroxymethylphos-phonates catalyzed by lipase from porcine pancreas[J]. Chinese Journal of Organic Chemistry,2023,43(8):2815−2825.] doi: 10.6023/cjoc202212005

    HU Huijuan, YAN Qiaoli, LU Xiaogang, et al. Kinetic resolution of racemic P-chiral α-hydroxymethylphos-phonates catalyzed by lipase from porcine pancreas[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2815−2825. doi: 10.6023/cjoc202212005
    [34]
    玉叶, 廖娟, 文彬, 等. 光谱法研究牛磺酸与人血清白蛋白相互作用[J]. 量子电子学报,2023,40(6):827−835. [YU Ye, LIAO Juan, WEN Bin, et al. Study on interaction between taurine and human serum protein by spectroscopy[J]. Chinese Journal of Quantum Electronics,2023,40(6):827−835.] doi: 10.3969/j.issn.1007-5461.2023.06.003

    YU Ye, LIAO Juan, WEN Bin, et al. Study on interaction between taurine and human serum protein by spectroscopy[J]. Chinese Journal of Quantum Electronics, 2023, 40(6): 827−835. doi: 10.3969/j.issn.1007-5461.2023.06.003
    [35]
    YUE Y, LIU J, LIU R, et al. Binding of helicid to human serum albumin:A hybrid spectroscopic approach and conformational study[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2014,124:46−51. doi: 10.1016/j.saa.2013.12.108
    [36]
    宝贵荣, 金亮, 包仓, 等. 胡椒酸己二醇单酯的降血脂作用及其与牛血清白蛋白相互作用研究[J]. 化学试剂,2022,44(11):1605−1609. [BAO Guirong, JIN Liang, BAO Cang, et al. Study on the antihyperlipidemic activity of 1.6-Hexanediol piperinic-monoester and its interaction with bovine serum albumin[J]. Chemical Reagents,2022,44(11):1605−1609.]

    BAO Guirong, JIN Liang, BAO Cang, et al. Study on the antihyperlipidemic activity of 1.6-Hexanediol piperinic-monoester and its interaction with bovine serum albumin[J]. Chemical Reagents, 2022, 44(11): 1605−1609.
    [37]
    CHEN J H, WU X H, ZHOU Y, et al. Camellia nitidissima Chi leaf as pancreatic lipase inhibitors:Inhibition potentials and mechanism[J]. Journal of Food Biochemistry,2021,45(9):e13837.
    [38]
    HUANG S, LI H M, LIU Y, et al. Comparable investigation of in vitro interactions between three ruthenium (II) arene complexes with curcumin analogs and CT DNA[J]. Polyhedron,2019,167:51−61. doi: 10.1016/j.poly.2019.04.013
    [39]
    ZHANG Q L, ZHU Z, NI Y N. Interaction between aspirin and vitamin C with human serum albumin as binary and ternary systems[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,236:118356. doi: 10.1016/j.saa.2020.118356
    [40]
    黄欣莉, 吴伟杰, 陈杭君, 等. 桃仁中苦杏仁苷高效提取及其体外生物活性研究[J]. 中国食品学报,2023,23(4):146−156. [HUANG Xinli, WU Weijie, CHEN Hangjun, et al. High-efficiency extraction and in vitro bioactivity of amygdalin from peach kernel[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(4):146−156.]

    HUANG Xinli, WU Weijie, CHEN Hangjun, et al. High-efficiency extraction and in vitro bioactivity of amygdalin from peach kernel[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(4): 146−156.
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (64) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return