ZHANG Zuwei, LI Rurui, YANG Cong, et al. Research on the Interaction between Eight Polyphenols and Arachin[J]. Science and Technology of Food Industry, 2025, 46(2): 74−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020208.
Citation: ZHANG Zuwei, LI Rurui, YANG Cong, et al. Research on the Interaction between Eight Polyphenols and Arachin[J]. Science and Technology of Food Industry, 2025, 46(2): 74−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020208.

Research on the Interaction between Eight Polyphenols and Arachin

More Information
  • Received Date: February 26, 2024
  • Available Online: November 10, 2024
  • This study investigated the interaction between arachin and eight common polyphenols—ferulic acid, resveratrol, hesperidin, catechin, quercetin, curcumin, gallic acid, and myricetin. The interaction patterns of these polyphenols with arachin were analyzed using UV-visible and fluorescence spectroscopy, with a focus on their effects on protein structure, surface hydrophobicity and solubility. UV-visible spectroscopy revealed that the polyphenols altered the microenvironment surrounding the amino acid residues of arachin, leading to changes in its molecular conformation. Fluorescence spectroscopy identified static quenching as the quenching mechanism of polyphenols on arachin, with resveratrol and catechin demonstrating the highest binding affinity. Additionally, catechin, myricetin, and gallic acid were observed to form high-molecular-weight polymers with arachin through covalent cross-linking, verified by SDS-PAGE. Fourier infrared spectroscopy showed that polyphenols induced various conformational changes in arachin, notably increasing the proportion of α-helix, with the maximum rise reaching 36.33%. The polyphenols decreased the surface hydrophobicity and solubility of arachin, with the lowest levels dropping to 19.92 µg and 51.7%, respectively. In conclusion, the interaction between the eight polyphenols and arachin induced diverse alterations to the conformation and physicochemical properties of arachin. This study offers a scientific basis and theoretical guidance for the further processing and utilization of polyphenols and arachin.
  • [1]
    刘娜, 谢畅, 黄海云, 等. 施钾量对花生根系和根瘤特性、养分吸收及产量的影响[J]. 中国农业科学,2023,56(4):635−648. [LIU N,XIE C, HUANG H Y, et al. Effects of potassium application on root and nodule characteristics, nutrient uptake and yield of peanut[J]. Scientia Agricultura Sinica,2023,56(4):635−648.]

    LIU N, XIE C, HUANG H Y, et al. Effects of potassium application on root and nodule characteristics, nutrient uptake and yield of peanut[J]. Scientia Agricultura Sinica, 2023, 56(4): 635−648.
    [2]
    杨琴. 花生球蛋白-罗勒籽胶复合凝胶的形成机理、结构性质及应用研究[D]. 合肥:合肥工业大学, 2021. [YANG Q. Formation mechanism, structure, properties and application of arachin-basil seed gum composite gels[D]. Hefei:Hefei University of Technology, 2021.]

    YANG Q. Formation mechanism, structure, properties and application of arachin-basil seed gum composite gels[D]. Hefei: Hefei University of Technology, 2021.
    [3]
    高云中. 花生粕蛋白的提取及性质研究[D]. 无锡:江南大学, 2009. [GAO Y Z. Study on extraction and properties of peanut meal protein[D]. Wuxi:Jiangnan University, 2009.]

    GAO Y Z. Study on extraction and properties of peanut meal protein[D]. Wuxi: Jiangnan University, 2009.
    [4]
    徐飞. 花生球蛋白亚基缺失对热特性的影响[D]. 北京:中国农业科学院, 2016. [XU F. Effect of subunit-lacking on thermal properties of arachin[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016.]

    XU F. Effect of subunit-lacking on thermal properties of arachin[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
    [5]
    YAN X H, ZENG Z L, MCCLEMENTS D J, et al. A review of the structure, function, and application of plant-based protein–phenolic conjugates and complexes[J]. Comprehensive Reviews in Food Science and Food Safety,2023,22(2):1312−1336. doi: 10.1111/1541-4337.13112
    [6]
    RAWEL H M, CZAJKA D, ROHN S, et al. Interactions of different phenolic acids and flavonoids with soy proteins[J]. International Journal of Biological Macromolecules,2002,30(3):137−150.
    [7]
    KOPJAR M, BULJETA I, ĆORKOVIĆ I, et al. Adsorption of quercetin on brown rice and almond protein matrices:Effect of quercetin concentration[J]. Foods,2022,11(6):793. doi: 10.3390/foods11060793
    [8]
    KANAKIS C D, HASNI I, BOURASSA P, et al. Milk β-lactoglobulin complexes with tea polyphenols[J]. Food Chemistry,2011,127(3):1046−1055. doi: 10.1016/j.foodchem.2011.01.079
    [9]
    尹可宏, 杨茜, 赵秀飞, 等. 羟自由基氧化对花生球蛋白结构和功能性质的影响[J]. 食品与发酵工业,2022,48(4):24−31. [YIN K H, YANG X, ZHAO X F, et al. Effects of hydroxyl radical oxidation on the structure and functional property of arachin[J]. Food and Fermentation Industries,2022,48(4):24−31.]

    YIN K H, YANG X, ZHAO X F, et al. Effects of hydroxyl radical oxidation on the structure and functional property of arachin[J]. Food and Fermentation Industries, 2022, 48(4): 24−31.
    [10]
    ALI M. Chemical, structural and functional properties of whey proteins covalently modified with phytochemical compounds[J]. Journal of Food Measurement and Characterization,2019,13(4):2970−2979. doi: 10.1007/s11694-019-00217-1
    [11]
    刘雪梅, 王华敏, 赵利, 等. 橙皮苷、柚皮苷与酪蛋白相互作用机制比较分析[J]. 食品科学,2023,44(4):162−170. [LIU X M, WANG H M, ZHAO L, et al. Comparative study on interaction mechanism between hesperidin, naringin and casein[J]. Food Science,2023,44(4):162−170.]

    LIU X M, WANG H M, ZHAO L, et al. Comparative study on interaction mechanism between hesperidin, naringin and casein[J]. Food Science, 2023, 44(4): 162−170.
    [12]
    游见明, 曹新志. 福林酚法测定茶树中茶多酚的分布水平[J]. 湖北农业科学,2013,52(10):2417−2419. [YOU J M, CAO X Z. Analysis on the distribution of tea polyphenol in tea tree by folin-ciocalteaut method[J]. Hubei Agricultural Sciences,2013,52(10):2417−2419.]

    YOU J M, CAO X Z. Analysis on the distribution of tea polyphenol in tea tree by folin-ciocalteaut method[J]. Hubei Agricultural Sciences, 2013, 52(10): 2417−2419.
    [13]
    赵谋明, 辛佩贤, 陈楠楠, 等. 花生球蛋白和伴花生球蛋白在酸性条件下亚基结构的变化规律[J]. 现代食品科技,2016,32(3):30−35. [ZHAO M M, XIN P X, CHEN N N, et al. Structural variations in the subunits of arachin and conarachin under acidic conditions[J]. Modern Food Science and Technology,2016,32(3):30−35.]

    ZHAO M M, XIN P X, CHEN N N, et al. Structural variations in the subunits of arachin and conarachin under acidic conditions[J]. Modern Food Science and Technology, 2016, 32(3): 30−35.
    [14]
    LI W LI S G, HU Y, et al. Impact of hot alkali modification conditions on secondary structure of peanut protein and embeding rate of curcumin[J]. Food Science and Human Wellness,2019,8(3):283−291. doi: 10.1016/j.fshw.2019.05.004
    [15]
    TANG Y, YANG Y X, WANG Q M, et al. Combined effect of carboxymethylcellulose and salt on structural properties of wheat gluten proteins[J]. Food Hydrocolloids,2019,97:105189. doi: 10.1016/j.foodhyd.2019.105189
    [16]
    张雪春, 茹月蓉, 程群, 等. 八种多酚与核桃蛋白相互作用的研究[J]. 食品与发酵工业,2022,48(12):97−104. [ZHANG X C, RU Y R, CHENG Q, et al. Studies of interaction between eight polyphenols and walnut protein[J]. Food and Fermentation Industries,2022,48(12):97−104.]

    ZHANG X C, RU Y R, CHENG Q, et al. Studies of interaction between eight polyphenols and walnut protein[J]. Food and Fermentation Industries, 2022, 48(12): 97−104.
    [17]
    高瑾, 梁宏闪, 赵靖昀, 等. 玉米醇溶蛋白-多酚相互作用及复合物制备与表征[J]. 食品科学,2022,43(2):8−17. [GAO J, LIANG H S, ZHAO J Y, et al. Interactions between zein and polyphenols and characterization of their complexes[J]. Food Science,2022,43(2):8−17.]

    GAO J, LIANG H S, ZHAO J Y, et al. Interactions between zein and polyphenols and characterization of their complexes[J]. Food Science, 2022, 43(2): 8−17.
    [18]
    CHEN X W, WANG J, YANG X, et al. Subcritical water induced complexation of soy protein and rutin:Improved interfacial properties and emulsion stability[J]. Journal of Food Science,2016,81(9):C2149−C2157.
    [19]
    曹云刚. 植物多酚对肉蛋白氧化稳定性和功能特性的影响机理及应用[D]. 无锡:江南大学, 2016. [CAO Y G. Effect of plant-derived polyphenols on oxidative stability and functional properties of meat proteins:Mechanism and application[D]. Wuxi:Jiangnan University, 2016.]

    CAO Y G. Effect of plant-derived polyphenols on oxidative stability and functional properties of meat proteins: Mechanism and application[D]. Wuxi: Jiangnan University, 2016.
    [20]
    DONG A C, HUANG PING, CAUGHEY W S. Protein secondary structures in water from second-derivative amide I infrared spectra[J]. Biochemistry,1990,29(13):3303−3308. doi: 10.1021/bi00465a022
    [21]
    ZHAO Q, YU X, ZHOU C, et al. Effects of collagen and casein with phenolic compounds interactions on protein in vitro digestion and antioxidation[J]. LWT,2020,124:109192. doi: 10.1016/j.lwt.2020.109192
    [22]
    王晨, 谢岩黎, 范亭亭. 花青素与小麦蛋白相互作用及对蛋白质结构的影响[J]. 食品科学,2019,40(20):60−66. [WANG C, XIE Y L, FAN T T. Interactions of cyanidin-3-o-glucoside with gliadin and glutenin and their effects on protein structure[J]. Food Science,2019,40(20):60−66.]

    WANG C, XIE Y L, FAN T T. Interactions of cyanidin-3-o-glucoside with gliadin and glutenin and their effects on protein structure[J]. Food Science, 2019, 40(20): 60−66.
    [23]
    MENG Y Y MENG C L. Conformational changes and functional properties of whey protein isolate-polyphenol complexes formed by non-covalent interaction[J]. Food Chemistry,2021,364:126922.
    [24]
    赵思明, 江连洲, 王冬梅, 等. EGCG对大豆蛋白结构的调控机理[J]. 食品科学,2021,42(12):67−75. [ZHAO S M, JIANG L Z, WANG D M, et al. Regulation mechanism of epigallocatechin gallate on the structure of soybean protein[J]. Food Science,2021,42(12):67−75.]

    ZHAO S M, JIANG L Z, WANG D M, et al. Regulation mechanism of epigallocatechin gallate on the structure of soybean protein[J]. Food Science, 2021, 42(12): 67−75.
    [25]
    郄雪娇, 程亚, 曾茂茂, 等. 食品多酚与蛋白相互作用及其对多酚生物可利用性影响的研究进展[J]. 食品与发酵工业,2019,45(8):232−237. [XI X J, CHENG Y, ZENG M M, et al. Advances in food polyphenol-protein interactions and their impact on polyphenol bioavailability[J]. Food and Fermentation Industries,2019,45(8):232−237.]

    XI X J, CHENG Y, ZENG M M, et al. Advances in food polyphenol-protein interactions and their impact on polyphenol bioavailability[J]. Food and Fermentation Industries, 2019, 45(8): 232−237.
    [26]
    TRAN HONG QUAN S B T S. Protein–polyphenol conjugates:Antioxidant property, functionalities and their applications[J]. Trends in Food Science & Technology,2019(91):501−507.
    [27]
    曹佳兴. 超声辅助EGCG共价修饰在小麦醇溶蛋白改性中的应用研究[D]. 郑州:河南工业大学,2023. [CAO J X. Ultrasound-assisted covalent modification of EGCG in the modification of gliadin[D]. Zhenzhou:Henan University of Technology,2023.]

    CAO J X. Ultrasound-assisted covalent modification of EGCG in the modification of gliadin[D]. Zhenzhou: Henan University of Technology, 2023.
    [28]
    JONGBERG S, LUND M N, SKIBSTED L H, et al. Competitive reduction of perferrylmyoglobin radicals by protein thiols and plant phenols[J]. Journal of Agricultural and Food Chemistry,2014,62(46):11279−11288. doi: 10.1021/jf5041433
    [29]
    郑启航, 苗振弛, 宋斌, 等. 高静水压处理对玉米淀粉/阿魏酸复合体系理化及结构特性的影响[J]. 食品科学,2023,44(19):51−57. [ZHENG Q H, MIAO Z C, SONG B, et al. Effects of high hydrostatic pressure treatment on physicochemical and structural characteristics of maize starch/ferulic acid composite system[J]. Food Science,2023,44(19):51−57.] doi: 10.7506/spkx1002-6630-20220921-206

    ZHENG Q H, MIAO Z C, SONG B, et al. Effects of high hydrostatic pressure treatment on physicochemical and structural characteristics of maize starch/ferulic acid composite system[J]. Food Science, 2023, 44(19): 51−57. doi: 10.7506/spkx1002-6630-20220921-206
    [30]
    李琦, 葛思彤, 张士禹, 等. 玉米后熟期间醇溶蛋白结构和理化特性[J]. 食品科学,2022,43(18):16−23. [[LI Q, GE S T, ZHANG S Y, et al. Structure and physicochemical properties of zein during postharvest ripening of corn[J]. Food Science,2022,43(18):16−23.] doi: 10.7506/spkx1002-6630-20211108-088

    [LI Q, GE S T, ZHANG S Y, et al. Structure and physicochemical properties of zein during postharvest ripening of corn[J]. Food Science, 2022, 43(18): 16−23. doi: 10.7506/spkx1002-6630-20211108-088
    [31]
    XU Q D, YU L Z, ZENG W. Structural and functional modifications of myofibrillar protein by natural phenolic compounds and their application in pork meatball[J]. Food Research International,2021,148:110593.
    [32]
    程周周. 基于多酚-蛋白分子互作的低牛乳蛋白体系构建及机制研究[D]. 杭州:浙江工商大学, 2022. [CHENG Z Z. Construction and mechanism of hypoallergenic milk protein system based on polyphenol-protein molecular interaction[D]. Hangzhou:Zhejiang Gongshang University,2022.]

    CHENG Z Z. Construction and mechanism of hypoallergenic milk protein system based on polyphenol-protein molecular interaction[D]. Hangzhou: Zhejiang Gongshang University, 2022.
    [33]
    孟令莉, 张晗, 侯惠静, 等. 卵清白蛋白-没食子酸-葡聚糖共聚物对白藜芦醇稳定性和抗氧化性的影响[J]. 食品科学,2022,43(16):135−144. [MENG L L, ZHANG H, HOU H J, et al. Effects of OVA-GA-DEX conjugates on stability and antioxidant activity of resveratrol[J]. Food Science,2022,43(16):135−144.] doi: 10.7506/spkx1002-6630-20220320-235

    MENG L L, ZHANG H, HOU H J, et al. Effects of OVA-GA-DEX conjugates on stability and antioxidant activity of resveratrol[J]. Food Science, 2022, 43(16): 135−144. doi: 10.7506/spkx1002-6630-20220320-235
    [34]
    赵钜阳, 袁惠萍, 姚恒喆, 等. pH值对儿茶素-大豆分离蛋白复合物结构与乳化性的影响[J]. 食品科学技术学报,2023,41(3):127−138. [ZHAO J Y, YUAN H P, YAO H Z, et al. Effect of pH on the structure and emulsibility of catechin-soy protein isolate complex[J]. Journal of Food Science and Technology,2023,41(3):127−138.]

    ZHAO J Y, YUAN H P, YAO H Z, et al. Effect of pH on the structure and emulsibility of catechin-soy protein isolate complex[J]. Journal of Food Science and Technology, 2023, 41(3): 127−138.
    [35]
    瞿丞, 贺稚非, 王兆明, 等. 不同食盐添加量腌制对鸡肉脂质氧化、蛋白质氧化及食用品质的影响[J]. 食品科学,2020,41(16):77−85. [QU C, HE Z F, WANG Z M, et al. Effects of different salt concentrations on lipid oxidation, protein oxidation and eating quality of cured chicken meat[J]. Food Science,2020,41(16):77−85.]

    QU C, HE Z F, WANG Z M, et al. Effects of different salt concentrations on lipid oxidation, protein oxidation and eating quality of cured chicken meat[J]. Food Science, 2020, 41(16): 77−85.
    [36]
    HU Y P, GAO Y F, SOLANGI I, et al. Effects of tea polyphenols on the conformational, functional, and morphological characteristics of beef myofibrillar proteins[J]. LWT,2022,154:112596. doi: 10.1016/j.lwt.2021.112596
  • Other Related Supplements

  • Cited by

    Periodical cited type(10)

    1. 舒丽枝,时苗苗,张牧焓,卞欢,徐为民,王道营. 卟啉类化合物和游离铁对鸡胸肉肌原纤维蛋白理化特性的影响. 江苏农业学报. 2024(10): 1952-1961 .
    2. 王晓芸,高霞,尤娟,尹涛,刘茹. 超声预处理对鲜湿鱼粉品质的影响及其作用机制. 食品科学. 2024(23): 213-220 .
    3. 韩馨蕊,李颖,刘苗苗,范鑫,冯莉,曹云刚. 安石榴苷与焦磷酸钠对肌原纤维蛋白氧化稳定性及凝胶性能的影响. 食品科学. 2022(08): 15-21 .
    4. 莫玲,香庆文,李晶晶,叶玉萍,赵超超. 孕哺期摄入氧化乳蛋白对子代小鼠机体氧化还原状态的影响. 食品科学技术学报. 2021(03): 122-128 .
    5. 梁恽红,卢涵,张香美. 蛋白二、三级结构对鱼糜凝胶质构和持水力的影响及其测定方法研究进展. 东北农业大学学报. 2021(10): 87-96 .
    6. 谢晨,熊泽语,李慧,金素莱曼,陈百科,包海蓉. 金针菇多糖对三文鱼片冻藏期间品质的影响. 食品与发酵工业. 2021(22): 178-183 .
    7. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    8. 冯程,Manonose Tariro Upenyu,李志豪,王萍,余雄伟,付琴利,李述刚. 丙烯醛对籽瓜种仁蛋白质结构及凝胶特性影响研究. 食品科技. 2019(09): 66-71 .
    9. 刁小琴,关海宁,李杨,刘丽美. 高压均质对肌原纤维蛋白乳化特性及结构的影响. 食品与发酵工业. 2019(18): 107-112 .
    10. 郭兆斌,马纪兵,张丽,陈骋,陈立业,刘勇,韩玲,余群力. 传统风干牦牛肉加工过程中肌原纤维蛋白氧化对氨基酸的影响. 食品与发酵工业. 2019(22): 202-207+212 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (58) PDF downloads (12) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return