Citation: | DAI Tianyi, LIU Donglian, QIN Xingmin, et al. Protective Effects of Gynostemma pentaphyllum Saponins on Liver Injury in Guinea Pigs of Hyperlipemia Based on Oxidative Stress[J]. Science and Technology of Food Industry, 2025, 46(2): 349−357. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020003. |
[1] |
龚韧. Caspase-1介导高脂血症弱化心肌梗死后内皮祖细胞血管修复研究[D]. 南昌:南昌大学, 2022. [GONG R. Caspase-1 mediates hyperlipidemia-weakened endothelial progenitor cell vessel repair[D]. Nanchang:Nanchang University, 2022.]
GONG R. Caspase-1 mediates hyperlipidemia-weakened endothelial progenitor cell vessel repair[D]. Nanchang: Nanchang University, 2022.
|
[2] |
HE N N, YE H H. Exercise and hyperlipidemia[J]. Adv Exp Med Biol,2020,1228(1):79−90.
|
[3] |
ALVES-BEZERRA M, COHEN D E. Triglyceride metabolism in the liver[J]. Compr Physiol,2017,8(1):1−8.
|
[4] |
WANG F, YAO W, YU D X, et al. Protective role of thymoquinone in hyperlipidemia-induced liver injury in LDL-R−/− mice[J]. BMC Gastroenterol,2023,23(1):276−285. doi: 10.1186/s12876-023-02895-0
|
[5] |
LE L S, SIMARD G, MARTINEZ M C, et al. Oxidative stress and metabolic pathologies:from an adipocentric point of view[J]. Oxid Med Cell Longev,2014,20(7):908539−908558.
|
[6] |
SU C, LI N, REN R R, et al. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum[J]. Molecules,2021,26(20):6249−6284. doi: 10.3390/molecules26206249
|
[7] |
CHEN P Y, CHANG C C, HUANG H C, et al. New dammarane-type saponins from Gynostemma pentaphyllum[J]. Molecules,2019,24(7):1375−1388. doi: 10.3390/molecules24071375
|
[8] |
LIAO W L, KHAN I, HUANG G X, et al. Bifidobacterium animalis:the missing link for the cancer-preventive effect of Gynostemma pentaphyllum[J]. Gut Microbes,2021,13(1):1847629−1847643. doi: 10.1080/19490976.2020.1847629
|
[9] |
DONG S Q, ZHANG Q P, ZHU J X, et al. Gypenosides reverses depressive behavior via inhibiting hippocampal neuroinflammation[J]. Biomed Pharmacother,2018,106(10):1153−1160.
|
[10] |
GAO D W, ZHAO M, QI X M, et al. Hypoglycemic effect of Gynostemma pentaphyllum saponins by enhancing the nrf2 signaling pathway in stz-inducing diabetic rats[J]. Arch Pharm Res,2016,39(2):221−230. doi: 10.1007/s12272-014-0441-2
|
[11] |
ZHAO T T, KIM K S, SHIN K S, et al. Gypenosides ameliorate memory deficits in mptp-lesioned mouse model of parkinson's disease treated with l-dopa[J]. BMC Complement Altern Med,2017,17(1):449−456. doi: 10.1186/s12906-017-1959-x
|
[12] |
WENG X, LOU Y Y, WANG Y S, et al. New dammarane-type glycosides from Gynostemma pentaphyllum and their lipid-lowering activity[J]. Bioorg Chem,2021,111(6):104843−104854.
|
[13] |
赵卓, 高浩, 杨莹, 等. 绞股蓝皂苷抑制Bcl2L12凋亡通路改善ApoE−/-动脉粥样硬化小鼠肝脏脂质沉积[J]. 中国中西医结合杂志,2023,43(10):1221−1227. [ZHAO Z, GAO H, YANG Y, et al. Gypenosides improve liver lipid deposition in apoE−/− as mice by inhibiting the Bcl2L12 apoptosis pathway[J]. Chinese Journal of Integrated Traditional and Western Medicine,2023,43(10):1221−1227.] doi: 10.7661/j.cjim.20230317.007
ZHAO Z, GAO H, YANG Y, et al. Gypenosides improve liver lipid deposition in apoE−/− as mice by inhibiting the Bcl2L12 apoptosis pathway[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2023, 43(10): 1221−1227. doi: 10.7661/j.cjim.20230317.007
|
[14] |
滕菲, 李祥溦, 李敏, 等. 绞股蓝地下部位总皂苷化学成分分析及降脂作用研究[J]. 中国中药杂志,2022,47(18):5022−5031. [TENG F, LI X W, LI M, et al. Components and lipid-lowering effect of total saponins from underground part of Gynostemma pentaphyllum[J]. China Journal of Chinese Materia Medica,2022,47(18):5022−5031.]
TENG F, LI X W, LI M, et al. Components and lipid-lowering effect of total saponins from underground part of Gynostemma pentaphyllum[J]. China Journal of Chinese Materia Medica, 2022, 47(18): 5022−5031.
|
[15] |
ZHAO Y H, QU H, WANG Y H, et al. Small rodent models of atherosclerosis[J]. Biomed Pharmacother,2020,129(9):110426−110439.
|
[16] |
TVEDEN-NYBORG P, BIRCK M M, IPSEN D H, et al. Diet-induced dyslipidemia leads to nonalcoholic fatty liver disease and oxidative stress in guinea pigs[J]. Transl Res,2016,168(2):146−160.
|
[17] |
李金莲, 高南南, 杨润梅. 豚鼠高脂血症模型的建立及机制探讨[J]. 中国实验动物学报,2009,17(2):115−119. [LI J L, GAO N N, YANG R M. Establishment and mechanisms of a guinea pig model of hyperlipidemia and comparison with the rat model[J]. Acta Laboratorium Animalis Scientia Sinica,2009,17(2):115−119.] doi: 10.3969/j.issn.1005-4847.2009.02.008
LI J L, GAO N N, YANG R M. Establishment and mechanisms of a guinea pig model of hyperlipidemia and comparison with the rat model[J]. Acta Laboratorium Animalis Scientia Sinica, 2009, 17(2): 115−119. doi: 10.3969/j.issn.1005-4847.2009.02.008
|
[18] |
张斐, 黄成宝, 张晓芳, 等. 二陈汤对高脂血症模型大鼠脂肪酸代谢的影响[J]. 中医杂志,2020,61(3):241−245. [ZHANG F, HUANG C B, ZHANG X F, et al. Effects of erchen decoction on fatty acid metabolism in rat model of hyperlipemia with phlegm syndrome[J]. Journal of Traditional Chinese Medicine,2020,61(3):241−245.]
ZHANG F, HUANG C B, ZHANG X F, et al. Effects of erchen decoction on fatty acid metabolism in rat model of hyperlipemia with phlegm syndrome[J]. Journal of Traditional Chinese Medicine, 2020, 61(3): 241−245.
|
[19] |
马菲菲. 绞股蓝总皂苷治疗小鼠高脂血症过程中对肝脏免疫相关基因转录水平的调控研究[D]. 遵义:遵义医科大学, 2019. [MA F F. Regulation of hepatic immune-related genes in hyperlipidemia mice treated with gypenosides[D]. Zunyi:Zunyi Medical University, 2019.]
MA F F. Regulation of hepatic immune-related genes in hyperlipidemia mice treated with gypenosides[D]. Zunyi: Zunyi Medical University, 2019.
|
[20] |
杨佳鑫, 马粉花, 张吉涛, 等. 绞股蓝总皂苷抑制大鼠动脉粥样硬化炎症反应并影响TLR4/MyD88/NF-κB信号通路表达[J]. 基因组学与应用生物学,2022,41(1):193−202. [YANG J X, MA F H, ZHANG J T, et al. Gypenosides suppress the inflammatory response to atherosclerosis in rats and interfere the expression of TLR4/MyD88/NF-κB signaling pathway[J]. Genomics and Applied Biology,2022,41(1):193−202.]
YANG J X, MA F H, ZHANG J T, et al. Gypenosides suppress the inflammatory response to atherosclerosis in rats and interfere the expression of TLR4/MyD88/NF-κB signaling pathway[J]. Genomics and Applied Biology, 2022, 41(1): 193−202.
|
[21] |
诸夔妞, 田莎莎, 王辉, 等. 绞股蓝总皂苷调节NF-κB信号通路改善糖尿病大鼠胰岛素敏感性的实验研究[J]. 中国中药杂志,2021,46(17):4488−4496. [ZHU K N, TIAN S S, WANG H, et al. Study on effect of gypenosides on insulin sensitivity of rats with diabetesmellitus via regulating NF-κB signaling pathway[J]. China Journal of Chinese Materia Medica,2021,46(17):4488−4496.]
ZHU K N, TIAN S S, WANG H, et al. Study on effect of gypenosides on insulin sensitivity of rats with diabetesmellitus via regulating NF-κB signaling pathway[J]. China Journal of Chinese Materia Medica, 2021, 46(17): 4488−4496.
|
[22] |
杨雪, 孙晓菲, 范慧洁, 等. 肥胖对糖尿病模型大鼠血清胰高血糖样肽-1表达的影响[J]. 中国老年学杂志,2017,37(11):2659−2660. [YANG X, SUN X F, FAN H J, et al. Effect of obesity on the expression of serum glucagon like peptide-1 in diabetes model rats[J]. Chinese Journal of Gerontology,2017,37(11):2659−2660.] doi: 10.3969/j.issn.1005-9202.2017.11.025
YANG X, SUN X F, FAN H J, et al. Effect of obesity on the expression of serum glucagon like peptide-1 in diabetes model rats[J]. Chinese Journal of Gerontology, 2017, 37(11): 2659−2660. doi: 10.3969/j.issn.1005-9202.2017.11.025
|
[23] |
LAI S W, NG K C, LIN H F, et al. Association between obesity and hyperlipidemia among children[J]. Yale J Biol Med,2001,74(4):205−10.
|
[24] |
SHU X, CHEN R, YANG M L, et al. Gynostemma pentaphyllum and gypenoside-IV ameliorate metabolic disorder and gut microbiota in diet-induced-obese mice[J]. Plant Foods Hum Nutr,2022,77(3):367−372. doi: 10.1007/s11130-022-00982-3
|
[25] |
LIU J Y, HUA J X, CHEN S X, et al. The potential mechanisms of bergamot-derived dietary fiber alleviating high-fat diet-induced hyperlipidemia and obesity in rats[J]. Food Funct,2022,13(15):8228−8242. doi: 10.1039/D2FO00747A
|
[26] |
李淑珍, 杨巍巍, 康爱娟, 等. 柑橘多甲氧基黄酮饼干对高血脂症小鼠的降脂效应[J]. 中国实验动物学报,2021,29(1):63−70. [LI S Z, YANG W W, KANG A J, et al. Lipid-lowering effect of citrus polymethoxyflavonoid cookies on hyperlipidemia mice[J]. Acta Lab Anim Sci Sin,2021,29(1):63−70.]
LI S Z, YANG W W, KANG A J, et al. Lipid-lowering effect of citrus polymethoxyflavonoid cookies on hyperlipidemia mice[J]. Acta Lab Anim Sci Sin, 2021, 29(1): 63−70.
|
[27] |
刘嘉平, 王博, 张晓伟, 等. 绞股蓝皂苷饮食干预小鼠肥胖及肠道菌群研究[J]. 中国食品学报,2022,22(7):88−96. [LIU J P, WANG B, ZHANG X W, et al. Effect of gypenosides diet intervention on obesity controland gut microbiota regulation in mice[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(7):88−96.]
LIU J P, WANG B, ZHANG X W, et al. Effect of gypenosides diet intervention on obesity controland gut microbiota regulation in mice[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(7): 88−96.
|
[28] |
LI J L, WU H S, LIU Y T, et al. High fat diet induced obesity model using four strainsof mice:Kunming, C57BL/6, BALB/c and ICR[J]. Exp Anim,2020,69(3):326−335. doi: 10.1538/expanim.19-0148
|
[29] |
孙宏莱, 刘悦, 刘德江, 等. 毛水苏多糖对糖尿病小鼠肾脏的保护作用[J]. 食品工业科技,2021,42(17):373−380. [SUN H L, LIU Y, LIU D J, et al. Protective effect of polysaccharides from Stachys baicalensis on kidneys of diabeticdisease mice[J]. Science and Technology of Food Industry,2021,42(17):373−380.]
SUN H L, LIU Y, LIU D J, et al. Protective effect of polysaccharides from Stachys baicalensis on kidneys of diabeticdisease mice[J]. Science and Technology of Food Industry, 2021, 42(17): 373−380.
|
[30] |
JORGAČEVIĆ B, VUČEVIĆ D, SAMARDŽIĆ J, et al. The effect of CB1 Antagonism on hepatic oxidative/nitrosative stress and inflammation in nonalcoholic fatty liver disease[J]. Curr Med Chem,2021,28(1):169−180.
|
[31] |
钟方为, 李庚喜, 曾立. 基于肠道菌群和短链脂肪酸代谢探讨绞股蓝总皂苷改善大鼠非酒精性脂肪肝病的实验研究[J]. 中国中药杂志,2022,47(9):2500−2508. [ZHONG F W, LI G X, ZENG L. Gynostemma pentaphyllum saponins alleviate non-alcoholic fatty liver disease inrats by regulating intestinal flora and short-chain fatty acid metabolism[J]. China Journal of Chinese Materia Medica,2022,47(9):2500−2508.]
ZHONG F W, LI G X, ZENG L. Gynostemma pentaphyllum saponins alleviate non-alcoholic fatty liver disease inrats by regulating intestinal flora and short-chain fatty acid metabolism[J]. China Journal of Chinese Materia Medica, 2022, 47(9): 2500−2508.
|
[32] |
国家心血管病中心. 中国心血管健康与疾病报告2019[M]. 北京:科学出版社, 2020. [National Cardiovascular Disease Center. Annual Report on Cardiovascular Health and Diseases in China (2019)[M]. Beijing:Science Press, 2020.]
National Cardiovascular Disease Center. Annual Report on Cardiovascular Health and Diseases in China (2019)[M]. Beijing: Science Press, 2020.
|
[33] |
张誉方, 陈健, 张一昕, 等. 基于PPARγ/LXRα/ABCG1信号通路探讨黄芪总皂苷-荷叶总生物碱防治高脂血症的机制[J]. 中国实验方剂学杂志,2024,30(13):37−44. [ZHANG Y F, CHEN J, ZHANG Y X, et al. Exploring mechanism of total saponin of astragalus and total alkaloids of Nelumbinis folium against hyperlipidemia based on PPARγ/LXRα/ABCG1 signaling pathway[J]. Chinese Journal of Experimental Traditional Medical Formulae,2024,30(13):37−44.]
ZHANG Y F, CHEN J, ZHANG Y X, et al. Exploring mechanism of total saponin of astragalus and total alkaloids of Nelumbinis folium against hyperlipidemia based on PPARγ/LXRα/ABCG1 signaling pathway[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2024, 30(13): 37−44.
|
[34] |
JIANG X F, TANG N N, LIU Y Y, et al. Integrating network analysis and pharmacokinetics to investigate the mechanisms of Danzhi Tiaozhi decoction in metabolic-associated fatty liver disease (MAFLD)[J]. J Ethnopharmacol,2024,318(10):117008−117021.
|
[35] |
LÜ W J, HUANG J Y, LIN J, et al. Phytosterols alleviate hyperlipidemia by regulating gut microbiota and cholesterol metabolism in mice[J]. Oxid Med Cell Longev,2023,26(8):6409385−6409398.
|
[36] |
ZHAO X J, YU H W, YANG Y Z, et al. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway[J]. Redox Biol,2018,18(9):124−137.
|
[37] |
张明, 林道斌, 卓书江. 黎药鹧鸪茶对高脂血症的影响及作用机制研究[J]. 中药药理与临床,2021,37(4):106−110. [ZHANG M, LIN D B, ZHUO S J. Effect and mechanism of li medicine partridge tea on hyperlipidemia[J]. Pharmacology and Clinics of Chinese Materia Medica,2021,37(4):106−110.]
ZHANG M, LIN D B, ZHUO S J. Effect and mechanism of li medicine partridge tea on hyperlipidemia[J]. Pharmacology and Clinics of Chinese Materia Medica, 2021, 37(4): 106−110.
|
[38] |
王语晴, 郭婉琴, 刘欣欣, 等. 丹参注射液对高脂血症模型小鼠脂质代谢的影响[J]. 湖南中医药大学学报,2022,42(6):911−916. [WANG Y Q, GUO W Q, LIU X X, et al. Effect of Danshen Injection on lipid metabolism in hyperlipidemia model mice[J]. Journal of Hunan University of Chinese Medicine,2022,42(6):911−916.] doi: 10.3969/j.issn.1674-070X.2022.06.007
WANG Y Q, GUO W Q, LIU X X, et al. Effect of Danshen Injection on lipid metabolism in hyperlipidemia model mice[J]. Journal of Hunan University of Chinese Medicine, 2022, 42(6): 911−916. doi: 10.3969/j.issn.1674-070X.2022.06.007
|
[39] |
TONELLI C, CHIO IIC, TUVESON D A. Transcriptional regulation by Nrf2[J]. Antioxid Redox Signal,2018,29(17):1727−1745. doi: 10.1089/ars.2017.7342
|
[40] |
平烨, 张珮雯, 袁馨梦, 等. 运动调节Nrf2/HO-1通路改善HFFC膳食诱导肝细胞氧化应激的作用研究[J]. 中国实验动物学报,2024,32(5):566−575. [PING Y, ZHANG P W, YUAN X M, et al. Effects of exercise regulated the Nrf2/HO-1 pathway on improving HFFC dietinduced oxidative stress in hepatocytes[J]. Acta Laboratorium Animalis Scientia Sinica,2024,32(5):566−575.] doi: 10.3969/j.issn.1005-4847.2024.05.003
PING Y, ZHANG P W, YUAN X M, et al. Effects of exercise regulated the Nrf2/HO-1 pathway on improving HFFC dietinduced oxidative stress in hepatocytes[J]. Acta Laboratorium Animalis Scientia Sinica, 2024, 32(5): 566−575. doi: 10.3969/j.issn.1005-4847.2024.05.003
|
[41] |
BELLANTI F, VENDEMIALE G. The aging liver:redox biology and liver regeneration[J]. Antioxid Redox Signal,2021,35(10):832−847. doi: 10.1089/ars.2021.0048
|
[42] |
G BARDALLO R, PANISELLO-ROSELLÓ A, SANCHEZ-NUNO S, et al. Nrf2 and oxidative stress in liver ischemia/reperfusion injury[J]. FEBS J,2022,289(18):5463−5479. doi: 10.1111/febs.16336
|
[43] |
VANANI A R, KALANTARI H, MAHDAVINIA M, et al. Dimethyl fumarate reduces oxidative stress, inflammation and fat deposition by modulation of Nrf2, SREBP-1c and NF-κB signaling in HFD fed mice[J]. Life Sci,2021,283(10):119852−119862.
|
[44] |
LI L Z, ZHAO Z M, ZHANG L, et al. Atorvastatin induces mitochondrial dysfunction and cell apoptosis in HepG2 cells via inhibition of the Nrf2 pathway[J]. J Appl Toxicol,2019,39(10):1394−1404. doi: 10.1002/jat.3825
|
[45] |
WANG W, CHEN Z X, ZHENG T S, et al. Xanthohumol alleviates T2DM-induced liver steatosis and fibrosis by mediating the NRF2/RAGE/NF-κB signaling pathway[J]. Future Med Chem,2021,13(23):2069−2081. doi: 10.4155/fmc-2021-0241
|
[46] |
MULLER C R, WILLIAMS A T, EAKER A M, et al. High fat high sucrose diet-induced dyslipidemia in guinea pigs[J]. J Appl Physiol (1985),2021,130(4):1226−1234. doi: 10.1152/japplphysiol.00013.2021
|