Citation: | BAI Congjin, GUO Jingjing, WANG Yifan, et al. Effect of Flaxseed Gum and Konjac Gum on the 3D Printing Properties of Pea Protein Isolate Emulsion Gels[J]. Science and Technology of Food Industry, 2025, 46(3): 83−91. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010163. |
[1] |
RAHIM T N A T, ABDULLAH A M, MD AKIL H. Recent developments in fused deposition modeling-based 3D printing of polymers and their composites[J]. Polymer Reviews,2019,59(4):589−624. doi: 10.1080/15583724.2019.1597883
|
[2] |
BUCHANAN C, GARDNER L. Metal 3D printing in construction:A review of methods, research, applications, opportunities and challenges[J]. Engineering Structures,2019,180(1):332−348. doi: 10.1016/j.engstruct.2018.11.045
|
[3] |
WANG C, YAN R, LI X, et al. Development of emulsion-based edible inks for 3D printing applications:Pickering emulsion gels[J]. Food Hydrocolloids,2023,138:108482. doi: 10.1016/j.foodhyd.2023.108482
|
[4] |
YANG F, ZHANG M, BHANDARI B, et al. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters[J]. LWT,2018,87:67−76. doi: 10.1016/j.lwt.2017.08.054
|
[5] |
LAPOMARDA A, CERQUENI G, GEVEN M A, et al. Physicochemical characterization of pectin‐gelatin biomaterial formulations for 3D bioprinting[J]. Macromolecular Bioscience,2021,21(9):2100168. doi: 10.1002/mabi.202100168
|
[6] |
CHEN Y, MC CLEMENTS D J, PENG X, et al. Starch as edible ink in 3D printing for food applications:A review[J]. Critical Reviews in Food Science and Nutrition,2024,64(2):456−471. doi: 10.1080/10408398.2022.2106546
|
[7] |
ZHANG X, ZHANG S, ZHONG M, et al. Soy and whey protein isolate mixture/calcium chloride thermally induced emulsion gels:Rheological properties and digestive characteristics[J]. Food Chemistry,2022,380(30):132212. doi: 10.1016/j.foodchem.2022.132212
|
[8] |
LIN D, KELLY A L, MIAO S. Preparation, structure-property relationships and applications of different emulsion gels:Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels[J]. Trends in Food Science & Technology,2020,102:123−137.
|
[9] |
乔蕾蕾, 杨敏, 秦娟娟, 等. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能[J]. 食品科学,2023,44(16):50−60. [QIAO Leilei, YANG Min, QIN Juanjuan, et al. Gel properties of acid-induced casein micelles and sodium alginate emulsion and their loading properties for proanthocyanidins[J]. Food Science,2023,44(16):50−60.] doi: 10.7506/spkx1002-6630-20221117-206
QIAO Leilei, YANG Min, QIN Juanjuan, et al. Gel properties of acid-induced casein micelles and sodium alginate emulsion and their loading properties for proanthocyanidins[J]. Food Science, 2023, 44(16): 50−60. doi: 10.7506/spkx1002-6630-20221117-206
|
[10] |
MA T, CUI R, LU S, et al. High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing[J]. Food Hydrocolloids,2022,125:107418. doi: 10.1016/j.foodhyd.2021.107418
|
[11] |
LAM A C Y, CAN KARACA A, TYLER R T, et al. Pea protein isolates:Structure, extraction, and functionality[J]. Food Reviews International,2018,34(2):126−147. doi: 10.1080/87559129.2016.1242135
|
[12] |
BOUKID F, ROSELL C M, CASTELLARI M. Pea protein ingredients:A mainstream ingredient to (re) formulate innovative foods and beverages[J]. Trends in Food Science & Technology,2021,110:729−742.
|
[13] |
PARK S M, KIM H W, PARK H J. Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production[J]. Journal of Food Engineering,2020,271:109781. doi: 10.1016/j.jfoodeng.2019.109781
|
[14] |
WANG Y, BAI C, MCCLEMENTS D J, et al. Improvement of 3D printing performance of pea protein isolate Pickering emulsion gels by regulating electrostatic interaction between protein and polysaccharide[J]. Food Hydrocolloids,2023,145:109097. doi: 10.1016/j.foodhyd.2023.109097
|
[15] |
HOU W, LONG J, HUA Y, et al. Formation and characterization of solid fat mimetic based on pea protein isolate/polysaccharide emulsion gels[J]. Frontiers in Nutrition,2022,9:1053469. doi: 10.3389/fnut.2022.1053469
|
[16] |
JI S Y, XU T, LI Y, et al. Effect of starch molecular structure on precision and texture properties of 3D printed products[J]. Food Hydrocolloids,2022,125:107387. doi: 10.1016/j.foodhyd.2021.107387
|
[17] |
YU J, WANG X, LI D, et al. Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks:Effect of polysaccharides incorporation[J]. Food Hydrocolloids,2022,131:107824. doi: 10.1016/j.foodhyd.2022.107824
|
[18] |
DICK A, BHANDARI B, DONG X, et al. Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food[J]. Food Hydrocolloids,2020,107:105940. doi: 10.1016/j.foodhyd.2020.105940
|
[19] |
LAM P, STANSCHUS S, ZAMAN R, et al. The international dysphagia diet standardisation initiative (IDDSI) framework:The Kempen pilot[J]. British Journal of Neuroscience Nursing,2017,13(Sup2):S18−S26. doi: 10.12968/bjnn.2017.13.Sup2.S18
|
[20] |
CHEN J, MU T, GOFFIN D, et al. Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing[J]. Journal of Food Engineering,2019,261:76−86. doi: 10.1016/j.jfoodeng.2019.03.016
|
[21] |
SANTOS J, CALERO N, GUERRERO A, et al. Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum[J]. Food Hydrocolloids,2015,44:109−114. doi: 10.1016/j.foodhyd.2014.09.025
|
[22] |
MIAO J, XU N, CHENG C, et al. Fabrication of polysaccharide-based high internal phase emulsion gels:Enhancement of curcumin stability and bio-accessibility[J]. Food Hydrocolloids,2021,117:106679. doi: 10.1016/j.foodhyd.2021.106679
|
[23] |
WEI Y, GUO Y, LI R, et al. Rheological characterization of polysaccharide thickeners oriented for dysphagia management:Carboxymethylated curdlan, konjac glucomannan and their mixtures compared to xanthan gum[J]. Food Hydrocolloids,2021,110:106198. doi: 10.1016/j.foodhyd.2020.106198
|
[24] |
崔颂, 张月, 刘超然, 等. 羧甲基纳米纤维素稳定的低油相Pickering乳液凝胶的制备及性质分析[J]. 食品工业科技,2023,44(10):70−77. [CUI Song, ZHANG Yue, LIU Chaoran, et al. Preparation and properties analysis of low oil phase Pickering emulsion gel stabilized by carboxymethyl nanocellulose[J]. Science and Technology of Food Industry,2023,44(10):70−77.]
CUI Song, ZHANG Yue, LIU Chaoran, et al. Preparation and properties analysis of low oil phase Pickering emulsion gel stabilized by carboxymethyl nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(10): 70−77.
|
[25] |
LIU Z, ZHANG M, BHANDARI B, et al. Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering,2018,220:76−82. doi: 10.1016/j.jfoodeng.2017.04.017
|
[26] |
HU T, CUI X, ZHU M, et al. 3D-printable supramolecular hydrogels with shear-thinning property:Fabricating strength tunable bioink via dual crosslinking[J]. Bioactive Materials,2020,5(4):808−818. doi: 10.1016/j.bioactmat.2020.06.001
|
[27] |
WANG Y, SELOMULYA C. Food rheology applications of large amplitude oscillation shear (LAOS)[J]. Trends in Food Science & Technology,2022,127:221−244.
|
[28] |
YANG J, THIELEN I, BERTON-CARABIN C C, et al. Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents[J]. Food Hydrocolloids,2020,101:105466. doi: 10.1016/j.foodhyd.2019.105466
|
[29] |
XIA W J, SIU WING K, SAGIS LEONARD M C. Linear and non-linear rheology of he-atset soy protein gels:Effects of selective proteolysis of β-conglycinin and glycinin[J]. Food Hydrocolloids,2021,120:106962. doi: 10.1016/j.foodhyd.2021.106962
|
[30] |
MUSTAFA K, ALAZZAWI, CHARLES L. Rohn, Berra Beyoglu, Richard A. Haber. Rheological assessment of cohesive energy density of highly concentrated stereolithography suspensions[J]. Ceramics International,2020,46(6):8473−8477. doi: 10.1016/j.ceramint.2019.11.225
|
[31] |
TIAN Y, ZHANG Z, TAHA A, et al. Interfacial and emulsifying properties of β-conglycinin/pectin mixtures at the oil/water interface:Effect of pH[J]. Food Hydrocolloids,2020,109:106145. doi: 10.1016/j.foodhyd.2020.106145
|
[32] |
FARIAS B V, KHAN S A. Probing gels and emulsions using large-amplitude oscillatory shear and frictional studies with soft substrate skin surrogates[J]. Colloids and Surfaces B:Biointerfaces,2021,201:111595. doi: 10.1016/j.colsurfb.2021.111595
|
[33] |
DUVARCI O C, YAZAR G, KOKINI J L. The comparison of LAOS behavior of structured food materials (suspensions, emulsions and elastic networks)[J]. Trends in Food Science & Technology,2017,60:2−11.
|
[34] |
PHUHONGSUNG P, ZHANG M, DEVAHASTIN S. Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics[J]. LWT,2020,122:109019. doi: 10.1016/j.lwt.2020.109019
|
[35] |
PEYRON M A, MISHELLANY A, WODA A. Particle size distribution of food boluses after mastication of six natural foods[J]. Journal of Dental Research,2004,83(7):578−582. doi: 10.1177/154405910408300713
|
[36] |
SUEBSAEN K, SUKSATIT B, KANHA N, et al. Instrumental characterization of banana dessert gels for the elderly with dysphagia[J]. Food Bioscience,2019,32:100477. doi: 10.1016/j.fbio.2019.100477
|
[37] |
CICHERO J A Y. Adjustment of food textural properties for elderly patients[J]. Journal of Texture Studies,2016,47(4):277−283. doi: 10.1111/jtxs.12200
|
1. |
王国霞,赵明瑞,李怡蒙,朱雨洁. 多糖-淀粉混合凝胶在3D打印中的研究进展. 郑州师范教育. 2025(02): 6-10 .
![]() |