XU Mengyue, YU Jinyi, LI Hui, et al. Comparison of Multiple Functional-Active Ingredients in Different Varieties of Natto[J]. Science and Technology of Food Industry, 2024, 45(13): 140−149. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120296.
Citation: XU Mengyue, YU Jinyi, LI Hui, et al. Comparison of Multiple Functional-Active Ingredients in Different Varieties of Natto[J]. Science and Technology of Food Industry, 2024, 45(13): 140−149. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120296.

Comparison of Multiple Functional-Active Ingredients in Different Varieties of Natto

More Information
  • Received Date: December 26, 2023
  • Available Online: April 28, 2024
  • In order to investigate the important functional-active components in different varieties of natto, natto was processed using soybean, black bean, red bean, mung bean, lentil, chickpea, kidney bean, pea, red bean and cowpea, and the differences of nattokinase, polyphenol, natto polysaccharide and γ-aminobutyric acid were compared and analyzed in these natto. The results showed that the nattokinase activity ranged from 985.31 to 2453.18 U/g, and the nattokinase activity in chickpea natto was significantly higher than those of other natto (P<0.05). The total phenol content ranged from 1.44 to 3.21 mg GAE/g, and the total phenolic acid content ranged from 19.754 to 183.902 μg/g. The types of phenolic substances were abundant in black bean natto, mung bean natto and cowpea natto. The yield of polysaccharide was 1.03%~15.11%, the content of total sugar was 21.86%~58.40%, and the content of uronic acid was 4.26%~15.09%. And the yield of polysaccharide, the contents of total sugar and uronic acid in kidney bean natto were significantly higher than those of other natto (P<0.05). The content of γ-aminobutyric acid was 4.97~15.99 mg/g, and the content of γ-aminobutyric acid in cowpea natto was significantly higher than those of other natto (P<0.05). The viable number of Bacillus subtilis natto in lentil natto was significantly higher than those of other natto (P<0.05). After comprehensive evaluation, black bean, cowpea and kidney bean were ideal raw materials for the produce of new natto.
  • [1]
    HUGHES J, PEARSON E, GRAFENAUER S. Legumes—A comprehensive exploration of global food-based dietary guidelines and consumption[J]. Nutrients,2022,14(15):3080. doi: 10.3390/nu14153080
    [2]
    何磊, 于宁, 陈颖. 杂豆营养成分和抗营养因子及其生物学功能研究进展[J]. 粮食与油脂,2023,36(5):34−39. [HE L, YU N, CHEN Y. Research progress on the nutritional components antinutritional factors and their biological functions in miscellaneous beans[J]. Cereal & Oils,2023,36(5):34−39.]

    HE L, YU N, CHEN Y. Research progress on the nutritional components antinutritional factors and their biological functions in miscellaneous beans[J]. Cereal & Oils, 2023, 36(5): 34−39.
    [3]
    WANG C, CHEN C, TIAN W, et al. Natto:A medicinal and edible food with health function[J]. Chinese Herbal Medicines,2023,15(3):349−359. doi: 10.1016/j.chmed.2023.02.005
    [4]
    CAO Z H, GREEN-JOHNSON J M, BUCKLEY N D, et al. Bioactivity of soy-based fermented foods:A review[J]. Biotechnology Advances,2019,37(1):223−238. doi: 10.1016/j.biotechadv.2018.12.001
    [5]
    赵谋明, 邹颖, 林恋竹, 等. 纳豆菌液态发酵荞麦产纳豆激酶及其代谢特性分析[J]. 食品科学,2019,40(4):178−185. [ZHAO M M, ZOU Y, LIN L Z, et al. Nattokinase production and metabolic characteristics during submerged fermentation of buckwheat using Bacillus subtilis natto[J]. Food Science,2019,40(4):178−185.]

    ZHAO M M, ZOU Y, LIN L Z, et al. Nattokinase production and metabolic characteristics during submerged fermentation of buckwheat using Bacillus subtilis natto[J]. Food Science, 2019, 40(4): 178−185.
    [6]
    李旋, 毕金峰, 刘璇, 等. 苹果多酚的组成和功能特性研究现状与展望[J]. 中国食品学报,2020,20(11):328−340. [LI X, BI J F, LIU X, et al. Research status and prospect on the composition and functional characteristics of apple polyphenols[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(11):328−340.]

    LI X, BI J F, LIU X, et al. Research status and prospect on the composition and functional characteristics of apple polyphenols[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(11): 328−340.
    [7]
    ZHU Y, FENG X, GUO J, et al. A review of extraction, purification, structural properties and biological activities of legumes polysaccharides[J]. Frontiers in Nutrition,2022,9:1021448. doi: 10.3389/fnut.2022.1021448
    [8]
    王红波, 魏蜜, 徐媛, 等. 富含γ-氨基丁酸豆类功能食品的研究进展[J]. 中国调味品,2019,44(6):190−192. [WANG H B, WEI M, XU Y, et al. Research progress of beans functional food being rich in γ-aminobutyric acid[J]. China Condiment,2019,44(6):190−192.]

    WANG H B, WEI M, XU Y, et al. Research progress of beans functional food being rich in γ-aminobutyric acid[J]. China Condiment, 2019, 44(6): 190−192.
    [9]
    付文静, 王家林, 张杰. 赤小豆纳豆发酵工艺的研究[J]. 食品研究与开发,2018,39(2):109−113. [FU W J, WANG J J, ZHANG J. The study on the fermentation process of Phaseolus angularis natto[J]. Food Research and Development,2018,39(2):109−113.]

    FU W J, WANG J J, ZHANG J. The study on the fermentation process of Phaseolus angularis natto[J]. Food Research and Development, 2018, 39(2): 109−113.
    [10]
    王琳, 高辰哲, 刘丹怡, 等. 响应面法优化红豆纳豆的发酵工艺[J]. 中国酿造,2018,37(1):190−194. [WANG L, GAO C Z, LIU D Y, et al. Optimization of fermentation process of red bean natto by response surface methodology[J]. China Brewing,2018,37(1):190−194.]

    WANG L, GAO C Z, LIU D Y, et al. Optimization of fermentation process of red bean natto by response surface methodology[J]. China Brewing, 2018, 37(1): 190−194.
    [11]
    于江淼, 王家林, 张海粟. 黑纳豆固态发酵工艺优化的研究[J]. 中国调味品,2020,45(3):101−106. [YU J M, WANG J L, ZHANG H L. Study on optimization of solid-state fermentation technology of black natto[J]. China Condiment,2020,45(3):101−106.]

    YU J M, WANG J L, ZHANG H L. Study on optimization of solid-state fermentation technology of black natto[J]. China Condiment, 2020, 45(3): 101−106.
    [12]
    张俊杰, 郭晨, 尚益民, 等. 鹰嘴豆纳豆优良发酵菌株的筛选与初步鉴定[J]. 中国酿造,2018,37(7):88−92. [ZHANG J J, GUO C, SHANG Y M, et al. Screening and preliminary identification of superior fermentation strains for chickpea natto[J]. China Brewing,2018,37(7):88−92.]

    ZHANG J J, GUO C, SHANG Y M, et al. Screening and preliminary identification of superior fermentation strains for chickpea natto[J]. China Brewing, 2018, 37(7): 88−92.
    [13]
    卓怡云, 吕婧, 刘颖, 等. 纳豆激酶对大鼠酒精性肝损伤的改善效果及免疫调节作用[J]. 食品科学,2019,40(7):156−162. [ZHUO Y Y, LÜ J, LIU Y, et al. Nattokinase alleviates alcoholic liver injury and modulates immune function in rats[J]. Food Science,2019,40(7):156−162.]

    ZHUO Y Y, LÜ J, LIU Y, et al. Nattokinase alleviates alcoholic liver injury and modulates immune function in rats[J]. Food Science, 2019, 40(7): 156−162.
    [14]
    殷凯欣, 梁宝静, 王家林, 等. 田菁纳豆多酚提取工艺优化及其抗氧化活性[J]. 食品研究与开发,2024,45(3):156−162. [YIN K X, LIANG B J, WANG J L, et al. Extraction technology optimization and antioxidant activity of polyphenols from Sesbania natto[J]. Food Research and Development,2024,45(3):156−162.]

    YIN K X, LIANG B J, WANG J L, et al. Extraction technology optimization and antioxidant activity of polyphenols from Sesbania natto[J]. Food Research and Development, 2024, 45(3): 156−162.
    [15]
    LI C, XU T, LIU X W, et al. The expression of β-glucosidase during natto fermentation increased the active isoflavone content[J]. Food Bioscience,2021,43:101286. doi: 10.1016/j.fbio.2021.101286
    [16]
    杨文丽, 杨波, 杨光. 纳豆多糖的理化性质及结构分析[J]. 食品与发酵工业,2019,45(20):132−137. [YNAG W L, YNAG B, YANG G. Physicochemical properties and structural analysis of natto polysaccharides[J]. Food and Fermentation Industries,2019,45(20):132−137.]

    YNAG W L, YNAG B, YANG G. Physicochemical properties and structural analysis of natto polysaccharides[J]. Food and Fermentation Industries, 2019, 45(20): 132−137.
    [17]
    刘彦敏, 沈璐, 王康, 等. 传统大豆发酵食品中纳豆芽孢杆菌的分离及纳豆发酵[J]. 食品科学,2020,41(2):208−214. [LIU Y M, SHEN L, WANG K, et al. Isolation of Bacillus subtilis natto from chinese traditional fermented soybean foods and their use in fermentation of natto[J]. Food Science,2020,41(2):208−214.]

    LIU Y M, SHEN L, WANG K, et al. Isolation of Bacillus subtilis natto from chinese traditional fermented soybean foods and their use in fermentation of natto[J]. Food Science, 2020, 41(2): 208−214.
    [18]
    ASTRUP T, MÜLLERTZ S. The fibrin plate method for estimating fibrinolytic activity[J]. Archives of Biochemistry and Biophysics,1952,40(2):346−351. doi: 10.1016/0003-9861(52)90121-5
    [19]
    唐双庆, 屈雅宁, 刘琴, 等. 干酪乳杆菌发酵8种食用豆提取物抗氧化活性研究[J]. 中国酿造,2022,41(10):119−124. [TANG S Q, QU Y N, LIU Q, et al. Antioxidant activity of 8 kinds of edible bean extracts fermented by Lactobacillus casei[J]. China Brewing,2022,41(10):119−124.]

    TANG S Q, QU Y N, LIU Q, et al. Antioxidant activity of 8 kinds of edible bean extracts fermented by Lactobacillus casei[J]. China Brewing, 2022, 41(10): 119−124.
    [20]
    ZHUANG J, DAI X, ZHU M, et al. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols[J]. Food Chemistry,2020,305:125507. doi: 10.1016/j.foodchem.2019.125507
    [21]
    屈雅宁, 许梦粤, 唐双庆, 等. 枯草芽孢杆菌发酵对豆类粗多糖结构与抗氧化活性的影响[J]. 食品工业科技,2023,44(17):129−138. [QU Y N, XU M Y, TANG S Q, et al. Effects of the structure and antioxidant activity of legume crude polysaccharides after Bacillus subtilis fermentation[J]. Science and Technology of Food Industry,2023,44(17):129−138.]

    QU Y N, XU M Y, TANG S Q, et al. Effects of the structure and antioxidant activity of legume crude polysaccharides after Bacillus subtilis fermentation[J]. Science and Technology of Food Industry, 2023, 44(17): 129−138.
    [22]
    DUBIOS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugar and related substances[J]. Analytical Chemistry,1956,28:250−256. doi: 10.1021/ac60110a033
    [23]
    BLUMENKRANTZ N, ASBOE-HANSEN G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54(2):484−489. doi: 10.1016/0003-2697(73)90377-1
    [24]
    BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1):248−254.
    [25]
    LIU D, SHI Z, WANG S, et al. Anti-oxidant and anti-fatigue properties of polysaccharides from black soybean hull[J]. International Journal of Food Properties,2022,25(1):1683−1696. doi: 10.1080/10942912.2022.2098971
    [26]
    李朔, 李潇, 张晓黎, 等. 基于高产γ-氨基丁酸的植物乳杆菌培养基优化[J]. 中国酿造,2022,41(10):183−188. [LI S, LI X, ZHANG X L, et al. Optimization of medium of Lactobacillus plantarum based on high yield γ-aminobutyric acid[J]. China Brewing,2022,41(10):183−188.]

    LI S, LI X, ZHANG X L, et al. Optimization of medium of Lactobacillus plantarum based on high yield γ-aminobutyric acid[J]. China Brewing, 2022, 41(10): 183−188.
    [27]
    国家卫生健康委员会, 国家市场监督管理总局. GB 4789.2-2022 食品安全国家标准 食品微生物学检验 菌落总数测定[S]. 北京:中国标准出版, 2022. [National Health Commission, State Administration for Market Regulation. GB 4789.2-2022 National standards for food safety Microbial examination of food-determination of total number of colonies[S]. Beijing:China Standard Publishing, 2022.]

    National Health Commission, State Administration for Market Regulation. GB 4789.2-2022 National standards for food safety Microbial examination of food-determination of total number of colonies[S]. Beijing: China Standard Publishing, 2022.
    [28]
    董平, 赵彩霖, 刘阳, 等. 燕麦纳豆制作工艺优化及其抗氧化性研究[J]. 中国食品添加剂,2023,34(8):205−213. [DONG P, ZHAO C L, LIU Y, et al. Optimization of fermentation process of oats-natto and its antioxidant activity[J]. China Food Additives,2023,34(8):205−213.]

    DONG P, ZHAO C L, LIU Y, et al. Optimization of fermentation process of oats-natto and its antioxidant activity[J]. China Food Additives, 2023, 34(8): 205−213.
    [29]
    孙娜, 朱秀娟, 何九军, 等. 核桃粕纳豆发酵工艺优化及其品质分析[J]. 中国酿造,2023,42(9):156−162. [SUN N, ZHU X J, HE J J, et al. Optimization of fermentation process and quality analysis of walnut meal natto[J]. China Brewing,2023,42(9):156−162.]

    SUN N, ZHU X J, HE J J, et al. Optimization of fermentation process and quality analysis of walnut meal natto[J]. China Brewing, 2023, 42(9): 156−162.
    [30]
    张杰, 杨希娟, 党斌, 等. 蚕豆纳豆发酵工艺优化及其酶学性质[J]. 食品工业科技,2019,40(6):205−210. [ZHANG J, YANG X J, DANG B, et al. Optimization of fermentation process of natto by broad bean and its enzymatic properties[J]. Science and Technology of Food Industry,2019,40(6):205−210.]

    ZHANG J, YANG X J, DANG B, et al. Optimization of fermentation process of natto by broad bean and its enzymatic properties[J]. Science and Technology of Food Industry, 2019, 40(6): 205−210.
    [31]
    VENKIDASAMY B, SELVARAJ D, NILE A S, et al. Indian pulses:A review on nutritional, functional and biochemical properties with future perspectives[J]. Trends in Food Science & Technology,2019,88:228−242.
    [32]
    LIU D, HAN Z, HU Z, et al. Comparative analysis of the transcriptome of Bacillus subtilis natto incubated in different substrates for nattokinase production[J]. Process Biochemistry,2023,129:30−43. doi: 10.1016/j.procbio.2023.03.005
    [33]
    KDAMAR S, PANDEY G. Biofortification of pulses and legumes to enhance nutrition[J]. Heliyon,2020,6(3):e03682. doi: 10.1016/j.heliyon.2020.e03682
    [34]
    刘仙俊, 张慧珍, 王潇潇, 等. 5种豆类中总多酚、总黄酮含量及抗氧化活性比较研究[J]. 食品研究与开发,2020,41(7):52−57. [LIU X J, ZHANG H Z, WANG X X, et al. Comparative study on total polyphenols, total flavonoids and antioxidant activity in five kinds of legumes[J]. Food Research and Development,2020,41(7):52−57.]

    LIU X J, ZHANG H Z, WANG X X, et al. Comparative study on total polyphenols, total flavonoids and antioxidant activity in five kinds of legumes[J]. Food Research and Development, 2020, 41(7): 52−57.
    [35]
    王何柱, 朱勇, 朱怡, 等. 不同花色芸豆种皮酚类化合物组成及抗氧化活性[J]. 食品科学,2020,41(12):204−210. [WANG H Z, ZHU Y, ZHU Y, et al. Phenolic composition and antioxidant activity of seed coats of kidney beans with different colors[J]. Food Science,2020,41(12):204−210.]

    WANG H Z, ZHU Y, ZHU Y, et al. Phenolic composition and antioxidant activity of seed coats of kidney beans with different colors[J]. Food Science, 2020, 41(12): 204−210.
    [36]
    OH D R, CHOI C, KIM M J, et al. Antidepressant effects of p-coumaric acid isolated from Vaccinium bracteatum leaves extract on chronic restraint stress mouse model and antagonism of serotonin 6 receptor in vitro[J]. Phytomedicine,2023,116:154871. doi: 10.1016/j.phymed.2023.154871
    [37]
    LOU Y, GAO Q, FAN M, et al. Ferulic acid ameliorates hyperuricemia by regulating xanthine oxidase[J]. International Journal of Biological Macromolecules,2023,253:126542. doi: 10.1016/j.ijbiomac.2023.126542
    [38]
    WU M, LI W, ZHANG Y, et al. Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste[J]. Carbohydrate Polymers,2021,253:117190. doi: 10.1016/j.carbpol.2020.117190
    [39]
    沈柱英, 黄占旺, 肖建辉, 等. 纳豆糖蛋白的分离纯化、结构表征及其免疫活性研究[J]. 食品科学,2015,36(13):215−222. [SHENG Z Y, HUANG Z W, XIAO J H, et al. Purification, structural characterization and immunomodulatory activity of natto polysaccharide-protein complexes[J]. Food Science,2015,36(13):215−222.]

    SHENG Z Y, HUANG Z W, XIAO J H, et al. Purification, structural characterization and immunomodulatory activity of natto polysaccharide-protein complexes[J]. Food Science, 2015, 36(13): 215−222.
    [40]
    XU L, LU Y, CONG Y, et al. Polysaccharide produced by Bacillus subtilis using burdock oligofructose as carbon source[J]. Carbohydrate Polymers,2019,206:811−819. doi: 10.1016/j.carbpol.2018.11.062
    [41]
    CHEN Y, WANG R F, WANG Y, et al. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation[J]. Journal of Cereal Science,2021,97:103157. doi: 10.1016/j.jcs.2020.103157
    [42]
    WANG L, ZHANG P, SHEN J, et al. Physicochemical properties and bioactivities of original and Se-enriched polysaccharides with different molecular weights extracted from Pleurotus ostreatus[J]. International Journal of Biological Macromolecules,2019,141:150−160. doi: 10.1016/j.ijbiomac.2019.08.250
    [43]
    BAI Z, HUANG X, WU G, et al. Hepatic metabolism-related effects of polysaccharides from red kidney bean and small black soybean on type 2 diabetes[J]. Food Chemistry,2023,403:134334. doi: 10.1016/j.foodchem.2022.134334
    [44]
    王文韬, 徐慧, 张蕴哲, 等. 绿豆多糖提取工艺优化及其功能特性[J]. 食品研究与开发,2023,44(6):65−71. [WANG W T, XU H, ZHANG Y Z, et al. Optimization of extraction process and functional characteristics of mung bean polysaccharides[J]. Food Research and Development,2023,44(6):65−71.]

    WANG W T, XU H, ZHANG Y Z, et al. Optimization of extraction process and functional characteristics of mung bean polysaccharides[J]. Food Research and Development, 2023, 44(6): 65−71.
    [45]
    ZHU Y, DUN B, SHI Z, et al. Structural characterization and bioactivity evaluation of water-extractable polysaccharides from chickpeas (Cicer arietinum L.) seeds[J]. Frontiers in Nutrition,2022,9:946736. doi: 10.3389/fnut.2022.946736
    [46]
    田璐, 杨润强, 沈昌, 等. 富含GABA的纳豆咀嚼片生产技术研究[J]. 食品工业科技,2015,36(23):162−165. [TIAN L, YANG R Q, SHEN C, et al. Research of production technology of GABA-riched natto chewable tablet[J]. Science and Technology of Food Industry,2015,36(23):162−165.]

    TIAN L, YANG R Q, SHEN C, et al. Research of production technology of GABA-riched natto chewable tablet[J]. Science and Technology of Food Industry, 2015, 36(23): 162−165.
    [47]
    郭小雨, 张涛. 富集γ-氨基丁酸鹰嘴豆酸面团的工艺及其流变特性[J]. 食品与发酵工业,2023,49(15):215−220. [GUO X Y, ZHANG T. Process of enriching γ-aminobutyric acid chickpea sourdough and its rheological properties[J]. Food and Fermentation Industries,2023,49(15):215−220.]

    GUO X Y, ZHANG T. Process of enriching γ-aminobutyric acid chickpea sourdough and its rheological properties[J]. Food and Fermentation Industries, 2023, 49(15): 215−220.
    [48]
    李宏梁, 尉璐杰, 王欢, 等. 国产与进口鲜纳豆活菌数、感官品质及酶活的分析比较[J]. 中国酿造,2018,37(11):26−29. [LI H L, WEI L J, WANG H, et al. Analysis and comparison of viable count, sensory quality and nattokinase activity of domestic and imported fresh natto[J]. China Brewing,2018,37(11):26−29.]

    LI H L, WEI L J, WANG H, et al. Analysis and comparison of viable count, sensory quality and nattokinase activity of domestic and imported fresh natto[J]. China Brewing, 2018, 37(11): 26−29.
    [49]
    贾睿, 蔡丹, 葛思彤, 等. 红豆皮多酚提取物对两种致病菌的抑菌活性及作用机理[J]. 食品科学,2021,42(23):64−71. [JIA R, CAI D, GE S T, et al. Antibacterial activity and mechanism of polyphenol extracts from adzuki bean seed coat against two pathogens[J]. Food Science,2021,42(23):64−71.]

    JIA R, CAI D, GE S T, et al. Antibacterial activity and mechanism of polyphenol extracts from adzuki bean seed coat against two pathogens[J]. Food Science, 2021, 42(23): 64−71.
    [50]
    GONZÁLEZ-CRUZ L, VALADEZ-VEGA C, JUÁREZ-GOIZ J M S, et al. Partial purification and characterization of the lectins of two varieties of Phaseolus coccineus (Ayocote Bean)[J]. Agronomy,2022,12(3):716. doi: 10.3390/agronomy12030716
  • Other Related Supplements

  • Cited by

    Periodical cited type(17)

    1. 吕欣然,王淑娟,张丹,朱婷婷,孙翔宇,马婷婷. 不同剂量电子束辐照杀菌处理对黑果腺肋花楸果汁品质的影响. 食品科学. 2025(05): 272-280 .
    2. 兰天,赵沁雨,王家琪,孙翔宇,马婷婷. 益生菌发酵猕猴桃果汁的贮藏特性及货架期预测. 食品工业科技. 2024(05): 301-308 . 本站查看
    3. 张海军,李媛媛,钟祥静. 超高压灭菌技术在食品加工中的应用探讨. 粮油与饲料科技. 2024(02): 10-12 .
    4. 李媛媛,张海军,钟祥静. 基于超高压灭菌技术的农产品加工过程质量控制研究. 南方农机. 2024(17): 170-173 .
    5. 赵佳宇,易宗伟,蔡文超,马佳佳,王玉荣,单春会,郭壮. 动态超高压微射流技术对红枣酒品质的影响. 中国酿造. 2024(09): 147-151 .
    6. 程婧祺,秦雪,邱月,关宁,廖江,余志宝,裴晓燕,杨鑫焱,姜毓君,满朝新. 预测微生物学模型在乳及乳制品中的应用. 中国乳品工业. 2024(09): 50-55 .
    7. 张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,李璐. 不同打浆及杀菌处理对荔枝浆品质的影响. 食品工业科技. 2023(07): 329-336 . 本站查看
    8. 朱卫芳,黄兰淇,张颂函,马琳,陈建波,方朝阳. 25%吡唑醚菌酯悬浮剂在蓝莓中的残留行为及膳食风险评估. 农药科学与管理. 2023(01): 47-53 .
    9. 马琳,赵颖,陈建波,赵莉. 基于胶体金免疫层析法快速检测蓝莓中的百菌清残留. 农药学学报. 2023(02): 435-443 .
    10. 高惠颖,宋娟,景缘,于泳渤,张瑞,刘静,胡雨晴,吕长鑫,马志恒. NFC冻梨苹果汁配方优化及其贮藏品质. 食品研究与开发. 2023(11): 93-99 .
    11. 武正芳,马意龙,金诺,胡飞,章建国,魏兆军. 臭氧对食品加工中多酚影响的研究进展. 农产品加工. 2023(18): 79-82+92 .
    12. 赵倩,谢彦纯,赵冲. 百香果红茶饮料的研制. 中国果菜. 2023(12): 7-13 .
    13. 马琳,朱卫芳,占绣萍,陈建波,赵莉. 嘧霉胺在蓝莓中的残留行为及膳食风险评估. 农药学学报. 2022(04): 884-889 .
    14. 任博文,董璇,何珊. 超高压技术在食品应用中的研究进展. 农产品加工. 2022(16): 61-63+67 .
    15. 黄丽萍,靳学远,谭演清,陈涛,王华民. 超高压微射流处理对火龙果汁微生物指标及理化特性的影响. 食品安全质量检测学报. 2022(20): 6563-6568 .
    16. 宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .
    17. 张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,温靖,李璐. 枸杞原浆低氧打浆联合不同杀菌技术的比较分析. 现代食品科技. 2022(11): 158-165 .

    Other cited types(18)

Catalog

    Article Metrics

    Article views (231) PDF downloads (32) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return