Effect of Degree of Milling on the Cooking Properties and Edible Quality of the Sea Rice
-
Graphical Abstract
-
Abstract
This research aimed to investigate the effect of degree of milling on the cooking properties and edible quality of the sea rice. The study examined the cooking quality, sensory attributes, and texture properties of the cooked sea rice with different degree of milling. In this experiment, sea rice with different degree of milling (0%, 7.20%, 9.62%, 10.85% and 11.86%) were prepared by controlling the milling time. The quality attributes of cooked sea rice were analyzed by rapid viscosity analyzer (RVA), texture analyzer and sensory evaluation. As the milling degree increased from 0% to 11.86%, the total dietary fiber content in sea rice decreased by 86.07%, while protein content decreased by 31.84% and fat content decreased by 77.18%. Conversely, the starch content increased by 7.12%. The results of the study indicated significant increases in the water absorption, swelling rate, iodine blue value, and water solubility index (65~85 ℃) of sea rice by 129.66%, 178.45%, 114.63%, and 46.79%~103.89%, respectively (P<0.05). The peak viscosity, low viscosity and final viscosity increased by 35.22%, 18.38% and 8.07%, respectively. Additionally, the gelatinization temperature of sea rice decreased to 88.85 ℃, leading to a reduction of the optimum cooking time by 43.01%. The texture properties of sea rice were analyzed, revealing significant changes with the increase of milling degree. Specifically, the hardness, gumminess, and chewiness of sea rice decreased significantly, while the viscosity increased significantly (P<0.05). There was no significant change in springiness (P>0.05). Interestingly, the rice sensory evaluation score showed a substantial increase of 19.30%. The results of the study indicate that increasing the degree of milling of sea rice can improve its cooking properties, pasting characteristics, texture, overall sensory properties, and edible quality. Therefore, this study can provide a theoretical basis for choosing the suitable degree of milling of sea rice.
-
-