Citation: | YIN Kaibo, ZHENG Zilu, JIN Jiayue, et al. Extraction Method and Application Progress of Chitin from Shrimp and Crab Shell Waste[J]. Science and Technology of Food Industry, 2024, 45(20): 407−414. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110262. |
[1] |
张爽. 2016-2020年海水养殖发展分析[J]. 河北渔业,2022(4):34−37. [ZHANG S. Analysis of mariculture development from 2016 to 2020[J]. Hebei Fisheries,2022(4):34−37.]
ZHANG S. Analysis of mariculture development from 2016 to 2020[J]. Hebei Fisheries, 2022(4): 34−37.
|
[2] |
HAQUE R, SAWANT P B, SARDAR P, et al. Synergistic utilization of shrimp shell waste-derived natural astaxanthin with its commercial variant boosts physio metabolic responses and enhances colouration in discus (Symphysodon aequifasciatus)[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 15:100405.
|
[3] |
刘宇, 方国宏, 戎素红, 等. 虾、蟹壳利用的研究进展[J]. 食品安全质量检测学报,2018,9(3):461−466. [LIU Y, FANG G H, RONG S H, et al. Research progress on utilization of shrimp and crab shells[J]. Journal of Food Safety & Quality,2018,9(3):461−466.]
LIU Y, FANG G H, RONG S H, et al. Research progress on utilization of shrimp and crab shells[J]. Journal of Food Safety & Quality, 2018, 9(3): 461−466.
|
[4] |
LAGE-YUSTY M A, VILASOA-MARTINEZ M, ALVAREZ-PEREZ S, et al. Chemical composition of snow crab shells (Chionoecetes opilio)[J]. CyTA Journal of Food,2011,9(4):265−270. doi: 10.1080/19476337.2011.596285
|
[5] |
辛雪成, 毛志强, 王芳, 等. 几丁寡糖叶面肥对花生品质和产量的影响[J]. 陕西农业科学,2019,65(12):1−4. [XIN X C, MAO Z Q, WANG F, et al. Effects of chitinol oligosaccharide foliar fertilizer on peanut quality and yield[J]. Shaanxi Journal of Agricultural Sciences,2019,65(12):1−4.]
XIN X C, MAO Z Q, WANG F, et al. Effects of chitinol oligosaccharide foliar fertilizer on peanut quality and yield[J]. Shaanxi Journal of Agricultural Sciences, 2019, 65(12): 1−4.
|
[6] |
SUTRISNO A, UEDA M, ABE Y, et al. A chitinase with high activity toward partially N-acetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471[J]. Applied Microbiology and Biotechnology,2004,63(4):398−406. doi: 10.1007/s00253-003-1351-2
|
[7] |
孙翔宇, 魏琦峰, 任秀莲. 虾、蟹壳中甲壳素/壳聚糖提取工艺及应用研究进展[J]. 食品研究与开发,2018,39(22):214−219. [SUN X Y, WEI Q F, REN X L. Research progress on extraction technology and application of chitin/chitosan from shrimp and crab shells[J]. Food Research and Development,2018,39(22):214−219.]
SUN X Y, WEI Q F, REN X L. Research progress on extraction technology and application of chitin/chitosan from shrimp and crab shells[J]. Food Research and Development, 2018, 39(22): 214−219.
|
[8] |
DING H P, LÜ L, WANG Z J, et al. Study on the "glutamic acid-enzymolysis" process for extracting chitin from crab shell waste and its by-product recovery[J]. Applied Biochemistry and Biotechnology,2020,190(3):1074−1091. doi: 10.1007/s12010-019-03139-2
|
[9] |
CHAROENVUTTITHAM P, SHI J, MITTAL G S. Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids[J]. Separation Science and Technology,2006,41(6):1135−1153. doi: 10.1080/01496390600633725
|
[10] |
HAJIALI F, VIDAL J, JIN T, et al. Extraction of chitin from green crab shells by mechanochemistry and aging[J]. ACS Sustainable Chemistry & Engineering,2022,10(34):11348−11357.
|
[11] |
黄俊娴, 杨建男. EDTA处理虾壳的综合利用研究[J]. 食品科技,2009,34(7):67−69. [HUANG J X, YANG J N. Comprehensive utilization of EDTA treated shrimp shells[J]. Food Science and Technology,2009,34(7):67−69.]
HUANG J X, YANG J N. Comprehensive utilization of EDTA treated shrimp shells[J]. Food Science and Technology, 2009, 34(7): 67−69.
|
[12] |
窦勇, 胡佩红. 超声协同CDA酶法制备龙虾壳聚糖[J]. 食品与发酵工业,2014,40(11):127−131. [DOU Y, HU P H. Preparation of lobster chitosan by ultrasonic synergy CDA enzymatic method[J]. Food and Fermentation Industries,2014,40(11):127−131.]
DOU Y, HU P H. Preparation of lobster chitosan by ultrasonic synergy CDA enzymatic method[J]. Food and Fermentation Industries, 2014, 40(11): 127−131.
|
[13] |
王婷. 克氏原螯虾中甲壳素提取工艺的优化[J]. 化工技术与开发,2019,48(1):30−34. [WANG T. Optimization of chitin extraction process from Protocrayus cruzi[J]. Technology & Development of Chemical Industry,2019,48(1):30−34.]
WANG T. Optimization of chitin extraction process from Protocrayus cruzi[J]. Technology & Development of Chemical Industry, 2019, 48(1): 30−34.
|
[14] |
QIN Y, LU X M, SUN N, et al. Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers[J]. Green Chemistry,2010,12(6):968−971. doi: 10.1039/c003583a
|
[15] |
SETOGUCHI T, KATO T, YAMAMOTO K, et al. Facile production of chitin from crab shells using ionic liquid and citric acid[J]. International Journal of Biological Macromolecules,2012,50(3):861−864. doi: 10.1016/j.ijbiomac.2011.11.007
|
[16] |
TOLESA L D, GUPTA B S, LEE M J. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids[J]. International Journal of Biological Macromolecules,2019,130:818−826. doi: 10.1016/j.ijbiomac.2019.03.018
|
[17] |
ZHU P, GU Z J, HONG S, et al. One-pot production of chitin with high purity from lobster shells using choline chloride-malonic acid deep eutectic solvent[J]. Carbohydrate Polymers,2017,177:217−223. doi: 10.1016/j.carbpol.2017.09.001
|
[18] |
DAI Y T, SPRONSEN J, WITLAMP G J, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytica Chimica Acta,2013,766:61−68. doi: 10.1016/j.aca.2012.12.019
|
[19] |
XIN R P, QI S J, ZENG C X, et al. A functional natural deep eutectic solvent based on trehalose:Structural and physicochemical properties[J]. Food Chemistry,2017,217:560−567. doi: 10.1016/j.foodchem.2016.09.012
|
[20] |
HUANG W C, ZHAO D D, XUE C H, et al. An efficient method for chitin production from crab shells by a natural deep eutectic solvent[J]. Marine Life Science & Technology,2022,4(3):384−388.
|
[21] |
GUO X X, HAN X X, HE Y F, et al. Optimization of enzymatic hydrolysis for preparation of shrimp flavor precursor using response surface methodology[J]. Journal of Food Quality,2014,37(4):229−236. doi: 10.1111/jfq.12091
|
[22] |
HONGKULSUP C, KHUTORYANSKIY V V, NIRANIAN K. Enzyme assisted extraction of chitin from shrimp shells (Litopenaeus vannamei)[J]. Journal of Chemical Technology & Biotechnology,2016,91(5):1250−1256.
|
[23] |
纪蕾, 刘天红, 王颖, 等. 鹰爪虾加工副产物制备甲壳素关键技术研究[J]. 食品与发酵科技,2021,57(5):64−71. [JI L, LIU T H, WANG Y, et al. Research on the key technology of chitin preparation from the by-products of eagle claw shrimp processing[J]. Food and Fermentation Science & Technology,2021,57(5):64−71.]
JI L, LIU T H, WANG Y, et al. Research on the key technology of chitin preparation from the by-products of eagle claw shrimp processing[J]. Food and Fermentation Science & Technology, 2021, 57(5): 64−71.
|
[24] |
邓俊劲. 新型蛋白酶及几丁质酶的开发及其在虾加工废弃物中的应用[D]. 广州:华南理工大学, 2020. [DENG J J. Development of new protease and chitinase and their application in shrimp processing waste[D]. Guangzhou:South China University of Technology, 2020.]
DENG J J. Development of new protease and chitinase and their application in shrimp processing waste[D]. Guangzhou: South China University of Technology, 2020.
|
[25] |
GAMAGE M, LIYANAGE N, PETHIRANA I, et al. Evaluation of the potential of fungal acid proteases of Aspergillus flavus, Aspergillus niger and Penicillium sp. to produce shrimp-waste protein hydrolysates with degraded antigenic proteins[J]. Journal of Dry Zone Agriculture,2022,8(1):21−37. doi: 10.4038/jdza.v8i1.53
|
[26] |
ARBIA W, ARBIA L, ADOUR L, et al. Chitin extraction from crustacean shells using biological methods-a review[J]. Food Technology and Biotechnology,2013,51(1):12−25.
|
[27] |
杨锡洪, 辛荣玉, 宋琳, 等. 虾蟹壳中甲壳素绿色提取技术研究进展[J]. 现代食品科技,2020,36(7):344−350. [YANG X H, XIN R Y, SONG L, et al. Research progress on green extraction technology of chitin in shrimp and crab shells[J]. Modern Food Science and Technology,2020,36(7):344−350.]
YANG X H, XIN R Y, SONG L, et al. Research progress on green extraction technology of chitin in shrimp and crab shells[J]. Modern Food Science and Technology, 2020, 36(7): 344−350.
|
[28] |
武波飞, 丁志雯, 苏永成, 等. 海洋产蛋白酶Bacillus amyloliquefaciens MSP05发酵南美白对虾虾壳脱蛋白条件优化[J]. 中国调味品,2021,46(12):14−19. [WU B F, DING Z W, SU Y C, et al. Optimization of marine protease Bacillus amyloliquefaciens MSP05 for shell deproteinization of fermented South American white shrimp[J]. China Condiment,2021,46(12):14−19.]
WU B F, DING Z W, SU Y C, et al. Optimization of marine protease Bacillus amyloliquefaciens MSP05 for shell deproteinization of fermented South American white shrimp[J]. China Condiment, 2021, 46(12): 14−19.
|
[29] |
XIN R Y, XIE W C, XU Z Y, et al. Efficient extraction of chitin from shrimp waste by mutagenized strain fermentation using atmospheric and room-temperature plasma[J]. International Journal of Biological Macromolecules,2020,155:1561−1568. doi: 10.1016/j.ijbiomac.2019.11.133
|
[30] |
CAHYANINGTYAS H A A, SUYOTHA W, CHEIRSILP B, et al. Optimization of protease production by Bacillus cereus HMRSC30 for simultaneous extraction of chitin from shrimp shell with value-added recovered products[J]. Environmental Science and Pollution Research,2022,29:1−16.
|
[31] |
CASTRO R, GUERRERO-LEGARRETA I, BORQUEZ R. Chitin extraction from Allopetrolisthes punctatus crab using lactic fermentation[J]. Biotechnology Reports,2018,20:e00287. doi: 10.1016/j.btre.2018.e00287
|
[32] |
XIE J W, XIE W C, YU J, et al. Extraction of chitin from shrimp shell by successive two-step fermentation of Exiguobacterium profundum and Lactobacillus acidophilus[J]. Frontiers in Microbiology,2021,12:677126. doi: 10.3389/fmicb.2021.677126
|
[33] |
LIU Y L, XING R E, YANG H Y, et al. Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens[J]. International Journal of Biological Macromolecules,2020,148:424−433. doi: 10.1016/j.ijbiomac.2020.01.124
|
[34] |
ZHANG Q, WANG L Y, LIU S G, et al. Establishment of successive co-fermentation by Bacillus subtilis and Acetobacter pasteurianus for extracting chitin from shrimp shells[J]. Carbohydrate Polymers,2021,258:117720. doi: 10.1016/j.carbpol.2021.117720
|
[35] |
ZHANG Q, XIANG Q, LI Y C. One-step bio-extraction of chitin from shrimp shells by successive co-fermentation using Bacillus subtilis and Lactobacillus plantarum[J]. Innovative Food Science & Emerging Technologies,2022,80:103057.
|
[36] |
ZARE H, JAFARI Z, DARZI H H. Production of chitin and chitosan from shrimp shell wastes using co-fermentation of Lactiplantibacillus plantarum PTCC 1745 and Bacillus subtilis PTCC 1720[J]. Applied Food Biotechnology,2022,9(4):311−320.
|
[37] |
CHEN Y L, LING Z M, MAMTIMIN T, et al. Chitooligosaccharides production from shrimp chaff in chitosanase cell surface display system[J]. Carbohydrate Polymers,2022,277:118894. doi: 10.1016/j.carbpol.2021.118894
|
[38] |
LU D L, ZHANG M S, DENG J J, et al. Highly Efficient shrimp shell recovery by solid-state fermentation with Streptomyces sp. SCUT-3[J]. Chemical Engineering Journal, 2023, 458:141256.
|
[39] |
VALLEJO D D, RUBIO R E, AGUILA A E, et al. Ultrasound in the deproteinization process for chitin and chitosan production[J]. Ultrasonics Sonochemistry,2021,72:105417. doi: 10.1016/j.ultsonch.2020.105417
|
[40] |
蓝尉冰, 徐开平, 韩鑫, 等. 微波辅助法制备南美白对虾甲壳素的工艺优化[J]. 食品工业科技,2018,39(20):135−140. [LAN W B, XU K P, HAN X, et al. Optimization of microwave-assisted preparation of chitin from Penaeus vannamei[J]. Science and Technology of Food Industry,2018,39(20):135−140.]
LAN W B, XU K P, HAN X, et al. Optimization of microwave-assisted preparation of chitin from Penaeus vannamei[J]. Science and Technology of Food Industry, 2018, 39(20): 135−140.
|
[41] |
魏宏艳. 微波辅助法下由虾蟹壳制备可溶性壳聚糖[J]. 电子制作, 2013(17):66. [WEI H Y. Microwave-assisted preparation of soluble chitosan from shrimp and crab shells[J]. Practical Electronics, 2013(17):66.]
WEI H Y. Microwave-assisted preparation of soluble chitosan from shrimp and crab shells[J]. Practical Electronics, 2013(17): 66.
|
[42] |
HOFFMANN K, DAUM G, KOSTER M, et al. Genetic improvement of Bacillus licheniformis strains for efficient deproteinization of shrimp shells and production of high-molecular-mass chitin and chitosan[J]. Applied and Environmental Microbiology,2010,76(24):8211−8221. doi: 10.1128/AEM.01404-10
|
[43] |
OH Y S, SHIH L, TZENG Y M, et al. Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes[J]. Enzyme and Microbial Technology,2000,27(1−2):3−10. doi: 10.1016/S0141-0229(99)00172-6
|
[44] |
PAUL M K, MINI K D, ANTONY A C, et al. Deproteinization of shrimp shell waste by Kurthia gibsonii Mb126 immobilized chitinase[J]. Journal of Pure & Applied Microbiology,2022,16(2):909−923.
|
[45] |
ELARABY A, ElGHADRAOUI L, ERRACHIDI F. Usage of biological chitosan against the contamination of post-harvest treatment of strawberries by Aspergillus niger[J]. Frontiers in Sustainable Food Systems,2022,6:881434. doi: 10.3389/fsufs.2022.881434
|
[46] |
张雪雅. 纳米几丁质对小麦假禾谷镰刀菌抑菌性能及作用机制研究[D]. 郑州:河南农业大学, 2021. [ZHANG X Y. Study on antibacterial activity and mechanism of nano-chitin against Fusarium graminearum[D]. Zhengzhou:Henan Agricultural University, 2021.]
ZHANG X Y. Study on antibacterial activity and mechanism of nano-chitin against Fusarium graminearum[D]. Zhengzhou: Henan Agricultural University, 2021.
|
[47] |
CELE Z E D, SOMBORO A M, AMOAKO D G, et al. Fluorinated quaternary chitosan derivatives:synthesis, characterization, antibacterial activity, and killing kinetics[J]. ACS Omega,2020,5(46):29657−29666. doi: 10.1021/acsomega.0c01355
|
[48] |
MALLIK A, KABIR S F, RAHMAN F B, et al. Cu(II) removal from wastewater using chitosan-based adsorbents:A review[J]. Journal of Environmental Chemical Engineering,2022,10(4):108048. doi: 10.1016/j.jece.2022.108048
|
[49] |
YANG J, CHEN X X, ZHANG J H, et al. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting:A critical review[J]. International Journal of Biological Macromolecules,2021,189:53−64. doi: 10.1016/j.ijbiomac.2021.08.047
|
[50] |
LIU X L, JIANG Q. Modification of chitosan/chitin and its oligosaccharides[M]. Springer:Singapore, 2019:129−159.
|
[51] |
KIM G M, WANG Z, WON S W. Removal of reactive dyes using chitin-based adsorbent PEI-chitin[J]. Korean Chemical Engineering Research,2019,57(2):232−238.
|
[52] |
康雨. 壳聚糖与模型生物膜的相互作用[D]. 合肥:中国科学技术大学, 2021. [KANG Y. Interaction between chitosan and model biofilm[D]. Hefei:University of Science and Technology of China, 2021.]
KANG Y. Interaction between chitosan and model biofilm[D]. Hefei: University of Science and Technology of China, 2021.
|
[53] |
CHEN Y, YANG Y M, LIAO Q P, et al. Preparation, property of the complex of carboxymethyl chitosan grafted copolymer with iodine and application of it in cervical antibacterial biomembrane[J]. Materials Science and Engineering:C,2016,67:247−258.
|
[54] |
ALAKAYLEH F, JABER N, ALREMAWI M, et al. Chitosan-biotin topical film:Preparation and evaluation of burn wound healing activity[J]. Pharmaceutical Development and Technology,2022,27(4):479−489. doi: 10.1080/10837450.2022.2079132
|
[55] |
高若航, 李青, 万芝力, 等. 细菌纤维素-甲壳素-玉米醇溶蛋白颗粒复合膜的制备与表征[J]. 现代食品科技,2022,38(11):210−218. [GAO R H, LI Q, WAN Z L, et al. Preparation and characterization of bacterial cellulose-chitin-zein granular composite membrane[J]. Modern Food Science and Technology,2022,38(11):210−218.]
GAO R H, LI Q, WAN Z L, et al. Preparation and characterization of bacterial cellulose-chitin-zein granular composite membrane[J]. Modern Food Science and Technology, 2022, 38(11): 210−218.
|