ZHANG Qingqing, ZHANG Mengjiao, MA Yiming, et al. Optimization of Extraction Process and Neuroprotective Activities of Flavonoids from Mentha haplocalyx Briq. with Subcritical Water[J]. Science and Technology of Food Industry, 2024, 45(10): 17−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100088.
Citation: ZHANG Qingqing, ZHANG Mengjiao, MA Yiming, et al. Optimization of Extraction Process and Neuroprotective Activities of Flavonoids from Mentha haplocalyx Briq. with Subcritical Water[J]. Science and Technology of Food Industry, 2024, 45(10): 17−24. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100088.

Optimization of Extraction Process and Neuroprotective Activities of Flavonoids from Mentha haplocalyx Briq. with Subcritical Water

More Information
  • Received Date: October 12, 2023
  • Available Online: March 19, 2024
  • Objective: To optimize the subcritical water extraction process for flavonoids from Mentha haplocalyx Briq. (mint) and assess the mitigating effects of peppermint flavonoids on H2O2-induced adrenal pheochromocytoma (PC12 cell) injury in rats. Methods: The subcritical water extraction process for mint flavonoids was optimized using single-factor and Box-Behnken response surface tests. A comparison was made with reflux extraction, ultrasonic-assisted extraction, and supercritical CO2 extraction methods. In vitro cell culture of PC12 cells was employed to establish an H2O2-induced PC12 cell injury model. The neuroprotective activity of mint flavonoids was analyzed using the MTT (methyl thiazolye tetrazolium, MTT) method. Results: The optimized extraction conditions were determined to be 142 ℃, 38 min, and 21:1 mL/g, resulting in a mint flavonoid yield of 14.07%±0.23%. This yield was significantly higher (P<0.001) than that of reflux extraction (334% increase), ultrasonic-assisted extraction (75% increase), and supercritical CO2 extraction (173% increase). Mint flavonoids, within the concentration range of 1~100 μg/mL, significantly enhanced the survival rate of PC12 cells from 53.61%±0.64% to 78.49%±0.84% compared to the H2O2 group (P<0.001), indicating substantial alleviation of cellular oxidative injury. Conclusion: The study established an environmentally friendly, efficient, and reliable subcritical water extraction process for mint flavonoids. The extracted mint flavonoids demonstrated significant protective effects against H2O2-induced PC12 cell injury (P<0.01).
  • [1]
    BLOEM B R, OKUN M S, KLEIN C. Parkinson’s disease[J]. Seminar,2021,397:2284−2303.
    [2]
    KOVAL L, BÔNE A, LOUIS M, et al. AD Course Map charts Alzheimer’s disease progression[J]. Scientific Reports,2021,11:8020−8035. doi: 10.1038/s41598-021-87434-1
    [3]
    HAYES M T. Parkinson's disease and parkinsonism[J]. The American Journal of Medicine,2019,132(7):802−807. doi: 10.1016/j.amjmed.2019.03.001
    [4]
    LUKIW W J. MicroRNA (miRNA) Complexity in Alzheimer’s disease (AD)[J]. Biology,2023,12:788−801. doi: 10.3390/biology12060788
    [5]
    LUKIW W J, VERGALLO A, LISTA S, et al. Biomarkers for Alzheimer’s disease (AD) and the application of precision medicine[J]. Journal of Personalized Medicine,2020,10:138−149. doi: 10.3390/jpm10030138
    [6]
    ZHANG D Y, LI X, HE X S, et al. Protective effect of flavonoids against methylglyoxal-induced oxidative stress in PC-12 neuroblastoma cells and its structure–activity relationships[J]. Molecules,2022,27(22):7804−7814. doi: 10.3390/molecules27227804
    [7]
    MANISH P, LING L W, LIN T S, et al. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases[J]. Current Drug Targets,2018,19(14):1710−1720. doi: 10.2174/1389450119666180326125252
    [8]
    AMINZADEH A, SALARINEJAD A. Effects of myricetin against cadmium-induced neurotoxicity in PC12 cells[J]. Toxicology Research,2021,10:84−90. doi: 10.1093/toxres/tfaa104
    [9]
    LEE S R, SONG J, SONG J H, et al. Chemical identification of isoflavonoids from a termite-associated streptomyces sp. rb1 and their neuroprotective effects in murine hippocampal HT22 cell line[J]. International Journal of Molecular Sciences,2018,19(9):2640−2652. doi: 10.3390/ijms19092640
    [10]
    屈赵. 中草药来源黄酮类化合物的神经保护作用及机制研究[D]. 广州:广中中医药大学, 2018. [QU Z. Neuroprotective effects of flavonoids derived from Chinese herbal medicine and their underlying mechanisms exploration[D]. Guangzhou:Guangzhou University of Chinese Medicine, 2018.]

    QU Z. Neuroprotective effects of flavonoids derived from Chinese herbal medicine and their underlying mechanisms exploration[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2018.
    [11]
    XING G H, DONG M X, LI X M, et al. Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12 cells via a PI3K-dependent signaling pathway[J]. Brain Res Bull,2011,85(3-4):212−218. doi: 10.1016/j.brainresbull.2011.03.024
    [12]
    ZHAO Y K, ZHAO J, ZHANG X Y, et al. Botanical drug puerarin promotes neuronal survival and neurite outgrowth against MPTP/MPP+-induced toxicity via progesterone receptor signaling[J]. Oxidative Medicine and Cellular Longevity, 2020:7635291.
    [13]
    LÜ C N, YANG F, QIN R L, et al. Bioactivity-guided isolation of chemical constituents against H2O2-induced neurotoxicity on PC12 from Cimicifuga dahurica (Turcz.) Maxim[J]. Bioorganic & Medicinal Chemistry Letters,2017,27:3305−3309.
    [14]
    陈斌, 刘洁, 詹敏敏, 等. 黄酮类化合物与肠道菌群互作研究进展[J]. 中国食品学报,2022,22(6):369−381. [CHEN B, LIU J, ZAN M M, et al. Research progress in the interaction between flavonoids and gut microbiota[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(6):369−381.]

    CHEN B, LIU J, ZAN M M, et al. Research progress in the interaction between flavonoids and gut microbiota[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 369−381.
    [15]
    国家药典委员会. 中华人民共和国药典[M]. 北京:中国医药科技出版社, 2020:394−395. [Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China[M]. Beijing:China Medical Science Press, 2020:394−395.]

    Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China[M]. Beijing: China Medical Science Press, 2020: 394−395.
    [16]
    LI Y X, LIU Y B, MA A Q, et al. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L.[J]. Food Sci Biotechnol,2017,26(6):1675−1683. doi: 10.1007/s10068-017-0217-9
    [17]
    杨玉莹, 窦晓鑫, 王方园, 等. 抗新型冠状病毒肺炎“三药 三方”之中医理论探讨[J]. 天津中医药,2021,38(6):700−705. [YANG Y Y, DOU X X, WANG F Y, et al. Discussion on traditional Chinese medicine theory of anti-COVID-19 “three drugs and three prescriptions”[J]. Tianjin Journal of Traditional Chinese Medicine,2021,38(6):700−705.]

    YANG Y Y, DOU X X, WANG F Y, et al. Discussion on traditional Chinese medicine theory of anti-COVID-19 “three drugs and three prescriptions”[J]. Tianjin Journal of Traditional Chinese Medicine, 2021, 38(6): 700−705.
    [18]
    HE X F, GENG C A, HUANG X Y, et al. Chemical Constituents from Mentha haplocalyx Briq. (Mentha canadensis L.) and their α-glucosidase inhibitory activities[J]. Natural Products and Bioprospecting,2019,9:223−229. doi: 10.1007/s13659-019-0207-0
    [19]
    KAPP K, PÜSSA T, ORAV A, et al. Chemical composition and antibacterial effect of Mentha spp. grown in estonia[J]. Natural Product Communications,2020,15(12):1−14.
    [20]
    LIU R H, WANG Y T, LIANG C L, et al. Morphology and mass spectrometry-based chemical profiling of peltate glandular trichomes on Mentha haplocalyx Briq leaves[J]. Food Research International,2023,164:112323−112333. doi: 10.1016/j.foodres.2022.112323
    [21]
    XU L L, XU J J, ZHONG K R, et al. Analysis of non-volatile chemical constituents of Menthae haplocalycis Herba by ultra-high performance liquid chromatography-high resolution mass spectrometry[J]. Molecules,2017,22:1756−1772. doi: 10.3390/molecules22101756
    [22]
    侯学敏, 李林霞, 张直峰, 等. 响应面法优化薄荷叶总黄酮提取工艺及抗氧化活性[J]. 食品科学,2013,34(6):124−128. [HOU X M, LI L X, ZHANG Z F, et al. Total flavonoids from Mentha haplocalyx Briq. leaves:Optimization of extraction process by response surface methodology and antioxidant activity[J]. Food Science,2013,34(6):124−128.]

    HOU X M, LI L X, ZHANG Z F, et al. Total flavonoids from Mentha haplocalyx Briq. leaves: Optimization of extraction process by response surface methodology and antioxidant activity[J]. Food Science, 2013, 34(6): 124−128.
    [23]
    BELFEKI H. MEJRI M. HASSOUNA M. Antioxidant and anti-lipases activities in vitro of Mentha viridis and Eucalyptus globulus extracts[J]. Industrial Crops and Products,2016(89):514−521.
    [24]
    刘雪辉, 张思, 张志旭, 等. 大孔吸附树脂纯化薄荷总黄酮工艺优选[J]. 食品与机械,2016,32(8):156−177. [LIU X H, ZHANG S, ZHANG Z X, et al. Optimization of purification technology for total flavonoids from Menthaha plocalyx by macroporous resin[J]. Food & Machinery,2016,32(8):156−177.]

    LIU X H, ZHANG S, ZHANG Z X, et al. Optimization of purification technology for total flavonoids from Menthaha plocalyx by macroporous resin[J]. Food & Machinery, 2016, 32(8): 156−177.
    [25]
    高丹丹, 郭鹏辉, 祁高展, 等. 响应面法优化薄荷全草总黄酮的提取工艺[J]. 食品工业科技, 2015, 36(2):299-322. [GAO D D, GUO P H, QI G Z et al. Optimization of extraction technology of total flavonoids from Mentha haplocalyx by response surface methodology[J]. Science and Technology of Food Industry, 2015, 36(2):299-303.]

    GAO D D, GUO P H, QI G Z et al. Optimization of extraction technology of total flavonoids from Mentha haplocalyx by response surface methodology[J]. Science and Technology of Food Industry, 2015, 36(2): 299-303.
    [26]
    张晴晴, 邢何欢, 龙昌辉, 等. 薄荷中黄酮类化合物萃取工艺优化及成分分析[J]. 延边大学农学学报,2022,44(4):67−72. [ZHANG Q Q, XING H H, LONG C H, et al. Optimization of extraction process of Mentha haplocalyx flavonoids and composition analysis[J]. Agricultural Science Journal of Yanbian University,2022,44(4):67−72.]

    ZHANG Q Q, XING H H, LONG C H, et al. Optimization of extraction process of Mentha haplocalyx flavonoids and composition analysis[J]. Agricultural Science Journal of Yanbian University, 2022, 44(4): 67−72.
    [27]
    CHENG Y, XUE F M, YU S, et al. Subcritical Water Extraction of Natural Products[J]. Molecules,2021,26:4004−4041. doi: 10.3390/molecules26134004
    [28]
    ZHANG J X, WEN C T, ZHANG H H, et al. Recent advances in the extraction of bioactive compounds with subcritical water:A review[J]. Trends in Food Science & Technology,2020,95:183−195.
    [29]
    TSAI M, ZHU L, MAEDA S, et al. Extraction of phytochemicals from maypole apple by subcritical water[J]. Foods,2022,11:3453−3464. doi: 10.3390/foods11213453
    [30]
    KO M J, LEE J H, NAM H H, et al. Subcritical water extraction of phytochemicals from Phlomis umbrosa Turcz[J]. Innovative Food Science and Emerging Technologies,2017,42:1−7. doi: 10.1016/j.ifset.2017.05.009
    [31]
    CUI Y L, WANG S, WANG S X, et al. Extraction optimization and characterization of persimmon peel pectinextracted by subcritical water[J]. Food Chemistry: X,2022,16:100486−100495. doi: 10.1016/j.fochx.2022.100486
    [32]
    包怡红, 邓启. 响应面法优化亚临界水萃取黑木耳多糖工艺[J]. 食品与生物技术学报,2016,35(10):1053−1060. [BAO Y H, DENG Q. Optimization of subcritical water extraction of polysaccharides from Auricularia auricular by response surface methodology[J]. Journal of Food Science and Biotechnology,2016,35(10):1053−1060.]

    BAO Y H, DENG Q. Optimization of subcritical water extraction of polysaccharides from Auricularia auricular by response surface methodology[J]. Journal of Food Science and Biotechnology, 2016, 35(10): 1053−1060.
    [33]
    LACHOS-PEREZ D, BASEGGIOB A M, MAYANGA-TORRES P C, et al. Subcritical water extraction of flavanones from defatted orange peel[J]. The Journal of Supercritical Fluids,2018,138:7−16. doi: 10.1016/j.supflu.2018.03.015
    [34]
    ZHANG H G, LIU S H, LI H Z, et al. Extraction of isoflavones from Puerariae lobata using subcritical water[J]. RSC Advances,2018,8:22652−22658. doi: 10.1039/C8RA02653J
    [35]
    朱晓晗, 铁芳芳, 欧阳健, 等. 桑葚花色苷对PC12细胞氧化损伤的保护作用[J/OL]. 食品与发酵工业, 1−12 [2024-03-08]. https://doi.org/10.13995/j.cnki.11-1802/ts.035027. [ZHU X H, TIE F F, OU Y J, et al. Protective effects of mulberry anthocyanin on oxidative stress in PC12 cells[J/OL]. Food and Fermentation Industries, 1−12 [2024-03-08]. https://doi.org/10.13995/j.cnki.11-1802/ts.035027.]

    ZHU X H, TIE F F, OU Y J, et al. Protective effects of mulberry anthocyanin on oxidative stress in PC12 cells[J/OL]. Food and Fermentation Industries, 1−12 [2024-03-08]. https://doi.org/10.13995/j.cnki.11-1802/ts.035027.
    [36]
    WAN N, KOU P, PANG H Y, et al. Enzyme pretreatment combined with ultrasonic-microwave-assisted surfactant for simultaneous extraction of essential oil and flavonoids from Baeckea frutescens[J]. Industrial Crops and Products,2021,174:114173−114182. doi: 10.1016/j.indcrop.2021.114173
    [37]
    NKURUNZIZAAD, PENDLETONB P, CHUN B S, et al. Optimization and kinetics modeling of okara isoflavones extraction using subcritical water[J]. Food Chemistry,2019,295:613−621. doi: 10.1016/j.foodchem.2019.05.129
    [38]
    冀恬, 董琦, 谭亮, 等. 亚临界水萃取康定鼠尾草中丹参酮类成分工艺的优化[J]. 中成药,2017,39(10):2190−2193. [GI T, DONG Q, TAN L, et al. Optimization of extraction process of tanshinones from Salvia Kangding by subcritical water[J]. Chinese Traditional Patent Medicine,2017,39(10):2190−2193.] doi: 10.3969/j.issn.1001-1528.2017.10.045

    GI T, DONG Q, TAN L, et al. Optimization of extraction process of tanshinones from Salvia Kangding by subcritical water[J]. Chinese Traditional Patent Medicine, 2017, 39(10): 2190−2193. doi: 10.3969/j.issn.1001-1528.2017.10.045
    [39]
    董兴叶, 许明君, 邓辰辰, 等. 亚临界水萃取杜仲叶黄酮类化合物工艺优化研究[J]. 河南工业大学学报(自然科学版),2016,37(1):84−87. [DONG X Y, XU M J, DENG C C, et al. Optimization of subcritical water extraction processing of flavonoids from Eucommia ulmoides leaves[J]. Journal of Henan University of Technology (Natural Science Edition),2016,37(1):84−87.]

    DONG X Y, XU M J, DENG C C, et al. Optimization of subcritical water extraction processing of flavonoids from Eucommia ulmoides leaves[J]. Journal of Henan University of Technology (Natural Science Edition), 2016, 37(1): 84−87.
    [40]
    LIU J, LI Y C, LIU W Q, et al. Extraction of polysaccharide from Dendrobium nobile Lindl. by subcritical water extraction[J]. ACS Omega,2019,4:20586−20594. doi: 10.1021/acsomega.9b02550
    [41]
    CHU Q, CHEN M, SONG D X, et al. Apios americana Medik flowers polysaccharide (AFP-2) attenuates H2O2 induced neurotoxicity in PC12 cells[J]. International Journal of Biological Macromolecules,2019,123:1115−1124. doi: 10.1016/j.ijbiomac.2018.11.078
  • Related Articles

    [1]MA Yue, LIU Xin, WU Mengguo, ZHANG Xuewei, WEI Xuan, HOU Dongdong, JIANG Zhanmei, HOU Juncai. Effect of Sterilization Conditions on Quality Characteristics and Storage Stability of Goat Milk[J]. Science and Technology of Food Industry, 2023, 44(9): 68-73. DOI: 10.13386/j.issn1002-0306.2022050060
    [2]CHEN Xianliu, WANG Suru, CHEN Boyu, XIE Defang. Storage Stability, Residual Digestion and Chronic Dietary Exposure Assessment of Oxine-copper in Citrus[J]. Science and Technology of Food Industry, 2022, 43(22): 1-6. DOI: 10.13386/j.issn1002-0306.2022030257
    [3]TU Lian, LÜ Chunqiu, WANG Jie, LIANG Qinmei, ZHONG Weihua, LIN Ying. Characterization of Taro Starch and Its Stabilized Pickering Emulsion[J]. Science and Technology of Food Industry, 2022, 43(18): 72-79. DOI: 10.13386/j.issn1002-0306.2021120081
    [4]XU Keping, WANG Jiali, LIU Chengmei, DENG Lizhen, DAI Taotao, CHEN Mingshun, CHEN Jun. Preparation Process and Storage Stability of Whole Sesame Milk[J]. Science and Technology of Food Industry, 2022, 43(15): 175-183. DOI: 10.13386/j.issn1002-0306.2021100075
    [5]CHEN Jun, FANG Ruilin, LIANG Yazhen, LI Changhong, LI Yuting, DAI Taotao, LIU Chengmei. Study on Preparation and Storage Stability of Whole Soybean Milk by High-pressure Microfluidizer[J]. Science and Technology of Food Industry, 2021, 42(19): 173-181. DOI: 10.13386/j.issn1002-0306.2020110215
    [6]MU Tanhang, YE Jia, YANG Mingjian, MIAO Junling, WANG Xinjian, ZHOU Xiaotong, ZHANG Wenwen. Optimization of Extraction Technology and Storage Stability of Polyphenols from Pomegranate Peel[J]. Science and Technology of Food Industry, 2021, 42(11): 142-146. DOI: 10.13386/j.issn1002-0306.2020060202
    [7]Haoyu ZHANG, Lin MA, Qiang SUN, Jinian HUANG, Jing YOU, Xing MENG, Guohui SONG. Effects of Processing Techniques on Stability of Sesame Paste[J]. Science and Technology of Food Industry, 2021, 42(8): 42-48. DOI: 10.13386/j.issn1002-0306.2020060294
    [8]MA lin, SONG Guo-hui, SUN Qiang, ZHANG Xun, SUN Xiao-jing, HUANG Ji-nian. Effect of Granulation on the Storage Stability and Flavour of Sesame Salt and Establishment of Shelf-life Prediction Model[J]. Science and Technology of Food Industry, 2020, 41(20): 26-32. DOI: 10.13386/j.issn1002-0306.2020.20.005
    [9]SONG Guo-hui, LU Xin, SUN Qiang, ZHANG Li-xia, HUANG Ji-nian, CAO Shi-na. Effect of sesame components on sesame paste storage stability[J]. Science and Technology of Food Industry, 2017, (18): 25-29. DOI: 10.13386/j.issn1002-0306.2017.18.005
    [10]LIAO Hong-mei, DING Zhan-sheng, ZHONG Kui, ZHAO Jun-jie, LIAO Xiao-jun. Study on effect of high pressure carbon dioxide on storage stability of fresh pear juice[J]. Science and Technology of Food Industry, 2013, (23): 131-133. DOI: 10.13386/j.issn1002-0306.2013.23.089
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (131) PDF downloads (18) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return