YAO Xinpeng, CAO Chuan'ai, KONG Baohua, et al. Effect of Xanthan Gum Concentration on Structure and Functional Properties of Porcine Plasma Protein-Xanthan Gum Oleogel[J]. Science and Technology of Food Industry, 2024, 45(17): 95−104. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100006.
Citation: YAO Xinpeng, CAO Chuan'ai, KONG Baohua, et al. Effect of Xanthan Gum Concentration on Structure and Functional Properties of Porcine Plasma Protein-Xanthan Gum Oleogel[J]. Science and Technology of Food Industry, 2024, 45(17): 95−104. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100006.

Effect of Xanthan Gum Concentration on Structure and Functional Properties of Porcine Plasma Protein-Xanthan Gum Oleogel

More Information
  • Received Date: October 08, 2023
  • Available Online: July 04, 2024
  • In this paper, a kind of oleogel with mechanical strength and physical absorption of soybean oil was prepared by foam templated by using porcine plasma protein and xanthan gum as raw materials, and its thermal stability was analyzed. The results showed that with the increase of xanthan gum concentration, the apparent viscosity and foam stability of porcine plasma protein and xanthan gum mixed solution system significantly increased, and the foaming property significantly decreased (P<0.05). The microstructure results showed that the addition of xanthan gum resulted in a decrease in the size of bubbles and the number of large bubbles in the aqueous foam system. After freeze-drying, the cryogel sample had an ordered internal structure and dense overall pores. The pores were clearly visible, which could better trap the liquid oil in the internal structure. At the same time, the oleogels formed by porcine plasma protein and xanthan gum had stronger oil restraint ability and more semi-solid rheological behavior. With the increase of xanthan gum concentration, the oil absorption capacity tended to increase and then decrease, and it had the maximum value (46.43 g/g) at 0.6% xanthan gum concentration, when the oil restraint ability of the oleogel was 84.69%. The addition of xanthan gum could significantly increase the oil restraint ability of the oleogels at different temperatures (P<0.05), which enhanced its thermal stability. Therefore, a relatively stable porcine plasma protein-xanthan gum oleogel was formed when the xanthan gum concentration was 0.6%, which provided a theoretical basis for developing a novel protein and polysaccharide-based oleogels for use in low-fat products.
  • [1]
    BREWER M S. Reducing the fat content in ground beef without sacrificing quality:A review[J]. Meat Science,2012,91(4):385−395. doi: 10.1016/j.meatsci.2012.02.024
    [2]
    董学文, 张苏苏, 李大宇, 等. 脂肪替代物在肉制品中应用研究进展[J]. 食品安全质量检测学报,2017,8(6):1961−1966. [DONG X W, ZHANG S S, LI D Y, et al. Research progress of the application of fat substitutes in meat products[J]. Journal of Food Safety and Quality,2017,8(6):1961−1966.] doi: 10.3969/j.issn.2095-0381.2017.06.004

    DONG X W, ZHANG S S, LI D Y, et al. Research progress of the application of fat substitutes in meat products[J]. Journal of Food Safety and Quality, 2017, 8(6): 1961−1966. doi: 10.3969/j.issn.2095-0381.2017.06.004
    [3]
    屠用利. 食品中的脂肪替代物[J]. 食品工业,2000,21(3):17−19. [TU Y L. Fat replacers in foods[J]. Food Industry,2000,21(3):17−19.]

    TU Y L. Fat replacers in foods[J]. Food Industry, 2000, 21(3): 17−19.
    [4]
    张发玲, 梁艳, 李桂华, 等. 变性淀粉在低温火腿中应用研究[J]. 山东轻工业学院学报,2013,27(4):22−25. [ZHANG F L, LIANG Y, LI G H, et al. Application research on modified starch in the low-temperature ham[J]. Journal of Shandong Polytechnic University,2013,27(4):22−25.]

    ZHANG F L, LIANG Y, LI G H, et al. Application research on modified starch in the low-temperature ham[J]. Journal of Shandong Polytechnic University, 2013, 27(4): 22−25.
    [5]
    PEHLIVANOĞLU H, DEMIRCI M, TOKER O S, et al. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations:Production and food-based applications[J]. Critical Reviews in Food Science and Nutrition,2018,58(8):1330−1341. doi: 10.1080/10408398.2016.1256866
    [6]
    MARYAM M, SOLTANIZADEH N, GOLI S. Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger[J]. Food Research International,2018,108(6):368−377.
    [7]
    BLAKE A I, MARANGONI A G. Plant wax crystals display platelet-like morphology[J]. Food Structure,2015,3:30−34. doi: 10.1016/j.foostr.2015.01.001
    [8]
    PALLA C, VICENTE J D, CARRIN M E, et al. Effects of cooling temperature profiles on the monoglycerides oleogel properties:Arheo-microscopy study[J]. Food Research International,2019,125:108613. doi: 10.1016/j.foodres.2019.108613
    [9]
    MOSCHAKIS T, PANAGIOTOPOLOU E, KATSANIDIS E. Sunflower oil organogels and organogel-in-water emulsions (part I):Microstructure and mechanical properties[J]. LWT-Food Science and Technology,2016,73:153−161. doi: 10.1016/j.lwt.2016.03.004
    [10]
    WOLFER T L, ACEVEDO N C, PRUSA K J, et al. Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax[J]. Meat Science,2018,145:352−362. doi: 10.1016/j.meatsci.2018.07.012
    [11]
    OKONKWO C E, OFOEDU C E, HUSSAIN S Z, et al. Application of biogels for bioactives delivery:Recent developments and future research insights[J]. Applied Food Research,2022,2(2):100238. doi: 10.1016/j.afres.2022.100238
    [12]
    SCHOLTEN E. Edible oleogels:How suitable are proteins as a structurant?[J]. Current Opinion in Food Science,2019,27:36−42. doi: 10.1016/j.cofs.2019.05.001
    [13]
    曹振宇, 刘泽龙, 张慧娟. 食用植物油脂凝胶化技术研究进展[J]. 中国油脂,2019,44(8):57−64. [CAO Z Y, LIU Z L, ZHANG H J. Advance in technology of edible vegetable oil-gelling[J]. China Oils and Fats,2019,44(8):57−64.]

    CAO Z Y, LIU Z L, ZHANG H J. Advance in technology of edible vegetable oil-gelling[J]. China Oils and Fats, 2019, 44(8): 57−64.
    [14]
    PATEL A R, SCHATTEMAN D, LESAFFER A, et al. Foam-templated approach for fabricating organogels using a water-soluble polymer[J]. RSC Advances,2013,3(45):22900−22903. doi: 10.1039/C3RA44763D
    [15]
    PATEL A R, DEWETTINCK K. Comparative evaluation of structured oil systems:Shellac oleogel, HPMC oleogel, and HIPE gel[J]. European Journal of Lipid Science and Technology,2013,117:1772−1781.
    [16]
    WEI F L, LU M W, LI J Z, et al. Construction of foam-templated oleogels based on rice bran protein[J]. Food Hydrocolloids,2022,124:107245. doi: 10.1016/j.foodhyd.2021.107245
    [17]
    MARYAM A, SAYED A, HOSSEIN G, et al. Physicochemical properties of foam-templated oleogel based on gelatin and xanthan gum[J]. European Journal of Lipid Science and Technology,2020,122:1900196. doi: 10.1002/ejlt.201900196
    [18]
    张立娟, 孔保华, 刘骞. 环境条件对猪血浆蛋白功能性质影响的研究[J]. 食品科学,2009,30(11):37−42. [ZHANG L J, KONG B H, LIU Q. Effect of environmental conditions on functional properties of porcine plasma protein[J]. Food Science,2009,30(11):37−42.] doi: 10.3321/j.issn:1002-6630.2009.11.007

    ZHANG L J, KONG B H, LIU Q. Effect of environmental conditions on functional properties of porcine plasma protein[J]. Food Science, 2009, 30(11): 37−42. doi: 10.3321/j.issn:1002-6630.2009.11.007
    [19]
    SINGHVI G, HANS N, SHIVA N, et al. Natural polysaccharides in drug delivery and biomedical applications[M]. Academic Press,2019:121-144.
    [20]
    GUO J J, ZHOU Y H, YANG K, et al. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins[J]. Food Chemistry,2019,274:775−781. doi: 10.1016/j.foodchem.2018.09.028
    [21]
    WANG J, ZHAO D, SHANG K, et al. Ultrasoft gelatin aerogels for oil contaminant removal[J]. Journal of Materials Chemistry,2016,4(24):9381−9389. doi: 10.1039/C6TA03146C
    [22]
    JIANG Q B, DU L Y, LI S Y, et al. Polysaccharide-stabilized aqueous foams to fabricate highly oil-absorbing cryogels:Application and formation process for preparation of edible oleogels[J]. Food Hydrocolloids,2021,120:106901. doi: 10.1016/j.foodhyd.2021.106901
    [23]
    MOSQUERA M J, RIVAS T, PRIETO B, et al. Capillary rise in granitic rocks:Interpretation of kinetics on the basis of pore structure[J]. Journal of Colloid and Interface Science,2000,222(1):41−45. doi: 10.1006/jcis.1999.6612
    [24]
    FAYAZ G, GOLI S A H, KADIVAR M. A novel propolis wax-based organogel:Effect of oil type on its formation, crystal structure and thermal properties[J]. Journal of the American Oil Chemists Society,2016,94(1):47−55.
    [25]
    PHOON P Y, HENRY C J. Fibre-based oleogel:Effect of the structure of insoluble fibre on its physical properties[J]. Food and Function,2020,11:1349−1361. doi: 10.1039/C9FO02431J
    [26]
    BRITO O T C, BISPO M, MORAES I, et al. Stability of curcumin encapsulated in solid lipid microparticles incorporated in cold-set emulsion filled gels of soy protein isolate and xanthan gum[J]. Food Research International,2017,102:759−767. doi: 10.1016/j.foodres.2017.09.071
    [27]
    黄飞飞, 张孝, 何小龙, 等. 改性羟丙基瓜尔胶/表面活性剂复合压裂液[J]. 精细化工,2020,37(11):2356−2362. [HUANG F F, ZHANG X, HE X L, et al. Modified hydroxypropyl guar/surfactant based fracturing fluid[J]. Fine Chemicals,2020,37(11):2356−2362.]

    HUANG F F, ZHANG X, HE X L, et al. Modified hydroxypropyl guar/surfactant based fracturing fluid[J]. Fine Chemicals, 2020, 37(11): 2356−2362.
    [28]
    LONG Z, ZHAO M M, ZHAO Q Z, et al. Effect of homogenization and storage time on surface and rheology properties of whipping cream[J]. Food Chemistry,2012,131:748−753. doi: 10.1016/j.foodchem.2011.09.028
    [29]
    WYATT N B, LIBERATORE M W. Rheology and viscosity scaling of the polyelectrolyte xanthan gum[J]. Journal of Applied Polymer Science,2009,114(6):4076−4084. doi: 10.1002/app.31093
    [30]
    CROGUENNEC T, RENAULT A, BEAUFILS S, et al. Interfacial properties of heat-treated ovalbumin[J]. Journal of Colloid and Interface Science,2007,315:627−636. doi: 10.1016/j.jcis.2007.07.041
    [31]
    JEON S, HEINZ U. Introduction to hydrodynamics[J]. International Journal of Modern Physics E,2015,24(10):1530010. doi: 10.1142/S0218301315300106
    [32]
    MURRAY B S, ETTELAIE R. Foam stability:Proteins and nanoparticles[J]. Current Opinion in Colloid & Interface Science,2004,9(5):314−320.
    [33]
    MORENO S Á, MADDALENA T, FRATERS A, et al. Coalescence of diffusively growing gas bubbles[J]. Journal of Fluid Mechanics,2018,846:143−165. doi: 10.1017/jfm.2018.277
    [34]
    DENKOV N, TCHOLAKOVA S, CHOLAKOVA D. Surface phase transitions in foams and emulsions[J]. Current Opinion in Colloid & Interface Science,2019,44:32−47.
    [35]
    MEMIC A, COLOMBANI T, EGGERMONT L J, et al. Latest advances in cryogel technology for biomedical applications[J]. Advanced Therapeutics, 2019, 2(4):12-17.
    [36]
    JABERI R, NIA A P, NAJI-TABASI S, et al. M. heological and structural properties of oleogel base on soluble complex of egg white protein and xanthan gum[J]. Journal of Texture Studies,2020,51(6):925−936. doi: 10.1111/jtxs.12552
    [37]
    赵振国. 吸附作用应用原理[M]. 北京:化学工业出版社, 2005. [ZHAO Z G. Application principle of adsorption[M]. Beijing:Chemical Industry Press,2005.]

    ZHAO Z G. Application principle of adsorption[M]. Beijing: Chemical Industry Press, 2005.
    [38]
    KHOSRAVI M, AZIZIAN S. A new kinetic model for absorption of oil spill by porous materials[J]. Microporous and Mesoporous Materials,2016,230:25−29. doi: 10.1016/j.micromeso.2016.04.039
    [39]
    BAL K, FAN J, SARKAR M K, et al. Differential spontaneous capillary flow through heterogeneous porous media[J]. International Journal of Heat and Mass Transfer,2011,54(13-14):3096−3099. doi: 10.1016/j.ijheatmasstransfer.2011.02.048
    [40]
    TALIMI V, THODI P, ABDI M A, et al. Enhancing harsh environment oil spill recovery using air floatation system[J]. Safety in Extreme Environments:People, Risk and Security,2020,2(2):27−37.
    [41]
    史宝萍, 王迎春, 逯宝娣, 等. 几种有机液体粘度与温度关系的研究[J]. 太原科技大学学报,2007,28(6):500−503. [SHI B P, WANG Y C, LU B D, et al. Coupled numerical simulation of flow field and temperature field for molten steel in beam blank continuous casting mold[J]. Journal of Taiyuan University of Science and Technology,2007,28(6):500−503.] doi: 10.3969/j.issn.1673-2057.2007.06.019

    SHI B P, WANG Y C, LU B D, et al. Coupled numerical simulation of flow field and temperature field for molten steel in beam blank continuous casting mold[J]. Journal of Taiyuan University of Science and Technology, 2007, 28(6): 500−503. doi: 10.3969/j.issn.1673-2057.2007.06.019
    [42]
    LI X F, GUO G S, ZOU Y X, et al. Development and characterization of walnut oleogels structured by cellulose nanofiber[J]. Food Hydrocolloids,2023,142:108849. doi: 10.1016/j.foodhyd.2023.108849
    [43]
    LI M, XIA Y, WANG L Q. The application of PLM and RM in the pigment identification analysis on the polychrome relics[J]. The Journal of Light Scattering,2013,25(3):268−275.
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. 贾润琪,唐玉杰,何伟炜,宋萧萧,殷军艺. 抗坏血酸在黄原胶体系中的降解动力学. 食品工业科技. 2025(03): 151-158 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (76) PDF downloads (29) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return