Citation: | WU Cunhui, QIN Zhiyang, ZHANG Haizhi. Colorimetric Biosensor Based on Fe-HHTP@ZIF-8 for the Detection of Total Antioxidant Capacity in Beverages[J]. Science and Technology of Food Industry, 2024, 45(17): 327−335. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090323. |
[1] |
HONG C, CHEN L, HUANG J, et al. Gold nanoparticle-decorated MoSe2 nanosheets as highly effective peroxidase-like nanozymes for total antioxidant capacity assay[J]. Nano Research,2023,16(5):7180−7186. doi: 10.1007/s12274-022-5328-9
|
[2] |
WANG X, WEI G, LIU W, et al. Platinum-nickel nanoparticles with enhanced oxidase-like activity for total antioxidant capacity bioassay[J]. Analytical Chemistry,2023,95(14):5937−5945. doi: 10.1021/acs.analchem.2c05425
|
[3] |
PENG L J, ZHANG C Y, ZHANG W Y, et al. The peroxidase-like catalytic activity of in situ prepared cobalt carbonate and its applications in colorimetric detection of hydrogen peroxide, glucose and ascorbic acid[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,651:129744.
|
[4] |
朱碧宁. 高效液相色谱电化学发光法检测抗坏血酸的效果研究[J]. 山西化工,2019,39(3):50−51,58. [ZHU B N. Study on the determination of ascorbic acid by high performance liquid chromatography electrochemiluminescence[J]. Shanxi Chemical Industry,2019,39(3):50−51,58.]
ZHU B N. Study on the determination of ascorbic acid by high performance liquid chromatography electrochemiluminescence[J]. Shanxi Chemical Industry, 2019, 39(3): 50−51,58.
|
[5] |
沈海波, 张连钢, 周鑫魁, 等. 基于高灵敏度荧光衍生剂的痕量维生素C液相检测方法建立[J]. 食品工业科技,2020,41(23):272−276,283. [SHEN H B, ZHANG L G, ZHOU X K, et al. A HPLC method for the determination of trace vitamin C based on high sensitivity fluorescent derivatives was established[J]. Science and Technology of Food Industry,2020,41(23):272−276,283.]
SHEN H B, ZHANG L G, ZHOU X K, et al. A HPLC method for the determination of trace vitamin C based on high sensitivity fluorescent derivatives was established[J]. Science and Technology of Food Industry, 2020, 41(23): 272−276,283.
|
[6] |
贾宝珠, 蔡美玲, 邱芷靖, 等. 基于CoOOH纳米片氧化酶活性的比率荧光传感器检测抗坏血酸[J]. 食品工业科技,2022,43(8):273−280. [JIA B Z, CAI M L, QIU Z J, et al. A ratio fluorescence sensor based on oxidase activity of CoOOH nanosheets for the detection of ascorbic acid[J]. Science and Technology of Food Industry,2022,43(8):273−280.]
JIA B Z, CAI M L, QIU Z J, et al. A ratio fluorescence sensor based on oxidase activity of CoOOH nanosheets for the detection of ascorbic acid[J]. Science and Technology of Food Industry, 2022, 43(8): 273−280.
|
[7] |
PENG J, LING J, ZHANG X Q, et al. A rapid, sensitive and selective colorimetric method for detection of ascorbic acid[J]. Sensors and Actuators B:Chemical,2015,221:708−716. doi: 10.1016/j.snb.2015.07.002
|
[8] |
WEI H, WANG E. Nanomaterials with enzyme-like characteristics (nanozymes):Next-generation artificial enzymes[J]. Chemical Society Reviews,2013,42(14):6060−6093. doi: 10.1039/c3cs35486e
|
[9] |
LIU B, LIU J. Surface modification of nanozymes[J]. Nano Research,2017,10:1125−1148. doi: 10.1007/s12274-017-1426-5
|
[10] |
CHEN Y, JIAO L, YAN H, et al. Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing[J]. Analytical Chemistry,2020,92(19):13518−13524. doi: 10.1021/acs.analchem.0c02982
|
[11] |
LI S, KEOINGTHONG P, XU J, et al. Highly efficient carbon supported Co-Ir nanozyme for the determination of total antioxidant capacity in foods[J]. Biosensors and Bioelectronics,2023,236:115416. doi: 10.1016/j.bios.2023.115416
|
[12] |
HAN X, LIU L, GONG H, et al. Dextran-stabilized Fe-Mn bimetallic oxidase-like nanozyme for total antioxidant capacity assay of fruit and vegetable food[J]. Food Chemistry,2022,371:131115. doi: 10.1016/j.foodchem.2021.131115
|
[13] |
LIANG N, GE X, ZHAO Y, et al. Promoting sensitive colorimetric detection of hydroquinone and Hg2+ via ZIF-8 dispersion enhanced oxidase-mimicking activity of MnO2 nanozyme[J]. Journal of Hazardous Materials,2023,454:131455. doi: 10.1016/j.jhazmat.2023.131455
|
[14] |
LIU J, YUAN Y, CHENG Y, et al. Copper-based metal-organic framework overcomes cancer chemoresistance through systemically disrupting dynamically balanced cellular redox homeostasis[J]. Journal of the American Chemical Society,2022,144(11):4799−4809. doi: 10.1021/jacs.1c11856
|
[15] |
KEUM C, PARK S, LEE S Y. Cancer-cell imaging using copper-doped zeolite imidazole framework-8 nanocrystals exhibiting oxidative catalytic activity[J]. Chemistry-An Asian Journal,2018,13(18):2641−2648. doi: 10.1002/asia.201800749
|
[16] |
GUO D, LI C, LIU G, et al. Oxidase mimetic activity of a metalloporphyrin-containing porous organic polymer and its applications for colorimetric detection of both ascorbic acid and glutathione[J]. ACS Sustainable Chemistry & Engineering,2021,9(15):5412−5421.
|
[17] |
周晨雨, 房琦, 张玉, 等. 基于Au@Pt纳米粒子-双亲性气凝胶的模拟酶可视化检测抗坏血酸[J]. 分析化学,2021,49(6):982−991. [ZHOU C Y, FANG Q, ZHANG Y, et al. Visual detection of ascorbic acid by simulated enzyme based on Au@Pt nanoparticle parental aerogel[J]. Analytical Chemistry,2021,49(6):982−991.]
ZHOU C Y, FANG Q, ZHANG Y, et al. Visual detection of ascorbic acid by simulated enzyme based on Au@Pt nanoparticle parental aerogel[J]. Analytical Chemistry, 2021, 49(6): 982−991.
|
[18] |
ZHU H, LIU B, WANG M, et al. Amorphous Fe-containing phosphotungstates featuring efficient peroxidase-like activity at neutral pH:Toward portable swabs for pesticide detection with tandem catalytic amplification[J]. Analytical Chemistry,2023,95(10):4776−4785. doi: 10.1021/acs.analchem.3c00008
|
[19] |
ZHANG D, LIU J, DU P, et al. Cross-linked surface engineering to improve iron porphyrin catalytic activity[J]. Small,2020,16(17):1905889. doi: 10.1002/smll.201905889
|
[20] |
ZHANG H Z, WU H Y, QIN X G, et al. Metalloporphyrin and gold nanoparticles modified hollow zeolite imidazole Framework-8 with excellent peroxidase like activity for quick colorimetric determination of choline in infant formula milk powder[J]. Food Chemistry,2022,384:132552. doi: 10.1016/j.foodchem.2022.132552
|
[21] |
YANG H Y, SUN Z P, QIN X G, et al. Ultrasmall Au nanoparticles modified 2D metalloporphyrinic metal-organic framework nanosheets with high peroxidase-like activity for colorimetric detection of organophosphorus pesticides[J]. Food Chemistry,2022,376:131906. doi: 10.1016/j.foodchem.2021.131906
|
[22] |
WU H Y, XU Z L, XIONG D N, et al. Two dimensional iron metal-organic framework nanosheet with peroxidase-mimicking activity for colorimetric detection of hypoxanthine related to shrimp freshness[J]. Talanta,2023:124833.
|
[23] |
RAINERI M, WINKLER E L, TORRES T E, et al. Effects of biological buffer solutions on the peroxidase-like catalytic activity of Fe3O4 nanoparticles[J]. Nanoscale,2019,11(39):18393−18406. doi: 10.1039/C9NR05799D
|
[24] |
YANG W, YANG X, ZHU L, et al. Nanozymes:Activity origin, catalytic mechanism, and biological application[J]. Coordination Chemistry Reviews,2021,448:214170. doi: 10.1016/j.ccr.2021.214170
|
[25] |
GUO L, LIANG M, WANG X, et al. The role of L-histidine as molecular tongs:A strategy of grasping Tb3+ using ZIF-8 to design sensors for monitoring an anthrax biomarker on-the-spot[J]. Chemical Science,2020,11(9):2407−2413. doi: 10.1039/D0SC00030B
|
[26] |
ZHANG Y, WANG F, LIU C, et al. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy[J]. ACS Nano,2018,12(1):651−661. doi: 10.1021/acsnano.7b07746
|
[27] |
KONG J, ZHENG J, LI Z, et al. One-pot synthesis of AuAgPd trimetallic nanoparticles with peroxidase-like activity for colorimetric assays[J]. Analytical and Bioanalytical Chemistry,2021,413:5383−5393. doi: 10.1007/s00216-021-03514-1
|
[28] |
GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature nanotechnology,2007,2(9):577−583. doi: 10.1038/nnano.2007.260
|
[29] |
WANG S, XU D, MA L, et al. Ultrathin ZIF-67 nanosheets as a colorimetric biosensing platform for peroxidase-like catalysis[J]. Analytical and Bioanalytical Chemistry,2018,410:7145−7152. doi: 10.1007/s00216-018-1317-y
|
[30] |
YU H, WU H, TIAN X, et al. A nano-sized Cu-MOF with high peroxidase-like activity and its potential application in colorimetric detection of H2O2 and glucose[J]. RSC Advances,2021,11(43):26963−26973. doi: 10.1039/D1RA04877E
|
[31] |
LÜ J, ZHANG C, WANG S, et al. MOF-derived porous ZnO-Co3O4 nanocages as peroxidase mimics for colorimetric detection of copper(ii) ions in serum[J]. Analyst,2021,146(2):605−611. doi: 10.1039/D0AN01383H
|
[32] |
GE K, SUN S, ZHAO Y, et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition,2021,60(21):12097−12102. doi: 10.1002/anie.202102632
|
[33] |
WANG Y, ZHAO M, PING J, et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes[J]. Advanced Materials,2016,28(21):4149−4155. doi: 10.1002/adma.201600108
|
[34] |
UZUNOGLU D, ÖZER A. Facile synthesis of magnetic iron-based nanoparticles from the leach solution of hyperaccumulator plant pinus brutia for the antibacterial activity and colorimetric detection of ascorbic acid[J]. ACS Applied Bio Materials,2022,5(11):5465−5476. doi: 10.1021/acsabm.2c00782
|
[35] |
王若男, 孟佩俊, 李淑荣, 等. 纳米二氧化铈/石墨烯传感器的构建及其对饮品中抗坏血酸的检测[J]. 现代化工,2023,43(8):236−240,245. [WANG R N, MENG P J, LI S R, et al. Construction of nano-cerium dioxide/graphene sensor and its detection of ascorbic acid in drinks[J]. Modern Chemical Industry,2023,43(8):236−240,245.]
WANG R N, MENG P J, LI S R, et al. Construction of nano-cerium dioxide/graphene sensor and its detection of ascorbic acid in drinks[J]. Modern Chemical Industry, 2023, 43(8): 236−240,245.
|
[36] |
KEELEY G P, O'NEILL A, MCEVOY N, et al. Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene[J]. Journal of Materials Chemistry,2010,20(36):7864−7869. doi: 10.1039/c0jm01527j
|
[37] |
YANG L, LIU D, HUANG J, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode[J]. Sensors and Actuators B:Chemical,2014,193:166−172. doi: 10.1016/j.snb.2013.11.104
|
[38] |
WANG C, DU J, WANG H, et al. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid[J]. Sensors and Actuators B:Chemical,2014,204:302−309. doi: 10.1016/j.snb.2014.07.077
|
[1] | GAO Jingyao, LÜ Xinmeng, ZHOU Zhi, XIONG Guangquan, WANG Lan, WU Wenjin, SHI Liu, LIU Bin, HUANG Yun, ZHONG Xuefen, QIAN Leiming. Research Progress on the Application of Non-thermophysical Technology and Natural Antibacterial Agents on the Preservation of Chilled Livestock and Poultry Meat Products[J]. Science and Technology of Food Industry, 2025, 46(7): 405-414. DOI: 10.13386/j.issn1002-0306.2024040140 |
[2] | WANG Erlei, HUANG Jiaying, DUAN Haizhang, XU Caina. Progress on the Stabilization Technology of Anthocyanins and the Application Prospects[J]. Science and Technology of Food Industry, 2024, 45(18): 394-403. DOI: 10.13386/j.issn1002-0306.2023100250 |
[3] | YANG Yi, JIANG Baojie, WANG Zhen, LI Li, WANG Xin, SUN Jilu, SHAO Juanjuan. Research Progress on Biological Activity and Application of Marine Animal Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(16): 418-424. DOI: 10.13386/j.issn1002-0306.2023090217 |
[4] | YOU Xiaopeng, CHEN Zhixian. Nutrients, Functions and Application Prospects of Yeast Protein in Sports Nutrition Foods[J]. Science and Technology of Food Industry, 2024, 45(8): 366-371. DOI: 10.13386/j.issn1002-0306.2023050169 |
[5] | JIANG Xiaochen, HUO Yingjiao, DONG Shiyuan. Research Progress in the Application of High Voltage Electrostatic Technology in Meat, Fruit, and Vegetable Preservation[J]. Science and Technology of Food Industry, 2023, 44(17): 447-453. DOI: 10.13386/j.issn1002-0306.2022110063 |
[6] | DONG Juncen, GAO Sunan, CHEN Jianchu. Application Progress and Prospect of Light-emitting Diode Light Technology in Food Preservation[J]. Science and Technology of Food Industry, 2021, 42(16): 374-380. DOI: 10.13386/j.issn1002-0306.2020080116 |
[7] | TANG Min-min, WANG Hong-yi, LIU Fang, ZHU Yong-zhi, WANG Dao-ying, XU Wei-min, SUN Zhi-lan. Mechanism of Nano-embedding Technology of Plant Essential Oil and Its Application in Meat Preservation[J]. Science and Technology of Food Industry, 2020, 41(21): 345-350. DOI: 10.13386/j.issn1002-0306.2020020013 |
[8] | WANG Yan-sheng, ZHAI Xia-qiu, ZHENG Xiao-guang, GONG Zhi-qing, CUI Wen-jia, JIA Feng-juan, WANG Wen-liang. Application Prospects and Research Hotspots of Edible Fungi Proteins[J]. Science and Technology of Food Industry, 2019, 40(10): 339-344. DOI: 10.13386/j.issn1002-0306.2019.10.055 |
[9] | XU Li-jing, GAO Li-pu, WANG Qing, ZUO Jin-hua. The application of the irradiation technology in Agaricus bisporus preservation[J]. Science and Technology of Food Industry, 2014, (09): 392-395. DOI: 10.13386/j.issn1002-0306.2014.09.078 |
[10] | WANG Li-ming, MA Ning, LI Song, WANG Chun-ling, LIU Jing-xin. Nutritional properties of quinoa and its application prospects[J]. Science and Technology of Food Industry, 2014, (01): 381-384. DOI: 10.13386/j.issn1002-0306.2014.01.007 |