Citation: | BAI Xiaoxuan, ZHANG Jifeng, LI Jing, et al. Advance on Transcription Factors Regulating the Synthesis of Secondary Metabolites Mediated by NRPS in Filamentous Fungi[J]. Science and Technology of Food Industry, 2024, 45(17): 445−453. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090317. |
[1] |
NARANJO-ORTIZ M A, GABALDÓN T. Fungal evolution:Diversity, taxonomy and phylogeny of the Fungi[J]. Fungal Biology Reviews,2019,94:2101−2137.
|
[2] |
KELLER N P. Fungal secondary metabolism:regulation, function and drug discovery[J]. Nat Rev Microbiol,2019,17(3):167−180. doi: 10.1038/s41579-018-0121-1
|
[3] |
VASSAUX A, MEUNIER L, VANDENBOL M, et al. Nonribosomal peptides in fungal cell factories:From genome mining to optimized heterologous production[J]. Biotechnol Adv,2019,37(8):107449. doi: 10.1016/j.biotechadv.2019.107449
|
[4] |
PATEL K D, MACDONALD M R, AHMED S F, et al. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases[J]. Nat Prod Rep,2023,51:1521.
|
[5] |
SCHERLACH K, HERTWECK C. Mining and unearthing hidden biosynthetic potential[J]. Nat Commun,2021,12:3864. doi: 10.1038/s41467-021-24133-5
|
[6] |
RUTLEDGE P J, CHALLIS G L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nat Rev Microbiol,2015,13(8):509−523. doi: 10.1038/nrmicro3496
|
[7] |
MIYANAGA A, KUDO F, EGUCHI T. Protein-protein interactions in polyketide synthase-nonribosomal peptide synthetase hybrid assembly lines[J]. Nat Prod Rep,2018,35(11):1185−1209. doi: 10.1039/C8NP00022K
|
[8] |
BRAKHAGE A A. Regulation of fungal secondary metabolism[J]. Nat Rev Microbiol,2013,11(1):21−32. doi: 10.1038/nrmicro2916
|
[9] |
LYU H N, LIU H W, KELLER N P, et al. Harnessing diverse transcriptional regulators for natural product discovery in fungi[J]. Nat Prod Rep,2020,37(1):6−16. doi: 10.1039/C8NP00027A
|
[10] |
WANG W J, YU Y C, KELLER N P, et al. Presence, mode of action, and application of pathway specific transcription factors in Aspergillus biosynthetic gene clusters[J]. Int J Mol Sci,2021,22(16):8709. doi: 10.3390/ijms22168709
|
[11] |
WALSH C T, O'BRIEN R V, KHOSLA C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds[J]. Angew Chem Int Ed,2013,52:7098−7124. doi: 10.1002/anie.201208344
|
[12] |
SÜSSMUTH R D, MAINZ A. Nonribosomal peptide synthesis-principles and prospects[J]. Angew Chem Int Ed,2017,56(14):3770−3821. doi: 10.1002/anie.201609079
|
[13] |
YANG X Q, FENG P, YIN Y, et al. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment[J]. mBio,2018,9(5):e01211−18.
|
[14] |
WANG G, LIU Z G, LIN R M, et al. Biosynthesis of antibiotic leucinostatins in bio-control fungus Purpureocillium lilacinum and their inhibition on phytophthora revealed by genome mining[J]. PLoS Pathog,2016,12(7):e1005685. doi: 10.1371/journal.ppat.1005685
|
[15] |
JIN J M, LEE S, LEE J, et al. Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum[J]. Mol Microbiol,2010,76(2):456−466. doi: 10.1111/j.1365-2958.2010.07109.x
|
[16] |
NIEHAUS E M, JANEVSKA S, VON BARGEN K W, et al. Apicidin F:Characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi[J]. PLoS One,2014,9(7):e103336. doi: 10.1371/journal.pone.0103336
|
[17] |
JIA L J, TANG H Y, WANG W Q, et al. A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat[J]. Nat Commun,2019,10(1):922. doi: 10.1038/s41467-019-08726-9
|
[18] |
BAHADOOR A, BRAUER E K, BOSNICH W, et al. Gramillin A and B:Cyclic lipopeptides identified as the nonribosomal biosynthetic products of Fusarium graminearum[J]. J Am Chem Soc,2018,140(48):16783−16791. doi: 10.1021/jacs.8b10017
|
[19] |
杨晓钰, 何佳宁, 牛雪梅. 真菌中PKS-NRPS杂合天然产物研究进展[J]. 中国科学:生命科学,2019,49(7):848−864. [YANG X Y, HE J N, NIU X M. Research progress on fungal PKS-NRPS hybrid metabolites[J]. Scientia Sinica (Vitae),2019,49(7):848−864.] doi: 10.1360/SSV-2019-0105
YANG X Y, HE J N, NIU X M. Research progress on fungal PKS-NRPS hybrid metabolites[J]. Scientia Sinica (Vitae), 2019, 49(7): 848−864. doi: 10.1360/SSV-2019-0105
|
[20] |
PANG G, SUN T T, DING M Y, et al. Characterization of an exceptional fungal mutant enables the discovery of the specific regulator of a silent PKS-NRPS hybrid biosynthetic pathway[J]. J Agric Food Chem,2022,70(37):11769−11781. doi: 10.1021/acs.jafc.2c03550
|
[21] |
JANEVSKA S, ARNDT B, BAUMANN L, et al. Establishment of the inducible tet-on system for the activation of the silent trichosetin gene cluster in Fusarium fujikuroi[J]. Toxins (Basel),2017,9(4):126. doi: 10.3390/toxins9040126
|
[22] |
CHENG J T, WANG H M, YU J H, et al. Discovery of a potential liver fibrosis inhibitor from a mushroom endophytic fungus by genome mining of a silent biosynthetic gene cluster[J]. J Agric Food Chem,2021,69(38):11303−11310. doi: 10.1021/acs.jafc.1c03639
|
[23] |
LI H, WEI H C, HU J Y, et al. Genomics-driven discovery of phytotoxic cytochalasans involved in the virulence of the wheat pathogen Parastagonospora nodorum[J]. ACS Chem Biol,2020,15(1):226−233. doi: 10.1021/acschembio.9b00791
|
[24] |
CHENG M, ZHAO S S, LIU H, et al. Functional analysis of a chaetoglobosin A biosynthetic regulator in Chaetomium globosum[J]. Fungal Biol,2021,125(3):201−210. doi: 10.1016/j.funbio.2020.10.010
|
[25] |
CARY J W, UKA V, HAN Z, et al. An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins[J]. Fungal Genet Biol,2015,81:88−97. doi: 10.1016/j.fgb.2015.05.010
|
[26] |
CHEN B, SUN Y L, LI S Q, et al. Inductive production of the iron-chelating 2-pyridones benefits the producing fungus to compete for diverse niches[J]. mBio,2021,12(6):e327921.
|
[27] |
SUN Y L, CHEN B, LI X L, et al. Orchestrated biosynthesis of the secondary metabolite cocktails enables the producing fungus to combat diverse bacteria[J]. mBio,2022,13(5):e180022.
|
[28] |
TANG S, ZHANG W, LI Z M, et al. Discovery and characterization of a PKS-NRPS hybrid in Aspergillus terreus by genome mining[J]. J Nat Prod,2020,83(2):473−480. doi: 10.1021/acs.jnatprod.9b01140
|
[29] |
HUANG X N, ZHANG W, TANG S, et al. Collaborative biosynthesis of a class of bioactive azaphilones by two separate gene clusters containing four PKS/NRPSs with transcriptional crosstalk in fungi[J]. Angew Chem Int Ed Engl,2020,59(11):4349−4353. doi: 10.1002/anie.201915514
|
[30] |
YAO G S, BAI X F, ZHANG B X, et al. Enhanced production of terrein in marine-derived Aspergillus terreus by refactoring both global and pathway-specific transcription factors[J]. Microb Cell Fact,2022,21(1):136. doi: 10.1186/s12934-022-01859-5
|
[31] |
HAUTBERGUE T, JAMIN E L, DEBRAUWER L, et al. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites[J]. Nat Prod Rep,2018,35(2):147−173. doi: 10.1039/C7NP00032D
|
[32] |
SHOSTAK K, BONNER C, SPROULE A, et al. Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum[J]. Mol Microbiol,2020,114(4):664−680. doi: 10.1111/mmi.14575
|
[33] |
RÖSLER S M, SIEBER C M, HUMPF H U, et al. Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi[J]. Appl Microbiol Biotechnol,2016,100(13):5869−5882. doi: 10.1007/s00253-016-7426-7
|
[34] |
BARDA O, MAOR U, SADHASIVAM S, et al. The pH-responsive transcription factor PacC governs pathogenicity and ochratoxin A biosynthesis in Aspergillus carbonarius[J]. Front Microbiol,2020,11:210. doi: 10.3389/fmicb.2020.00210
|
[35] |
MERHEJ J, RICHARD-FORGET F, BARREAU C. The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum[J]. Fungal Genet Biol,2011,48(3):275−284. doi: 10.1016/j.fgb.2010.11.008
|
[36] |
WANG B, HAN Z H, GONG D, et al. The pH signalling transcription factor PacC modulate growth, development, stress response and pathogenicity of Trichothecium roseum[J]. Environ Microbiol,2022,24(3):1608−1621. doi: 10.1111/1462-2920.15943
|
[37] |
ZEHETBAUER F, SEIDL A, BERGER H, et al. RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans[J]. Fungal Genet Biol,2022,162:103726. doi: 10.1016/j.fgb.2022.103726
|
[38] |
RIES L, ALVES D C P, PEREIRA S L, et al. Aspergillus fumigatus acetate utilization impacts virulence traits and pathogenicity[J]. mBio,2021,12(4):e168221.
|
[39] |
HOU R, JIANG C, ZHENG Q, et al. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum[J]. Mol Plant Pathol,2015,16(9):987−999. doi: 10.1111/mpp.12254
|
[40] |
YU Z Z, GAO J, IGBALAJOBI O, et al. The sulfur metabolism regulator MetR is a global regulator controlling phytochrome-dependent light responses in Aspergillus nidulans[J]. Sci Bull (Beijing),2021,66(6):592−602. doi: 10.1016/j.scib.2020.11.001
|
[41] |
ZHANG G, YAN P, LENG D D, et al. Functional roles of LaeA-like genes in fungal growth, cellulase activity, and secondary metabolism in Pleurotus ostreatus[J]. J Fungi (Basel),2022,8(9):902. doi: 10.3390/jof8090902
|
[42] |
WEI Z, SHU D, SUN Q, et al. The BcLAE1 is involved in the regulation of ABA biosynthesis in Botrytis cinerea TB-31[J]. Front Microbiol,2022,13:969499. doi: 10.3389/fmicb.2022.969499
|
[43] |
REYES-DOMINGUEZ Y, BOK J W, BERGER H, et al. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans[J]. Mol Microbiol,2010,76(6):1376−1386. doi: 10.1111/j.1365-2958.2010.07051.x
|
[44] |
HUANG R L, DING R R, LIU Y, et al. GATA transcription factor WC2 regulates the biosynthesis of astaxanthin in yeast Xanthophyllomyces dendrorhous[J]. Microb Biotechnol,2022,15(10):2578−2593. doi: 10.1111/1751-7915.14115
|
[45] |
DUSSART F, DOUGLAS R, SJÖKVIST E, et al. Genome-based discovery of polyketide-derived secondary metabolism pathways in the barley pathogen Ramularia collo-cygni[J]. Mol Plant Microbe Interact,2018,31(9):962−975. doi: 10.1094/MPMI-12-17-0299-R
|
[46] |
PERRIN R M, FEDOROVA N D, BOK J W, et al. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA[J]. PLoS Pathog,2007,3(4):e50. doi: 10.1371/journal.ppat.0030050
|
[47] |
FENG Y Q, YIN Z Y, WU Y X, et al. LaeA controls virulence and secondary metabolism in apple canker pathogen Valsa mali[J]. Front Microbiol,2020,11:581203. doi: 10.3389/fmicb.2020.581203
|
[48] |
WANG K, CHI Z, LIU G L, et al. A novel PMA synthetase is the key enzyme for polymalate biosynthesis and its gene is regulated by a calcium signaling pathway in Aureobasidium melanogenum ATCC62921[J]. Int J Biol Macromol,2020,156:1053−1063. doi: 10.1016/j.ijbiomac.2019.11.188
|
[49] |
QI C Y, JIA S L, LIU G L, et al. Polymalate (PMA) biosynthesis and its molecular regulation in Aureobasidium spp.[J]. Int J Biol Macromol,2021,174:512−518. doi: 10.1016/j.ijbiomac.2021.02.008
|
[50] |
OAKLEY C E, AHUJA M, SUN W W, et al. Discovery of McrA, a master regulator of Aspergillus secondary metabolism[J]. Mol Microbiol,2017,103(2):347−365. doi: 10.1111/mmi.13562
|
[51] |
GRAU M F, ENTWISTLE R, OAKLEY C E, et al. Overexpression of an LaeA-like methyltransferase upregulates secondary metabolite production in Aspergillus nidulans[J]. ACS Chem Biol,2019,14(7):1643−1651. doi: 10.1021/acschembio.9b00380
|
[52] |
PERLATTI B, LAN N, JIANG Y Y, et al. Identification of secondary metabolites from Aspergillus pachycristatus by untargeted UPLC-ESI-HRMS/MS and genome mining[J]. Molecules,2020,25(4):913. doi: 10.3390/molecules25040913
|
[53] |
GRESSLER M, ZAEHLE C, SCHERLACH K, et al. Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus[J]. Chem Biol,2011,18(2):198−209. doi: 10.1016/j.chembiol.2010.12.011
|
[54] |
GIL-SERNA J, GARCÍA-DÍAZ M, GONZÁLEZ-JAÉN M T, et al. Description of an orthologous cluster of ochratoxin A biosynthetic genes in Aspergillus and Penicillium species. A comparative analysis[J]. Int J Food Microbiol,2018,268:35−43. doi: 10.1016/j.ijfoodmicro.2017.12.028
|
[55] |
WANG G, ZHANG H Y, WANG Y L, et al. Requirement of LaeA, VeA, and VelB on asexual development, ochratoxin A biosynthesis, and fungal virulence in Aspergillus ochraceus[J]. Front Microbiol,2019,10:2759. doi: 10.3389/fmicb.2019.02759
|
[56] |
GERIN D, GARRAPA F, BALLESTER A R, et al. Functional role of Aspergillus carbonarius AcOTAbZIP Gene, a bZIP transcription factor within the OTA gene cluster[J]. Toxins,2021,13(2):111. doi: 10.3390/toxins13020111
|
[57] |
WANG L M, JIN J, LIU X, et al. Effect of cinnamaldehyde on morphological alterations of Aspergillus ochraceus and expression of key genes involved in ochratoxin A biosynthesis[J]. Toxins (Basel),2018,10(9):340. doi: 10.3390/toxins10090340
|
[58] |
CAI X Y, QI J R, XU Z, et al. Three stilbenes make difference to the antifungal effects on ochratoxin A and its precursor production of Aspergillus carbonarius[J]. Food Microbiol,2022,103:103967. doi: 10.1016/j.fm.2021.103967
|
[59] |
WEI S, HU C J, ZHANG Y G, et al. AnAzf1 acts as a positive regulator of ochratoxin A biosynthesis in Aspergillus niger[J]. Appl Microbiol Biotechnol,2023,107(7-8):2501−2514. doi: 10.1007/s00253-023-12404-8
|
[1] | GAO Jingyao, LÜ Xinmeng, ZHOU Zhi, XIONG Guangquan, WANG Lan, WU Wenjin, SHI Liu, LIU Bin, HUANG Yun, ZHONG Xuefen, QIAN Leiming. Research Progress on the Application of Non-thermophysical Technology and Natural Antibacterial Agents on the Preservation of Chilled Livestock and Poultry Meat Products[J]. Science and Technology of Food Industry, 2025, 46(7): 405-414. DOI: 10.13386/j.issn1002-0306.2024040140 |
[2] | WANG Erlei, HUANG Jiaying, DUAN Haizhang, XU Caina. Progress on the Stabilization Technology of Anthocyanins and the Application Prospects[J]. Science and Technology of Food Industry, 2024, 45(18): 394-403. DOI: 10.13386/j.issn1002-0306.2023100250 |
[3] | YANG Yi, JIANG Baojie, WANG Zhen, LI Li, WANG Xin, SUN Jilu, SHAO Juanjuan. Research Progress on Biological Activity and Application of Marine Animal Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(16): 418-424. DOI: 10.13386/j.issn1002-0306.2023090217 |
[4] | YOU Xiaopeng, CHEN Zhixian. Nutrients, Functions and Application Prospects of Yeast Protein in Sports Nutrition Foods[J]. Science and Technology of Food Industry, 2024, 45(8): 366-371. DOI: 10.13386/j.issn1002-0306.2023050169 |
[5] | JIANG Xiaochen, HUO Yingjiao, DONG Shiyuan. Research Progress in the Application of High Voltage Electrostatic Technology in Meat, Fruit, and Vegetable Preservation[J]. Science and Technology of Food Industry, 2023, 44(17): 447-453. DOI: 10.13386/j.issn1002-0306.2022110063 |
[6] | DONG Juncen, GAO Sunan, CHEN Jianchu. Application Progress and Prospect of Light-emitting Diode Light Technology in Food Preservation[J]. Science and Technology of Food Industry, 2021, 42(16): 374-380. DOI: 10.13386/j.issn1002-0306.2020080116 |
[7] | TANG Min-min, WANG Hong-yi, LIU Fang, ZHU Yong-zhi, WANG Dao-ying, XU Wei-min, SUN Zhi-lan. Mechanism of Nano-embedding Technology of Plant Essential Oil and Its Application in Meat Preservation[J]. Science and Technology of Food Industry, 2020, 41(21): 345-350. DOI: 10.13386/j.issn1002-0306.2020020013 |
[8] | WANG Yan-sheng, ZHAI Xia-qiu, ZHENG Xiao-guang, GONG Zhi-qing, CUI Wen-jia, JIA Feng-juan, WANG Wen-liang. Application Prospects and Research Hotspots of Edible Fungi Proteins[J]. Science and Technology of Food Industry, 2019, 40(10): 339-344. DOI: 10.13386/j.issn1002-0306.2019.10.055 |
[9] | XU Li-jing, GAO Li-pu, WANG Qing, ZUO Jin-hua. The application of the irradiation technology in Agaricus bisporus preservation[J]. Science and Technology of Food Industry, 2014, (09): 392-395. DOI: 10.13386/j.issn1002-0306.2014.09.078 |
[10] | WANG Li-ming, MA Ning, LI Song, WANG Chun-ling, LIU Jing-xin. Nutritional properties of quinoa and its application prospects[J]. Science and Technology of Food Industry, 2014, (01): 381-384. DOI: 10.13386/j.issn1002-0306.2014.01.007 |