ZHANG Huijia, HOU Xiangzhu, ZHANG Han, et al. Optimization of Complex Enzyme Extraction Process of Astragalus Polysaccharides and Its α-Glucosidase Inhibitory Activities[J]. Science and Technology of Food Industry, 2024, 45(17): 181−189. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090315.
Citation: ZHANG Huijia, HOU Xiangzhu, ZHANG Han, et al. Optimization of Complex Enzyme Extraction Process of Astragalus Polysaccharides and Its α-Glucosidase Inhibitory Activities[J]. Science and Technology of Food Industry, 2024, 45(17): 181−189. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090315.

Optimization of Complex Enzyme Extraction Process of Astragalus Polysaccharides and Its α-Glucosidase Inhibitory Activities

More Information
  • Received Date: September 27, 2023
  • Available Online: July 07, 2024
  • Objective: To extract Astragalus polysaccharides (APS) from Astragalus membranaceus using compound enzymes (including papain, pectinase and cellulase), and to analyze the effect of process conditions on APS extraction. Methods: Orthogonal experiments were conducted to determine the proportion of compound enzymes. The response surface method was used to optimize the conditions of extracting APS with compound enzymes. The optimal process condition was obtained, and the α-glucosidase-inhibiting effect of APS was evaluated by pNPG method. Results: For 5 g of Astragalus herbs, the optimal ratio of papain, pectinase and cellulase were 88000 U, 65000 U and 6000 U, respectively. The optimal extraction condition was as follows: time of 2.82 h, temperature at 60.34 ℃, pH of 5.11, and solid-liquid ratio of 1:34.46 g/mL. The yield of APS under the optimal condition was up to 22.79%±0.14%. The half-inhibition concentration (IC50) of APS for α-glucosidase was 7.42 μg/mL. Conclusion: The yield of APS by compound enzymes is significantly higher than that by single enzymes, and APS can effectively inhibit the activity of α-glucosidase.
  • [1]
    国家药典委员会. 中华人民共和国药典:一部[M]. 北京:中国医药科技出版社, 2020:315−316. [National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China:Part I[M]. Beijing:China Medical Science and Technology Press, 2020:315−316.]

    National Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China: Part I[M]. Beijing: China Medical Science and Technology Press, 2020: 315−316.
    [2]
    赵佳琛, 王艺涵, 金艳, 等. 经典名方中黄芪的本草考证[J]. 中国实验方剂学杂志,2022,28(10):337−346. [ZHAO J S, WANG Y H, JIN Y, et al. Herbal textual research on Astragali Radix in famous classical formulas[J]. Chinese Journal of Experimental Traditional Medical Formulae,2022,28(10):337−346.]

    ZHAO J S, WANG Y H, JIN Y, et al. Herbal textual research on Astragali Radix in famous classical formulas[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(10): 337−346.
    [3]
    李博, 耿刚. 黄芪的化学成分与药理作用研究进展[J]. 中西医结合研究,2022,14(4):262−264. [LI B, GENG G. Research progress on chemical composition and pharmacological effects of Astragalus[J]. Research of Integrated Traditional Chinese and Western Medicine,2022,14(4):262−264.] doi: 10.3969/j.issn.1674-4616.2022.04.012

    LI B, GENG G. Research progress on chemical composition and pharmacological effects of Astragalus[J]. Research of Integrated Traditional Chinese and Western Medicine, 2022, 14(4): 262−264. doi: 10.3969/j.issn.1674-4616.2022.04.012
    [4]
    HAJAM Y A, RANI R, GANISE S Y, et al. Oxidative stress in human pathology and aging:Molecular mechanisms and perspectives[J]. Cells,2022,11(3):552. doi: 10.3390/cells11030552
    [5]
    TAO X, ZHANG X, FENG F. Astragalus polysaccharide suppresses cell proliferation and invasion by up-regulation of miR-195-5p in non-small cell lung cancer[J]. Biol Pharm Bull,2022,45(5):553−560. doi: 10.1248/bpb.b21-00634
    [6]
    ZHANG R, XU L, AN X, et al. Astragalus polysaccharides attenuate pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition and NK-kappaB pathway activition[J]. Int J Mol Med,2020,46(1):331.
    [7]
    LI C X, LIU Y, ZHANG Y Z, et al. Astragalus polysaccharide:A review of its immunomodulatory effect[J]. Arch Pharm Res,2022,45(6):367−389. doi: 10.1007/s12272-022-01393-3
    [8]
    CHEN K Z, CHEN S, REN J Y, et al. Antidepressant effect of acidic polysaccharides from Poria and their regulation of neurotransmitters and NLRP3 pathway[J]. Zhongguo Zhong Yao Za Zhi,2021,46(19):5088−5095.
    [9]
    GUO Y, CHEN X, GONG P, et al. Advances in the mechanisms of polysaccharides in alleviating depression and its complications[J]. Phytomedicine,2023,109:154566. doi: 10.1016/j.phymed.2022.154566
    [10]
    WANG E, WANG L, DING R, et al. Astragaloside Ⅳ acts through multi-scale mechanisms to effectively reduce diabetic nephropathy[J]. Pharmacol Res,2020,157:104831. doi: 10.1016/j.phrs.2020.104831
    [11]
    丛金凤, 范颖, 李新, 等. 基于AMPK/SREBP1信号通路探究黄芪葛根汤有效组分对糖尿病大鼠脂代谢及炎症反应的作用机制[J]. 中华中医药学刊,2021,39(1):151−154. [CONG J F, FAN Y, LI X, et al. Exploration on mechanism of effective components of Huangqi Gegen decoction affecting lipids metabolism and inflammatory response in diabetic rats based on AMPK/SREBP1 signaling pathway[J]. Chinese Archives of Traditional Chinese Medicine,2021,39(1):151−154.]

    CONG J F, FAN Y, LI X, et al. Exploration on mechanism of effective components of Huangqi Gegen decoction affecting lipids metabolism and inflammatory response in diabetic rats based on AMPK/SREBP1 signaling pathway[J]. Chinese Archives of Traditional Chinese Medicine, 2021, 39(1): 151−154.
    [12]
    DENG S, YANG L, MA K, et al. Astragalus polysaccharide improve the proliferation and insulin secretion of mouse pancreatic β cells induced by high glucose and palmitic acid partially through promoting miR-136-5p and miR-149-5p expression[J]. Bioengineered,2021,12(2):9872−9884. doi: 10.1080/21655979.2021.1996314
    [13]
    杨乾方, 王帆, 叶婷, 等. 黄芪多糖提取工艺、化学结构及药理作用的研究进展[J]. 中草药,2023,54(12):4069−4081. [YANG Q F, WANG F, YE T, et al. Research progress on extraction technology, chemical structure and pharmacological action of Astragalus polysaccharides[J]. Chinese herbal Medicine,2023,54(12):4069−4081.]

    YANG Q F, WANG F, YE T, et al. Research progress on extraction technology, chemical structure and pharmacological action of Astragalus polysaccharides[J]. Chinese herbal Medicine, 2023, 54(12): 4069−4081.
    [14]
    穆飞艳, 麻馨月, 罗辉贤, 等. 黄芪多糖的提取方法、抑菌活性及其在鸡生产中应用的研究进展[J]. 饲料研究,2022,45(14):158−160. [MU F Y, MA X Y, LUO H X, et al. Research progress on extraction method, antibacterial activity and application of Astragalus polysaccharide in chicken production[J]. Feed Research,2022,45(14):158−160.]

    MU F Y, MA X Y, LUO H X, et al. Research progress on extraction method, antibacterial activity and application of Astragalus polysaccharide in chicken production[J]. Feed Research, 2022, 45(14): 158−160.
    [15]
    代香临, 郑启航, 胡楠楠, 等. 超声辅助酶改性典型晶型淀粉的结构及消化特性[J]. 中国食品学报,2023,23(1):78−86. [DAI X L, ZHENG Q H, HU N N, et al. Ultrasound-assisted enzyme modification of the structure and digestion characteristics of typical crystalline starch[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(1):78−86.]

    DAI X L, ZHENG Q H, HU N N, et al. Ultrasound-assisted enzyme modification of the structure and digestion characteristics of typical crystalline starch[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(1): 78−86.
    [16]
    DO D T, LAM D H, NGUYEN T, et al. Utilization of response surface methodology in optimization of polysaccharides extraction from vietnamese red Ganoderma lucidum by ultrasound-assisted enzymatic method and examination of bioactivities of the extract[J]. Scientific World Journal,2021,11:7594092.
    [17]
    项飞兵, 熊天涵, 胡书午, 等. 复合酶法提取九资河茯苓多糖及其抗氧化活性[J]. 食品研究与开发,2022,43(9):118−123. [XIANG B F, XIONG T H, HU S X, et al. Optimization of polysaccharide extraction from Jiuzihe Poria cocos with multiple enzymes and its antioxidant activity[J]. Food Research and Development,2022,43(9):118−123.] doi: 10.12161/j.issn.1005-6521.2022.09.016

    XIANG B F, XIONG T H, HU S X, et al. Optimization of polysaccharide extraction from Jiuzihe Poria cocos with multiple enzymes and its antioxidant activity[J]. Food Research and Development, 2022, 43(9): 118−123. doi: 10.12161/j.issn.1005-6521.2022.09.016
    [18]
    聂铭, 陆胜民, 王阳光, 等. 响应面法优化果胶酶辅助提取杨梅花色苷工艺研究[J]. 食品科技,2021,46(7):194−200. [NIE M, LU S M, WANG Y G, et al. Optimization of anthocyanins extraction assisted with pectinase from red bayberry by response surface methodology[J]. Food Science and Technology,2021,46(7):194−200.]

    NIE M, LU S M, WANG Y G, et al. Optimization of anthocyanins extraction assisted with pectinase from red bayberry by response surface methodology[J]. Food Science and Technology, 2021, 46(7): 194−200.
    [19]
    张涵, 殷澳, 张会佳, 等. 昆布多糖的复合酶法提取工艺优化及其对α-葡萄糖苷酶的抑制活性[J]. 食品工业科技,2024,45(3):197−206. [ZHANG H, YIN A, ZHANG H J, et al. Optimization of multi-enzyme-assisted Laminarin extraction and evaluation of Laminarin inhibitory effect on α-glucosidase activity[J]. Science and Technology of Food Industry,2024,45(3):197−206.]

    ZHANG H, YIN A, ZHANG H J, et al. Optimization of multi-enzyme-assisted Laminarin extraction and evaluation of Laminarin inhibitory effect on α-glucosidase activity[J]. Science and Technology of Food Industry, 2024, 45(3): 197−206.
    [20]
    叶迎, 王瑞海, 苗青, 等. 甘肃产1~2年生红芪和黄芪皂苷、多糖、黄酮类成分含量差异研究[J]. 中草药,2023,54(14):4649−4661. [YE Y, WANG R H, MIAO Q, et al. Comparative study on statistical differences of saponins, polysaccharides and flavonoids contents of Gansu 1~2 years old Hedysari Radix and Astragali Radix[J]. Chinese Traditional and Herbal Drugs,2023,54(14):4649−4661.]

    YE Y, WANG R H, MIAO Q, et al. Comparative study on statistical differences of saponins, polysaccharides and flavonoids contents of Gansu 1~2 years old Hedysari Radix and Astragali Radix[J]. Chinese Traditional and Herbal Drugs, 2023, 54(14): 4649−4661.
    [21]
    吴兰兰, 吴伟菁, 王立博, 等. 响应面法优化苦荞麸皮粉蛋白质提取工艺[J]. 中国食物与营养,2022,28(3):39−44. [WU L L, WU W J, WANG L B, et al. Optimization of buckwheat bran powder protein extraction process by response surface method[J]. Food and Nutrition in China,2022,28(3):39−44.] doi: 10.3969/j.issn.1006-9577.2022.03.008

    WU L L, WU W J, WANG L B, et al. Optimization of buckwheat bran powder protein extraction process by response surface method[J]. Food and Nutrition in China, 2022, 28(3): 39−44. doi: 10.3969/j.issn.1006-9577.2022.03.008
    [22]
    张艳秋, 郑炜, 刘凯青, 等. 荔枝核多糖的水提醇沉工艺优化及其对α-葡萄糖苷酶的抑制活性研究[J]. 中国药房,2020,31(16):1995−2000. [ZHANG Y Q, ZHENG W, LIU K Q, et al. Study on optimization of water extraction-ethanol precipitation technology of polysaccharide from Litchi chinensis seed and its inhibitory activity to α-glucosidase[J]. China Pharmacy,2020,31(16):1995−2000.] doi: 10.6039/j.issn.1001-0408.2020.16.14

    ZHANG Y Q, ZHENG W, LIU K Q, et al. Study on optimization of water extraction-ethanol precipitation technology of polysaccharide from Litchi chinensis seed and its inhibitory activity to α-glucosidase[J]. China Pharmacy, 2020, 31(16): 1995−2000. doi: 10.6039/j.issn.1001-0408.2020.16.14
    [23]
    ZENG P, LI J, CHEN Y, et al. The structures and biological functions of polysaccharides from traditional Chinese herbs[J]. Prog Mol Biol Transl Sci,2019,163:423−444.
    [24]
    马潇潇, 田成, 向福, 等. 金银花中肌醇的复合酶法提取及抗氧化活性评价[J]. 食品研究与开发,2021,42(17):101−106. [MA X X, TIAN C, XIANG F, et al. Optimization of enzymatic extraction eonditions of inositol from Flos lonicerae and its antioxidant activity[J]. Food Research and Development,2021,42(17):101−106.] doi: 10.12161/j.issn.1005-6521.2021.17.017

    MA X X, TIAN C, XIANG F, et al. Optimization of enzymatic extraction eonditions of inositol from Flos lonicerae and its antioxidant activity[J]. Food Research and Development, 2021, 42(17): 101−106. doi: 10.12161/j.issn.1005-6521.2021.17.017
    [25]
    DU J, ANDERSON CT, XIAO C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development[J]. Nat Plants,2022,8(4):332−340. doi: 10.1038/s41477-022-01120-2
    [26]
    孙燕丽, 吴晓青, 胡巧云. 超声波-复合酶法协同提取马齿苋多糖工艺的优化研究[J]. 饲料研究,2022,45(19):74−77. [SUN Y L, WU X Q, HU Q Y. Optimization of ultrasonic-complex enzymatic synergistic extraction of polysaccharides from Portulaca oleracea[J]. Feed Research,2022,45(19):74−77.]

    SUN Y L, WU X Q, HU Q Y. Optimization of ultrasonic-complex enzymatic synergistic extraction of polysaccharides from Portulaca oleracea[J]. Feed Research, 2022, 45(19): 74−77.
    [27]
    商海军, 郑志, 胡积送, 等. 复合酶辅助提取藜麦种皮皂苷的工艺优化与结构鉴定[J]. 粮食与油脂,2023,36(7):47−53. [SHANG H J, ZHENG Z, HU Z S, et al. Process optimization and structural identification of complex enzyme assisted extraction of Chenopodium quinoa Willd. seed coat saponins[J]. Cereals & Oils,2023,36(7):47−53.] doi: 10.3969/j.issn.1008-9578.2023.07.012

    SHANG H J, ZHENG Z, HU Z S, et al. Process optimization and structural identification of complex enzyme assisted extraction of Chenopodium quinoa Willd. seed coat saponins[J]. Cereals & Oils, 2023, 36(7): 47−53. doi: 10.3969/j.issn.1008-9578.2023.07.012
    [28]
    马永强, 王峙力, 孙宏霞, 等. 甜玉米芯多糖脱蛋白质方法的研究[J]. 粮食与油脂,2023,36(6):26−29,39. [MA Y Q, WANG S L, SUN H X, et al. Study on the deproteinization method of sweet corncob polysaccharide[J]. Cereals & Oils,2023,36(6):26−29,39.] doi: 10.3969/j.issn.1008-9578.2023.06.007

    MA Y Q, WANG S L, SUN H X, et al. Study on the deproteinization method of sweet corncob polysaccharide[J]. Cereals & Oils, 2023, 36(6): 26−29,39. doi: 10.3969/j.issn.1008-9578.2023.06.007
    [29]
    SHEN S W, ZHOU C, ZENG Y B, et al. Structures, physicochemical and bioactive properties of polysaccharides extracted from Panax notoginseng using ultrasonic/microwave-assisted extraction[J]. LWT-Food Science and Technology,2022,154:112446. doi: 10.1016/j.lwt.2021.112446
    [30]
    郭刚军, 胡小静, 付镓榕, 等. 超声波-微波联合辅助提取澳洲坚果青皮多糖工艺优化及其抗氧化活性[J]. 中国南方果树,2024,53(3):87−95. [GUO G J, HU X J, FU J R, et al. Optimization of ultrasonic-microwave assisted extraction process of polysaccharide from macadamia green husk and its antioxidant activity[J]. South China Fruits,2024,53(3):87−95.]

    GUO G J, HU X J, FU J R, et al. Optimization of ultrasonic-microwave assisted extraction process of polysaccharide from macadamia green husk and its antioxidant activity[J]. South China Fruits, 2024, 53(3): 87−95.
    [31]
    胡庆娟, 吴光杰, 牛庆川, 等. 响应面试验优化木瓜蛋白酶法脱马齿苋多糖蛋白工艺[J]. 食品科学,2018,39(20):246−252. [HU Q J, WU G J, NIU Q C, et al. Optimization of papain-catalyzed deproteinization of polysaccharide from Portulaca oleracea L. by response surface methodology[J]. Food Science,2018,39(20):246−252.] doi: 10.7506/spkx1002-6630-201820036

    HU Q J, WU G J, NIU Q C, et al. Optimization of papain-catalyzed deproteinization of polysaccharide from Portulaca oleracea L. by response surface methodology[J]. Food Science, 2018, 39(20): 246−252. doi: 10.7506/spkx1002-6630-201820036
    [32]
    SUN H Y, LI C Y, NI Y J, et al. Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity[J]. Carbohydrate Polymers,2019,206:557−564. doi: 10.1016/j.carbpol.2018.11.010
    [33]
    郑梓威, 王馨, 吴孟仙, 等. 响应面优化生物法提取玉米淀粉的研究[J]. 中国食品添加剂,2023,34(6):101−108. [ZHENG Z W, WANG X, WU M X, et al. Optimization of biological extraction of corn starch by response surface methodology[J]. China Food Additives,2023,34(6):101−108.]

    ZHENG Z W, WANG X, WU M X, et al. Optimization of biological extraction of corn starch by response surface methodology[J]. China Food Additives, 2023, 34(6): 101−108.
    [34]
    丁孟汝, 王国栋, 袁平川, 等. 多糖调控糖脂代谢的作用及其机制研究进展[J]. 南方医科大学学报,2021,41(3):471−475. [DING M R, WANG G D, YUAN P C, et al. Research progress in the role and mechanism of polysaccharides in regulating glucose and lipid metabolism[J]. Journal of Southern Medical University,2021,41(3):471−475.]

    DING M R, WANG G D, YUAN P C, et al. Research progress in the role and mechanism of polysaccharides in regulating glucose and lipid metabolism[J]. Journal of Southern Medical University, 2021, 41(3): 471−475.
    [35]
    林萍萍, 陈明珠, 张吟. 补骨脂及其主要化学成分降糖机制的研究进展[J]. 中国中药杂志,2022,47(9):2392−2399. [LIN P P, CHEN M Z, ZHANG Y. Hypoglycemic mechanism of Psoraleae Fructus and its main chemical constituents[J]. China Journal of Chinese Materia Medica,2022,47(9):2392−2399.]

    LIN P P, CHEN M Z, ZHANG Y. Hypoglycemic mechanism of Psoraleae Fructus and its main chemical constituents[J]. China Journal of Chinese Materia Medica, 2022, 47(9): 2392−2399.
    [36]
    杜月, 张政, 刘学军, 等. 软枣猕猴桃花粉多糖提取、表征及体外生物活性研究[J]. 粮食与油脂,2023,36(6):85−91. [DU Y, ZHANG Z, LIU X J, et al. Extraction, characterization and in vitro biological activity of polysaccharide from Actinidia arguta Planch. pollen[J]. Cereals & Oils,2023,36(6):85−91.] doi: 10.3969/j.issn.1008-9578.2023.06.020

    DU Y, ZHANG Z, LIU X J, et al. Extraction, characterization and in vitro biological activity of polysaccharide from Actinidia arguta Planch. pollen[J]. Cereals & Oils, 2023, 36(6): 85−91. doi: 10.3969/j.issn.1008-9578.2023.06.020
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. 张智恒,赵维武,孙海誉,孙秋慧,郭山,代舒同. ε-聚赖氨酸复配保鲜剂对蛋糕保鲜效果. 食品工业. 2024(03): 100-105 .
    2. 翟彩宁,陈佩,黄镜源,王玮琨. 迷迭香活性成分的提取工艺、功能及其在动物生产中的应用. 饲料研究. 2024(14): 172-176 .
    3. 唐源,刘梦聪,刘燕,李富华,赵吉春,明建. 香辛料提取物改善水产品蛋白质过氧化研究进展. 食品科学. 2024(20): 290-298 .
    4. 马丹凤,朱梓康,王雨旺,杨金铭,顾诗雨,黄志炜. 迷迭香在植物生产中的应用研究进展. 黑龙江农业科学. 2023(07): 113-121 .
    5. 库文娟,杨欢,余丽,徐玉. 从迷迭香中提取天然抗氧化剂的工艺研究进展. 食品工业. 2023(12): 159-161 .
    6. 蒋治国,何莹,林昌华,苏丽娟,黄海权,蒋家霞. 迷迭香提取物降低仔猪断奶氧化应激的机制研究. 饲料研究. 2023(22): 21-25 .
    7. 钟雯雯,杨绍坤,李梓萌,段晓梅. 迷迭香精油GC-MS分析及其体外药理活性研究. 广州化工. 2023(21): 80-84 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (173) PDF downloads (33) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return