CHEN Zhixian, SHI Lei, ZHANG Yan. Effects of Lactobacillus acidophilus LA15 on Immune Enhancement and Regulation of Gut Microbiota in Mice[J]. Science and Technology of Food Industry, 2025, 46(5): 337−343. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090192.
Citation: CHEN Zhixian, SHI Lei, ZHANG Yan. Effects of Lactobacillus acidophilus LA15 on Immune Enhancement and Regulation of Gut Microbiota in Mice[J]. Science and Technology of Food Industry, 2025, 46(5): 337−343. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090192.

Effects of Lactobacillus acidophilus LA15 on Immune Enhancement and Regulation of Gut Microbiota in Mice

More Information
  • Received Date: September 19, 2023
  • Available Online: January 02, 2025
  • The purpose of this study was to investigate the enhancing effect of Lactobacillus acidophilus LA15 on cyclophosphamide (CTX)-induced immunosuppression in BALB/c mice. The in vivo immunosuppression model was established by administering CTX through injection, and the immunomodulatory effects were assessed by measuring murine phenotypic indicators, immune markers, and gut microbiota. The results indicated that after induction by CTX, mice in the CTX group exhibited decreased body weight, thymus index, spleen index, immunoglobulin levels, and cytokine content. In contrast, LA15 significantly enhanced the thymus index, spleen index (P<0.05), relieve the swelling and inflammatory injury of small intestinal. The intestinal immunoglobulin A (sIgA) content in the LA15 group was 486.39 μg/mL, which was significantly higher than that in the model control group (294.72 μg/mL) (P<0.01), and the levels of TNF-α, IL-6, IL-10, IL-1β, IL-17 increased. 16S rDNA gene sequencing revealed that LA15 reduced the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Alloprevotella and Lachnospiraceae, and decreased the relative abundance of Desulfurvibrio. Therefore, LA15 could alleviate CTX-induced immunosuppression, reshape the gut microbiota, and was considered a potential immunostimulant for the treatment of immune suppression disorders.
  • [1]
    KIM J Y, KIM J Y, KIM H, et al. Probiotic strains Bifidobacterium animalis ssp. lactis HY8002 and Lactobacillus plantarum HY7717 improved immunosuppression in cyclophosphamide-treated mice[J]. Journal of Animal Science and Technology,2022,10(51):61−84.
    [2]
    JUNG J Y, SHIN J S, LEE S G, et al. Lactobacillus sakei K040706 evokes immunostimulatory effects on macrophages through TLR2-mediated activation[J]. International Immunopharmacology,2015,28(1):88−96. doi: 10.1016/j.intimp.2015.05.037
    [3]
    VIVIER E, RAULET D H, MORETTA A, et al. Innate or adaptive immunity? The example of natural killer cells[J]. Science,2011,331(6013):44−59. doi: 10.1126/science.1198687
    [4]
    ZHU J, ZHAO L, GUO H Y, et al. Immunomodulatory effects of novel Bifidobacterium and Lactobacillus strains on murine macrophage cells[J]. African Journal of Microbiology Research,2011,5(1):8−15.
    [5]
    ARANGO D G, DECOTEAUX A. Macrophage cytokines:Involvement in immunity and infectious diseases[J]. Frontiers in Immunology,2014,5(4):67−91.
    [6]
    ALI M S, LEE E B, QUAH Y X. Heat-killed Limosilactobacillus reuteri PSC102 ameliorates impaired immunity in cyclophosphamide-induced immunosuppressed mice[J]. Frontiers in Microbioloy,2022,13(8):20−38.
    [7]
    ZHHENG J, WITTOUCK S, SALVETTI E, et al. A taxonomic note on the genus Lactobacillus:Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae[J]. International Journal of Systematic and Evolutionary Microbiology,2020,70(4):2782−2858. doi: 10.1099/ijsem.0.004107
    [8]
    ABU-ELSAAD N M, ABD-ELHAMMEED A G, EL-KAREF A, et al. Yogurt containing the probacteria Lactobacillus acidophilus combined with natural antioxidants mitigates doxorubicin-induced cardiomyopathy in rats[J]. Journal of Medicinal Food,2015,18(9):950−959. doi: 10.1089/jmf.2014.0104
    [9]
    AHMED S T, MUN H S, IALAM M M, et al. Effects of citrus junos by-products fermented with multistrain probiotics on growth performance, immunity, caecal microbiology and meat oxidative stability in broilers[J]. British Poultry Science,2014,55(4):540−547. doi: 10.1080/00071668.2014.938021
    [10]
    薛梅. 鼠李糖乳杆菌LV108对免疫低下大鼠肠道菌群及代谢的影响研究[D]. 扬州:扬州大学, 2016. [XUE M. Effects of Lactobacillus rhamnosus LV108 on intestinal flora and metabolism in immunocompromised rats [D]. Yangzhou:Yangzhou University, 2016.]

    XUE M. Effects of Lactobacillus rhamnosus LV108 on intestinal flora and metabolism in immunocompromised rats [D]. Yangzhou: Yangzhou University, 2016.
    [11]
    ZHAO W, LIU Y, KWOK L Y, et al. The immune regulatory role of Lactobacillus acidophilus:An updated meta-analysis of randomized controlled trials[J]. Food Bioscience,2020,36(6):65−100.
    [12]
    JANG S E, JOH E H, LEE H Y, et al. Lactobacillus plantarum HY7712 ameliorates cyclophosphamide-induced immunosuppression in mice[J]. Journal of Microbiology and Biotechnology,2013,23(3):414−421. doi: 10.4014/jmb.1210.10010
    [13]
    SUN M, WU T, ZHANG G, et al. Lactobacillus rhamnosus LRa05 improves lipid accumulation in mice fed with a high fat diet via regulating intestinal microbiota, reducing glucose content and promoting liver carbohydrate metabolism[J]. Food Function,2020,11(11):9514−9525. doi: 10.1039/D0FO01720E
    [14]
    XUE L Y, LI Z Q, XUE J B, et al. Lactobacillus acidophilus LA85 ameliorates cyclophosphamide-induced immunosuppression by modulating Notch and TLR4/NF-κB signal pathways and remodeling the gut microbiota[J]. Food Function,2022,13(15):8107−8118. doi: 10.1039/D1FO04331E
    [15]
    MENG Y, WANG J, WANG Z, et al. Lactobacillus plantarum KLDS1.0318 ameliorates impaired intestinal immunity and metabolic disorders in cyclophosphamide-treated mice[J]. Frontiers in Microbiology,2019,70(4):731−741.
    [16]
    WU T, ZHANG Y L, LI W et al. Lactobacillus rhamnosus LRa05 ameliorate hyperglycemia through a regulating glucagon-mediated signaling pathway and gut microbiota in type 2 diabetic mice[J]. Journal of Agricultural and Food Chemistry,2021,69(31):8797−8806.
    [17]
    许女, 魏莎莎, 杨光, 等. 鼠李糖乳杆菌DHC32对小鼠肠道菌群和肠道黏膜免疫的影响[J]. 中国食品学报,2020,20(6):73−80. [XU N, WEI S S, YANG G, et al. Effects of Lactobacillus rhamnosus DHC32 on intestinal microbiota and intestinal mucosal immunity in mice[J]. Chinese Journal of Food Science,2020,20(6):73−80.]

    XU N, WEI S S, YANG G, et al. Effects of Lactobacillus rhamnosus DHC32 on intestinal microbiota and intestinal mucosal immunity in mice[J]. Chinese Journal of Food Science, 2020, 20(6): 73−80.
    [18]
    SHANG J C, WAN F, ZHAO L, et al. Potential immunomodulatory activity of a selected strain Bifidobacterium bifidum H3-R2 as evidenced in vitro and in immunosuppressed mice[J]. Frontiers in Microbiology,2020,11(89):1−13.
    [19]
    WANG J, LI M H, GAO Y W, et al. Effects of exopolysaccharides from Lactiplantibacillus plantarum JLAU103 on intestinal immune response, oxidative stress, and microbial communities in cyclophosphamide-induced immunosuppressed mice[J]. Journal of Agricultural and Food Chemistry,2022,70(7):2197−2210. doi: 10.1021/acs.jafc.1c06502
    [20]
    SHONYELA S M, FENG B, YANG W T, et al. The regulatory effect of Lactobacillus rhamnosus GG on T lymphocyte and the development of intestinal villi in piglets of different periods[J]. AMB Express,2020,10(1):63−76. doi: 10.1186/s13568-020-00998-5
    [21]
    LI X, CHEN S, WANG W J, et al. Effects of polysaccharides from Yingshan Yunwu tea on meat quality, immune status and intestinal microflora in chickens[J]. International Journal of Biological Macromolecules,2020,155:61−70. doi: 10.1016/j.ijbiomac.2020.03.198
    [22]
    MA W, LI W, YU S, et al. Immunomodulatory effects of complex probiotics on the immuno-suppressed mice induced by cyclophosphamide[J]. Frontiers in Microbiology,2023,11(89):1−13.
    [23]
    HUANG K Y, YAN Y M, DAN C, et al. Ascorbic acid derivative 2-O-β-D-glucopyranosyl-L-ascorbic acid from the fruit of lycium barbarum modulates microbiota in the small intestine and colon and exerts an immunomodulatory effection cyclophosphamide-treated BALB/c mice[J]. Journal of Agricultural and Food Chemistry,2020,68(40):11128−11143. doi: 10.1021/acs.jafc.0c04253
    [24]
    XIE Y, SUN J, HU C, et al. Oral microbiota is associated with immune recovery in human immunodeficiency virus-Infected individuals[J]. Frontiers in Microbiology,2021,12(1):1−11.
    [25]
    WANG B, YAO M L, LING LZ et al, The human microbiota in health and disease[J]. Engineering, 2017, 3(1):71-82.
    [26]
    张振忠, 岳寿松, 陈靓. 乳酸菌制剂对环磷酰胺致大鼠免疫抑制的调节作用[J]. 食品与药品,2020,22(2):103−107. [ZHANG Z Z, YUE S S, CHEN L. Effect of lactic acid bacteria on immunosuppression induced by cyclophosphamide in rats[J]. Food and Medicine,2020,22(2):103−107.] doi: 10.3969/j.issn.1672-979X.2020.02.004

    ZHANG Z Z, YUE S S, CHEN L. Effect of lactic acid bacteria on immunosuppression induced by cyclophosphamide in rats[J]. Food and Medicine, 2020, 22(2): 103−107. doi: 10.3969/j.issn.1672-979X.2020.02.004
    [27]
    PARK H E, LEE W K. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide[J]. Journal of Functional Foods,2018,49:518−525. doi: 10.1016/j.jff.2018.09.003
    [28]
    ZHAO S, PENG X, ZHOU Q Y, et al. Bacillus coagulans 13002 and fructo-oligosaccharides improve the immunity of mice with immunosuppression induced by cyclophosphamide through modulating intestinal-derived and fecal microbiota[J]. Food Research International, 2021, 140(3):97−109.
    [29]
    赵琳, 范雅宸, 黄子争. 嗜酸乳杆菌LA85对小鼠免疫机能的研究[J]. 中国食物与营养,2021,27(10):65−69. [ZHAO L, FAN Y C, HUANG Z Z. Study on the immune function of Lactobacillus acidophilus LA85 in mice[J]. Chinese Food and Nutrition,2021,27(10):65−69.]

    ZHAO L, FAN Y C, HUANG Z Z. Study on the immune function of Lactobacillus acidophilus LA85 in mice[J]. Chinese Food and Nutrition, 2021, 27(10): 65−69.
    [30]
    蒙月月, CHOW D S, SHUVAN K S, 等. 植物乳杆菌KLDS 1.0318对小鼠免疫调节作用初步研究[J]. 食品工业科技,2018,39(7):303−308. [MENG Y Y, CHOW D S, SHUVAN K S, et al. Preliminary study on the immunomodulatory effect of Lactobacillus plantarum KLDS 1.0318 on mice[J]. Science and Technology of Food Industry,2018,39(7):303−308.]

    MENG Y Y, CHOW D S, SHUVAN K S, et al. Preliminary study on the immunomodulatory effect of Lactobacillus plantarum KLDS 1.0318 on mice[J]. Science and Technology of Food Industry, 2018, 39(7): 303−308.
    [31]
    ZHU G, JIANG Y, YAO Y, et al. Ovotransferrin ameliorates the dysbiosis of immunomodulatory 2 function and intestinal microbiota induced by cyclophosphamide[J]. Food Function,2019,10(2):1−38.
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 郭新颖. 柱前衍生-高效液相色谱法测定鱼类中组胺. 化学分析计量. 2024(01): 12-16 .
    2. 王建凤,冯月超,王颖,刘艳,周阳,刘佳. 鱼露中章鱼胺含量分析及衍生化产物结构推断. 分析仪器. 2024(04): 64-69 .
    3. 卢竹阳,邵彪,王琳琳,许晶晶,张霞,李玲玉,沈蕾. 冷藏时间对大黄鱼、鲳鱼中生物胺含量变化的影响. 肉类研究. 2024(11): 41-46 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (38) PDF downloads (5) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return