Citation: | ZHANG Zhixia, MA Xinmiao, XU Hui, et al. Research Status and Prospects of Artificial Meat Technology[J]. Science and Technology of Food Industry, 2024, 45(17): 416−425. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090185. |
[1] |
Food and Agriculture Organization of the United Nations. How to feed the world in 2050[R]. Rome:FAO, 2009.
|
[2] |
WARNER R D. Review:Analysis of the process and drivers for cellular meat production[J]. Animal,2019,13(12):3041−3058. doi: 10.1017/S1751731119001897
|
[3] |
WILDING M D. Textured and shaped oilseed protein food products[J]. Journal of the American Oil Chemists' Society,1971,48(9):489−491. doi: 10.1007/BF02544667
|
[4] |
POST M J. Cultured beef:Medical technology to produce food[J]. Journal of the Science of Food and Agriculture,2014,94(6):1039−1041. doi: 10.1002/jsfa.6474
|
[5] |
丁世杰, 李春保, 周光宏. 细胞培养肉技术及产业化进展与挑战[J]. 中国食品学报,2022,22(12):33−41. [DING S J, LI C B, ZHOU G H, et al. Cell culture meat technology and industrialization progress and challenges[J]. Chinese Journal of Food Science,2022,22(12):33−41.]
DING S J, LI C B, ZHOU G H, et al. Cell culture meat technology and industrialization progress and challenges[J]. Chinese Journal of Food Science, 2022, 22(12): 33−41.
|
[6] |
陈洪雨, 令狐昌丽, 罗颖, 等. 食用真菌蛋白制备及其应用研究进展[J]. 食用菌学报,2021,28(6):188−198. [CHEN H Y, LINGHU C L, LUO Y, et al. Progress on the preparation and application of edible fungal protein[J]. Journal of Edible Fungi,2021,28(6):188−198.]
CHEN H Y, LINGHU C L, LUO Y, et al. Progress on the preparation and application of edible fungal protein[J]. Journal of Edible Fungi, 2021, 28(6): 188−198.
|
[7] |
BERGER R G, BORDEWICK S, KRAHE N K, et al. Mycelium vs. fruiting bodies of edible fungi-A comparison of metabolites[J]. Microorganisms,2022,10(7):1379. doi: 10.3390/microorganisms10071379
|
[8] |
薛薇. 植物蛋白肉的研究现状[J]. 食品工程,2021(4):33−36. [XUE W. Research status of plant protein meat[J]. Food Engineering,2021(4):33−36.]
XUE W. Research status of plant protein meat[J]. Food Engineering, 2021(4): 33−36.
|
[9] |
陶穀. 清异录[M]. 上海:上海古籍出版社, 2012:38. [TAO G. Qing Yi Lu [M]. Shanghai:Shanghai Ancient Books Publishing House, 2012:38.]
TAO G. Qing Yi Lu [M]. Shanghai: Shanghai Ancient Books Publishing House, 2012: 38.
|
[10] |
KINSELLA J E, FRANZEN K L. Texturized proteins:Fabrication, flavoring, and nutrition[J]. Critical Reviews in Food Science and Nutrition,1978,10(2):147−207. doi: 10.1080/10408397809527248
|
[11] |
李顺秀, 孙保剑, 袁伟岗, 等. 浅析植物肉研究进展[J]. 食品工业,2023,44(4):247−252. [LI S X, SUN B J, YUAN W G, et al. An analysis of the research progress of plant meat[J]. Food Industry,2023,44(4):247−252.]
LI S X, SUN B J, YUAN W G, et al. An analysis of the research progress of plant meat[J]. Food Industry, 2023, 44(4): 247−252.
|
[12] |
DU Q, TU M, LIU J, et al. Plant-based meat analogs and fat substitutes, structuring technology and protein digestion:A review[J]. Food Research International,2023(170):112959.
|
[13] |
唐伟挺, 余晓盈, 邹苑, 等. 人造肉的研究现状、挑战及展望[J]. 食品研究与开发,2022,43(6):190−199. [TANG W T, YU X Y, ZOU Y, et al. Research status, challenges and prospects of artificial meat[J]. Food Research and Development,2022,43(6):190−199.]
TANG W T, YU X Y, ZOU Y, et al. Research status, challenges and prospects of artificial meat[J]. Food Research and Development, 2022, 43(6): 190−199.
|
[14] |
KUMAR P, CHATLI M K, MEHTA N, et al. Meat analogues:Health promising sustainable meat substitutes[J]. Critical Reviews in Food Science and Nutrition,2017,57(5):923−932. doi: 10.1080/10408398.2014.939739
|
[15] |
WANG Y, CAI W, LI L, et al. Recent advances in the processing and manufacturing of plant-based meat[J]. Journal of Agricultural and Food Chemistry,2023,71(3):1276−1290.
|
[16] |
高智利, 杨军飞. 植物蛋白肉的研究进展与发展趋势[J]. 食品安全导刊,2021(12):184−186. [GAO C L, YANG J F. Research progress and development trend of plant protein meat[J]. Food Safety Journal,2021(12):184−186.]
GAO C L, YANG J F. Research progress and development trend of plant protein meat[J]. Food Safety Journal, 2021(12): 184−186.
|
[17] |
欧雨嘉, 郑明静, 曾红亮, 等. 植物蛋白肉研究进展[J]. 食品与发酵工业,2020,46(12):299−305. [OU Y J, ZHENG M J, ZENG H L, et al. Research progress of vegetable protein meat[J]. Food and Fermentation Industry,2020,46(12):299−305.]
OU Y J, ZHENG M J, ZENG H L, et al. Research progress of vegetable protein meat[J]. Food and Fermentation Industry, 2020, 46(12): 299−305.
|
[18] |
GU B Y, RYU G H. Effects of barrel temperature and addition of corn starch on physical properties of extruded soy protein isolate[J]. Journal of the Korean Society of Food Science and Nutrition,2018,47(4):485−491. doi: 10.3746/jkfn.2018.47.4.485
|
[19] |
JIMENEZ-COLMENERO F, COFRADES S, HERRERO A M, et al. Konjac gel fat analogue for use in meat products:Comparison with pork fats[J]. Food Hydrocolloids,2012,26(1):63−72. doi: 10.1016/j.foodhyd.2011.04.007
|
[20] |
岳程程, 王哲, 佟丽凤, 等. 水分添加量对高水分挤压大豆粕植物蛋白肉品质及结构特性的影响[J]. 食品工业科技,2023,44(22):52−60. [YUE C C, WANG Z, TONG L F, et al. Effect of moisture addition on the quality and structural characteristics of vegetable protein meat with high moisture extruded soybean meal[J]. Food Industry Science and Technology,2023,44(22):52−60.]
YUE C C, WANG Z, TONG L F, et al. Effect of moisture addition on the quality and structural characteristics of vegetable protein meat with high moisture extruded soybean meal[J]. Food Industry Science and Technology, 2023, 44(22): 52−60.
|
[21] |
CARMO C, KNUTSEN S H, MALIZIA G, et al. Meat analoues from a faba bean concentraie can be generaied by hioh moistue extrusion[J]. Future Foods,2021,3:100014. doi: 10.1016/j.fufo.2021.100014
|
[22] |
陶相锦, 黄立强, 王冬玲, 等. 植物蛋白肉生产的关键因素分析[J]. 食品安全导刊,2023(30):160−162. [TAO X J, HUANG L Q, WANG D L, et al. Analysis of key factors in the production of vegetable protein meat[J]. Food Safety Journal,2023(30):160−162.]
TAO X J, HUANG L Q, WANG D L, et al. Analysis of key factors in the production of vegetable protein meat[J]. Food Safety Journal, 2023(30): 160−162.
|
[23] |
ISMAIL I, HWANG Y H, JOO S T, et al. Meat analog as future food:A review[J]. Journal of Animal Science and Technology,2020,62(2):111−120. doi: 10.5187/jast.2020.62.2.111
|
[24] |
代欣欣. 植物肉生产原料、技术及产品特性研究进展[J]. 肉类研究,2023,37(8):61−69. [DAI X X. Progress in the study of raw materials, technology and product characteristics of plant-based meat production[J]. Meat Research,2023,37(8):61−69.]
DAI X X. Progress in the study of raw materials, technology and product characteristics of plant-based meat production[J]. Meat Research, 2023, 37(8): 61−69.
|
[25] |
THAVAMANI A, SFERRA T J, SANKARARAMAN S, et al. Meet the meat alternatives:The value of alternative protein sources[J]. Current Nutrition Reports,2020,9(4):346−355.
|
[26] |
REIHANI S F S, KHOSRAVI-DARANI K. Influencing factors on single cell protein production by submerged fermentation:A review[J]. Electronic Journal of Biotechnology,2018,37:34−40.
|
[27] |
HASHEMPOUR-BALTORK F, KHOSRAVI-DARANI K, HOSSEINI H, et al. Mycoproteins as safe meat substitutes[J]. Journal of Cleaner Production,2020,253:119958. doi: 10.1016/j.jclepro.2020.119958
|
[28] |
FINNIGAN T, NEEDHAM L, ABBOTT C. Mycoprotein:A healthy new protein with a low environmental impact[J]. Sustainable Protein Sources,2017:305−325.
|
[29] |
SOUMYA G, RUSYN I, DMYTRUK O V, et al. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons[J]. Frontiers in Bioengineering and Biotechnology,2023(11):1106973.
|
[30] |
SUMAN G, NUPUR M, ANURADHA S, et al. Single cell protein production:A review[J]. International Journal of Current Microbiology and Applied Sciences,2015,4:251−262.
|
[31] |
RAVINDRA P, RUDRAVARAM R, CHANDEL A K, et al. Bio (single cell) protein:Issues of production, toxins and commercialisation status[J]. Agricultural Wastes,2009:129−154.
|
[32] |
刘梦然, 毛衍伟. 植物蛋白素肉原料与工艺的研究进展[J]. 食品与发酵工业,2021,47(4):293−298. [LIU M R, MAO Y W. Research progress of raw materials and technology of vegetable protein meat[J]. Food and Fermentation Industry,2021,47(4):293−298.]
LIU M R, MAO Y W. Research progress of raw materials and technology of vegetable protein meat[J]. Food and Fermentation Industry, 2021, 47(4): 293−298.
|
[33] |
王广交, 辛嘉英, 崔添玉, 等. 去除单细胞蛋白中核酸方法的研究[J]. 饲料研究,2019,42(3):45−48. [WANG G J, XIN J Y, CUI T Y, et al. Elimination of nucleic acids from single-cell proteins[J]. Feed Research,2019,42(3):45−48.]
WANG G J, XIN J Y, CUI T Y, et al. Elimination of nucleic acids from single-cell proteins[J]. Feed Research, 2019, 42(3): 45−48.
|
[34] |
ΦVERLAND M. 利用可再生物质生产高品质单细胞蛋白质的生物技术[J]. 饲料工业,2019,40(16):60−64. [ΦVERLAND M. Biotechnology for the production of high-quality single-cell proteins using renewable substances[J]. Feed Industry,2019,40(16):60−64.]
ΦVERLAND M. Biotechnology for the production of high-quality single-cell proteins using renewable substances[J]. Feed Industry, 2019, 40(16): 60−64.
|
[35] |
HASHEMPOUR-BALTORK F, HOSSEINI H, SHOJAEE-ALIABADI S, et al. Drug resistance and the prevention strategies in food borne bacteria:An update review[J]. Advanced Pharmaceutical Bulletin,2019,9(3):335−347. doi: 10.15171/apb.2019.041
|
[36] |
DENNY A, BUTTRISS J. Plant foods and health:Focus on plant bioactives[J]. Plant Foods& Health Focus on Plant Bioactives,2007,4:1−64.
|
[37] |
张金霞, 陈强, 黄晨阳, 等. 食用菌产业发展历史、现状与趋势[J]. 菌物学,2015,34(4):524−540. [ZHANG J X, CHEN Q, HUANG C Y, et al. Development history, current situation and trend of edible fungus industry[J]. Journal of Microbiology,2015,34(4):524−540.]
ZHANG J X, CHEN Q, HUANG C Y, et al. Development history, current situation and trend of edible fungus industry[J]. Journal of Microbiology, 2015, 34(4): 524−540.
|
[38] |
SOUZA F P F, NAIR R B, ANDERSSON D, et al. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi[J]. Fungal Biology & Biotechnology,2018,5(1):1−10.
|
[39] |
KIM K, CHOI B, LEE I, et al. Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue[J]. Journal of the Science of Food and Agriculture,2011,91(9):1561−1568. doi: 10.1002/jsfa.4348
|
[40] |
SINKE P, SWARTZ E, SANCTORUM H, et al. Ex-antelife cycle assessment of commercial-scale cultivated meat production in 2030[J]. The International Journal of Life Cycle Assessment,2023,28:234−254. doi: 10.1007/s11367-022-02128-8
|
[41] |
DOMINGO J L, NADAL M. Carcinogenicity of consumption of red meat and processed meat:A review of scientific news since the IARC decision[J]. Food and Chemical Toxicology,2017,105:256−261. doi: 10.1016/j.fct.2017.04.028
|
[42] |
MICHA R, WALLACE S K, MOZAFFARIAN D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus:A systematic review and meta-analysis[J]. Circulation,2010,121(21):2271−2283. doi: 10.1161/CIRCULATIONAHA.109.924977
|
[43] |
DU H, GUO Y, BENNETT D A, et al. Red meat, poultry and fish consumption and risk of diabetes:A 9 year prospective cohort study of the China Kadoorie Biobank[J]. Diabetologia,2020,63(4):767−779. doi: 10.1007/s00125-020-05091-x
|
[44] |
DOMINGO J L, NADAL M. Carcinogenicity of consumption of red and processed meat:What about environmental contaminants?[J]. Environmental Research,2016,145:109−115. doi: 10.1016/j.envres.2015.11.031
|
[45] |
GONZÁLEZ N, MARQUÈS M, NADAL M, et al. Meat consumption:Which are the current global risks? A review of recent (2010-2020) evidences[J]. Food Research International,2020,137:109341. doi: 10.1016/j.foodres.2020.109341
|
[46] |
ONG K J, JOHNSTON J, DATAR I, et al. Food safety considerations and research priorities for the cultured meat and seafood industry[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):5421−5448. doi: 10.1111/1541-4337.12853
|
[47] |
ZHENG Y Y, SHI Y F, ZHU H Z, et al. Quality evaluation of cultured meat with plant protein scaffold[J]. Food Research International,2022,161:111818. doi: 10.1016/j.foodres.2022.111818
|
[48] |
SONG W J, LIU P P, ZHENG Y Y, et al. Production of cultured fat with peanut wire-drawing protein scaffold and quality evaluation based on texture and volatile compounds analysis[J]. Food Research International,2022,160:111636. doi: 10.1016/j.foodres.2022.111636
|
[49] |
BODIOU V, MOUTSATSOU P, POST M J. Microcarriers for upscaling cultured meat production[J]. Frontiers in Nutrition,2020(7):10.
|
[50] |
REISS J, ROBERTSON S, SUZUKI M. Cell sources for cultivated meat:Applications and considerations throughout the production workflow[J]. Int J Mol Sci,2021,22(14):7513. doi: 10.3390/ijms22147513
|
[51] |
SEAH J S H, SINGH S, TAN L P, et al. Scaffolds for the manufacture of cultured meat[J]. Crit Rev Biotechnol,2021,42(2):311−323.
|
[52] |
OZHAVA D, BHATIA M, FREMAN J, et al. Sustainable cell sources for cultivated meat[J]. Journal of Biomedical Research & Environmental Sciences,2022,3:1382−1388.
|
[53] |
SHI X, GARRY D J. Muscle stem cells in development, regeneration, and disease[J]. Genes & Development,2006,20(13):1692−1708.
|
[54] |
KUMAR P, SHARMA N, SHARMA S, et al. In-vitro meat:A promising solution for sustainability of meat sector[J]. Journal of Animal Science and Technology, 2021, 63(4):693-724. [53].
|
[55] |
PÉREZ-SERRANO R M, GONZÁLEZ-DÁVALOS M L, LOZANO-FLORES C, et al. PPAR agonists promote the differentiation of porcine bone marrow mesenchymal stem cells into the adipogenic and myogenic lineages[J]. Cells Tissues Organs,2016,203:153−172.
|
[56] |
RAMÍREZ-ESPINOSA J J, GONZÁLEZ-DÁVALOS L, SHIMADA A, et al. Bovine (bostaurus) bone marrow mesenchymal cell differentiation to adipogenic and myogenic lineages[J]. Cells Tissues Organs,2016,201(1):51−64. doi: 10.1159/000440878
|
[57] |
ZAGURY Y, IANOVICI I, LANDAU S, et al. Engineered marble-like bovine fat tissue for cultured meat[J]. Communication Biology,2022,5(1):927. doi: 10.1038/s42003-022-03852-5
|
[58] |
MACHOUR M, HEN N, GOLDFRACHT I, et al. Print-and-grow within a novel support material for 3D bioprinting and post-printing tissue growth[J]. Advanced Science,2022,9(34):e2200882. doi: 10.1002/advs.202200882
|
[59] |
BANERJEE K, JANA T, GHOSH Z, et al. PSCRIdb:A database of regulatory interactions and networks of pluripotent stem cell lines[J]. Journal of Biosciences,2020,45:53. doi: 10.1007/s12038-020-00027-4
|
[60] |
郑欧阳, 孙钦秀, 刘书成, 等. 细胞培养肉的挑战与发展前景[J]. 食品与发酵工业,2021,47(9):314−320. [ZHENG O Y, SUN Q X, LIU S C, et al. Challenges and prospects of cell culture meat[J]. Food and Fermentation Industry,2021,47(9):314−320.]
ZHENG O Y, SUN Q X, LIU S C, et al. Challenges and prospects of cell culture meat[J]. Food and Fermentation Industry, 2021, 47(9): 314−320.
|
[61] |
DATAR I, BETTI M. Possibilities for an in vitro meat production system[J]. Innovative Food Science and Emerging Technologies,2010,11(1):13−22. doi: 10.1016/j.ifset.2009.10.007
|
[62] |
BENJAMINSON M A, GILCHRIEST J A, LORENZ M, et al. In vitro edible muscle protein production system (MPPS):Stage 1, fish[J]. Acta Astronautica,2002,51:879−889. doi: 10.1016/S0094-5765(02)00033-4
|
[63] |
LEI Q Z, LI M, DU G C, et al. An effective cytokine combination for ex vivo expansion of porcine muscle stem cells[J]. Food Bioscience,2022,46:101571. doi: 10.1016/j.fbio.2022.101571
|
[64] |
关欣, 汪丹丹, 方佳华, 等. 细胞培养肉技术:研究进展与未来展望[J]. 中国食品学报,2022,22(12):1−13. [GUAN X, WANG D D, FANG J H, et al. Cell culture meat technique:Research progress and future prospects[J]. Chinese Journal of Food Science,2022,22(12):1−13.]
GUAN X, WANG D D, FANG J H, et al. Cell culture meat technique: Research progress and future prospects[J]. Chinese Journal of Food Science, 2022, 22(12): 1−13.
|
[65] |
GUO Y, DING S J, DING X, et al. Effects of selected flavonoids on cell proliferation and differentiation of porcine muscle stem cells for cultured meat production[J] Food Res Int, 2022, 160:111459.
|
[66] |
BEN-ARYE T, SHANDALOV Y, BEN-SHAUL S, et al. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat[J]. Nature Food,2020,1:210−220. doi: 10.1038/s43016-020-0046-5
|
[67] |
POST M J, LEVENBERG S, KAPLAN D L, et al. Scientific, sustainability and regulatory challenges of cultured meat[J]. Nature Food,2020,1:403−415. doi: 10.1038/s43016-020-0112-z
|
[68] |
ONG S, CHOUDHURY D, NAING W M. Cell-based meat:Current ambiguities with nomenclature[J]. Trends in Food Science Technology,2020,102:223−231. doi: 10.1016/j.jpgs.2020.02.010
|
[69] |
KIM W, LEE H, LEE J, et al. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographicalcues[J]. Biomaterials, 2020, 230:119632.
|
[70] |
OSTROVIDOV S, SHI X, ZHANG L, et al. Myotube formation on gelatin nanofibers–multi-walledcarbon nanotubes hybrid scaffolds[J]. Biomaterials,2014,35:6268−6277.
|
[71] |
TOMIYAMA A J, KAWECKI N S, ROSENFELD D L, et al. Bridging the gap between the science of cultured meat and public perceptions[J]. Trends in Food Science & Technology,2020,104:144−152.
|
[72] |
JANDYAL M, MALAV O P, CHATLI M K, et al. 3D printing of meat:A new frontier of food from download to delicious:A review[J]. International Journal of Current Microbiology and Applied Sciences,2021,10:2095−2111.
|
[73] |
MANDRYCKY C, WANG Z, KIM K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances,2016,34:422−434. doi: 10.1016/j.biotechadv.2015.12.011
|
[74] |
JIAO A, TROSPER N E, YANG H S, et al. Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control[J]. ACS Nano,2014,8(5):4430−4439. doi: 10.1021/nn4063962
|
[75] |
KIM E S, AHN E H, DVIR T, et al. Emerging nanotechnology approaches in tissue engineering and regenerative medicine[J]. International Journal of Nanomedicin,2014,9(Suppl 1):1−5.
|
[76] |
ZHU H, WU Z, DING X, et al. Production of cultured meat from pig muscle stem cells[J]. Biomaterials,2022,287:121650. doi: 10.1016/j.biomaterials.2022.121650
|
[77] |
PARK Y H, GONG S P, KIM H Y, et al. Development of a serum-free defined system employing growth factors for preantral follicle culture[J]. Molecular Reproduction and Development,2013,80:725−733. doi: 10.1002/mrd.22204
|
[78] |
STOUT A J, MIRLIANI A B, WHITE E C, et al. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat[J]. Communications Biology,2022,5:466. doi: 10.1038/s42003-022-03423-8
|
[79] |
HENNINGSEN J, RIGBOLT K T, BLAGOEV B, et al. Dynamics of the skeletal muscle secretome during myoblast differentiation[J]. Molecular & Cellular Proteomics,2010,9(11):2482−2496.
|
[80] |
KADIM I T, MAHGOUB O, BAQIR S, et al. Cultured meat from muscle stem cells:A review of challenges and prospects[J]. J Integr Agric,2015,14(2):222−233. doi: 10.1016/S2095-3119(14)60881-9
|
[81] |
王雯慧. 细胞培养肉前路仍漫长[J]. 中国农村科技,2020(12):20−23. [WANG W H. Cell culture is still a long way ahead[J]. China's Rural Science and Technology,2020(12):20−23.] doi: 10.3969/j.issn.1005-9768.2020.12.004
WANG W H. Cell culture is still a long way ahead[J]. China's Rural Science and Technology, 2020(12): 20−23. doi: 10.3969/j.issn.1005-9768.2020.12.004
|
[82] |
RUBIO N R, FISH K D, TRIMMER B A, et al. Possibilities for engineered insect tissue as a food source[J]. Frontiers in Sustainable Food Systems, 2019, 3:24.
|
[83] |
CHODKOWSKA K A, WÓDZ K, WOJCIECHOWSKI J. Sustainable future protein foods:The challenges and the future of cultivated meat[J]. Foods,2022,11(24):4008.
|
1. |
常旭龙,周青霞,马文聪,詹圳铭,姚欣鑫,周爱梅. 不同发酵剂发酵酸奶的风味及理化特性的研究. 食品工业科技. 2025(08): 263-271 .
![]() | |
2. |
徐畅,刘天一,刘文佳,张俐敏,莫继先. 微生物胞外多糖的来源、生物合成及功能研究进展. 生物技术进展. 2024(03): 368-376 .
![]() |