ZHANG Zhixia, MA Xinmiao, XU Hui, et al. Research Status and Prospects of Artificial Meat Technology[J]. Science and Technology of Food Industry, 2024, 45(17): 416−425. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090185.
Citation: ZHANG Zhixia, MA Xinmiao, XU Hui, et al. Research Status and Prospects of Artificial Meat Technology[J]. Science and Technology of Food Industry, 2024, 45(17): 416−425. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090185.

Research Status and Prospects of Artificial Meat Technology

More Information
  • Received Date: September 18, 2023
  • Available Online: June 30, 2024
  • The continuous growth of the global population has led to a continuous rise in the demand for meat products. However, traditional meat production methods are unable to meet the huge demand of the people, and also bring about a series of problems such as environmental pressure, animal welfare, and so on. Artificial meat technology is expected to solve these problems. At present, artificial meat can be divided into three categories: Plant protein meat, mushroom protein meat, and cell culture meat. This study mainly summarizes the production process, advantages, and market prospects of three types of artificial meat, analyzes the difficulties and technical challenges, and discusses the corresponding development proposals and solution strategies, with a view to provide references for the research of artificial meat and its industrialization.
  • [1]
    Food and Agriculture Organization of the United Nations. How to feed the world in 2050[R]. Rome:FAO, 2009.
    [2]
    WARNER R D. Review:Analysis of the process and drivers for cellular meat production[J]. Animal,2019,13(12):3041−3058. doi: 10.1017/S1751731119001897
    [3]
    WILDING M D. Textured and shaped oilseed protein food products[J]. Journal of the American Oil Chemists' Society,1971,48(9):489−491. doi: 10.1007/BF02544667
    [4]
    POST M J. Cultured beef:Medical technology to produce food[J]. Journal of the Science of Food and Agriculture,2014,94(6):1039−1041. doi: 10.1002/jsfa.6474
    [5]
    丁世杰, 李春保, 周光宏. 细胞培养肉技术及产业化进展与挑战[J]. 中国食品学报,2022,22(12):33−41. [DING S J, LI C B, ZHOU G H, et al. Cell culture meat technology and industrialization progress and challenges[J]. Chinese Journal of Food Science,2022,22(12):33−41.]

    DING S J, LI C B, ZHOU G H, et al. Cell culture meat technology and industrialization progress and challenges[J]. Chinese Journal of Food Science, 2022, 22(12): 33−41.
    [6]
    陈洪雨, 令狐昌丽, 罗颖, 等. 食用真菌蛋白制备及其应用研究进展[J]. 食用菌学报,2021,28(6):188−198. [CHEN H Y, LINGHU C L, LUO Y, et al. Progress on the preparation and application of edible fungal protein[J]. Journal of Edible Fungi,2021,28(6):188−198.]

    CHEN H Y, LINGHU C L, LUO Y, et al. Progress on the preparation and application of edible fungal protein[J]. Journal of Edible Fungi, 2021, 28(6): 188−198.
    [7]
    BERGER R G, BORDEWICK S, KRAHE N K, et al. Mycelium vs. fruiting bodies of edible fungi-A comparison of metabolites[J]. Microorganisms,2022,10(7):1379. doi: 10.3390/microorganisms10071379
    [8]
    薛薇. 植物蛋白肉的研究现状[J]. 食品工程,2021(4):33−36. [XUE W. Research status of plant protein meat[J]. Food Engineering,2021(4):33−36.]

    XUE W. Research status of plant protein meat[J]. Food Engineering, 2021(4): 33−36.
    [9]
    陶穀. 清异录[M]. 上海:上海古籍出版社, 2012:38. [TAO G. Qing Yi Lu [M]. Shanghai:Shanghai Ancient Books Publishing House, 2012:38.]

    TAO G. Qing Yi Lu [M]. Shanghai: Shanghai Ancient Books Publishing House, 2012: 38.
    [10]
    KINSELLA J E, FRANZEN K L. Texturized proteins:Fabrication, flavoring, and nutrition[J]. Critical Reviews in Food Science and Nutrition,1978,10(2):147−207. doi: 10.1080/10408397809527248
    [11]
    李顺秀, 孙保剑, 袁伟岗, 等. 浅析植物肉研究进展[J]. 食品工业,2023,44(4):247−252. [LI S X, SUN B J, YUAN W G, et al. An analysis of the research progress of plant meat[J]. Food Industry,2023,44(4):247−252.]

    LI S X, SUN B J, YUAN W G, et al. An analysis of the research progress of plant meat[J]. Food Industry, 2023, 44(4): 247−252.
    [12]
    DU Q, TU M, LIU J, et al. Plant-based meat analogs and fat substitutes, structuring technology and protein digestion:A review[J]. Food Research International,2023(170):112959.
    [13]
    唐伟挺, 余晓盈, 邹苑, 等. 人造肉的研究现状、挑战及展望[J]. 食品研究与开发,2022,43(6):190−199. [TANG W T, YU X Y, ZOU Y, et al. Research status, challenges and prospects of artificial meat[J]. Food Research and Development,2022,43(6):190−199.]

    TANG W T, YU X Y, ZOU Y, et al. Research status, challenges and prospects of artificial meat[J]. Food Research and Development, 2022, 43(6): 190−199.
    [14]
    KUMAR P, CHATLI M K, MEHTA N, et al. Meat analogues:Health promising sustainable meat substitutes[J]. Critical Reviews in Food Science and Nutrition,2017,57(5):923−932. doi: 10.1080/10408398.2014.939739
    [15]
    WANG Y, CAI W, LI L, et al. Recent advances in the processing and manufacturing of plant-based meat[J]. Journal of Agricultural and Food Chemistry,2023,71(3):1276−1290.
    [16]
    高智利, 杨军飞. 植物蛋白肉的研究进展与发展趋势[J]. 食品安全导刊,2021(12):184−186. [GAO C L, YANG J F. Research progress and development trend of plant protein meat[J]. Food Safety Journal,2021(12):184−186.]

    GAO C L, YANG J F. Research progress and development trend of plant protein meat[J]. Food Safety Journal, 2021(12): 184−186.
    [17]
    欧雨嘉, 郑明静, 曾红亮, 等. 植物蛋白肉研究进展[J]. 食品与发酵工业,2020,46(12):299−305. [OU Y J, ZHENG M J, ZENG H L, et al. Research progress of vegetable protein meat[J]. Food and Fermentation Industry,2020,46(12):299−305.]

    OU Y J, ZHENG M J, ZENG H L, et al. Research progress of vegetable protein meat[J]. Food and Fermentation Industry, 2020, 46(12): 299−305.
    [18]
    GU B Y, RYU G H. Effects of barrel temperature and addition of corn starch on physical properties of extruded soy protein isolate[J]. Journal of the Korean Society of Food Science and Nutrition,2018,47(4):485−491. doi: 10.3746/jkfn.2018.47.4.485
    [19]
    JIMENEZ-COLMENERO F, COFRADES S, HERRERO A M, et al. Konjac gel fat analogue for use in meat products:Comparison with pork fats[J]. Food Hydrocolloids,2012,26(1):63−72. doi: 10.1016/j.foodhyd.2011.04.007
    [20]
    岳程程, 王哲, 佟丽凤, 等. 水分添加量对高水分挤压大豆粕植物蛋白肉品质及结构特性的影响[J]. 食品工业科技,2023,44(22):52−60. [YUE C C, WANG Z, TONG L F, et al. Effect of moisture addition on the quality and structural characteristics of vegetable protein meat with high moisture extruded soybean meal[J]. Food Industry Science and Technology,2023,44(22):52−60.]

    YUE C C, WANG Z, TONG L F, et al. Effect of moisture addition on the quality and structural characteristics of vegetable protein meat with high moisture extruded soybean meal[J]. Food Industry Science and Technology, 2023, 44(22): 52−60.
    [21]
    CARMO C, KNUTSEN S H, MALIZIA G, et al. Meat analoues from a faba bean concentraie can be generaied by hioh moistue extrusion[J]. Future Foods,2021,3:100014. doi: 10.1016/j.fufo.2021.100014
    [22]
    陶相锦, 黄立强, 王冬玲, 等. 植物蛋白肉生产的关键因素分析[J]. 食品安全导刊,2023(30):160−162. [TAO X J, HUANG L Q, WANG D L, et al. Analysis of key factors in the production of vegetable protein meat[J]. Food Safety Journal,2023(30):160−162.]

    TAO X J, HUANG L Q, WANG D L, et al. Analysis of key factors in the production of vegetable protein meat[J]. Food Safety Journal, 2023(30): 160−162.
    [23]
    ISMAIL I, HWANG Y H, JOO S T, et al. Meat analog as future food:A review[J]. Journal of Animal Science and Technology,2020,62(2):111−120. doi: 10.5187/jast.2020.62.2.111
    [24]
    代欣欣. 植物肉生产原料、技术及产品特性研究进展[J]. 肉类研究,2023,37(8):61−69. [DAI X X. Progress in the study of raw materials, technology and product characteristics of plant-based meat production[J]. Meat Research,2023,37(8):61−69.]

    DAI X X. Progress in the study of raw materials, technology and product characteristics of plant-based meat production[J]. Meat Research, 2023, 37(8): 61−69.
    [25]
    THAVAMANI A, SFERRA T J, SANKARARAMAN S, et al. Meet the meat alternatives:The value of alternative protein sources[J]. Current Nutrition Reports,2020,9(4):346−355.
    [26]
    REIHANI S F S, KHOSRAVI-DARANI K. Influencing factors on single cell protein production by submerged fermentation:A review[J]. Electronic Journal of Biotechnology,2018,37:34−40.
    [27]
    HASHEMPOUR-BALTORK F, KHOSRAVI-DARANI K, HOSSEINI H, et al. Mycoproteins as safe meat substitutes[J]. Journal of Cleaner Production,2020,253:119958. doi: 10.1016/j.jclepro.2020.119958
    [28]
    FINNIGAN T, NEEDHAM L, ABBOTT C. Mycoprotein:A healthy new protein with a low environmental impact[J]. Sustainable Protein Sources,2017:305−325.
    [29]
    SOUMYA G, RUSYN I, DMYTRUK O V, et al. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons[J]. Frontiers in Bioengineering and Biotechnology,2023(11):1106973.
    [30]
    SUMAN G, NUPUR M, ANURADHA S, et al. Single cell protein production:A review[J]. International Journal of Current Microbiology and Applied Sciences,2015,4:251−262.
    [31]
    RAVINDRA P, RUDRAVARAM R, CHANDEL A K, et al. Bio (single cell) protein:Issues of production, toxins and commercialisation status[J]. Agricultural Wastes,2009:129−154.
    [32]
    刘梦然, 毛衍伟. 植物蛋白素肉原料与工艺的研究进展[J]. 食品与发酵工业,2021,47(4):293−298. [LIU M R, MAO Y W. Research progress of raw materials and technology of vegetable protein meat[J]. Food and Fermentation Industry,2021,47(4):293−298.]

    LIU M R, MAO Y W. Research progress of raw materials and technology of vegetable protein meat[J]. Food and Fermentation Industry, 2021, 47(4): 293−298.
    [33]
    王广交, 辛嘉英, 崔添玉, 等. 去除单细胞蛋白中核酸方法的研究[J]. 饲料研究,2019,42(3):45−48. [WANG G J, XIN J Y, CUI T Y, et al. Elimination of nucleic acids from single-cell proteins[J]. Feed Research,2019,42(3):45−48.]

    WANG G J, XIN J Y, CUI T Y, et al. Elimination of nucleic acids from single-cell proteins[J]. Feed Research, 2019, 42(3): 45−48.
    [34]
    ΦVERLAND M. 利用可再生物质生产高品质单细胞蛋白质的生物技术[J]. 饲料工业,2019,40(16):60−64. [ΦVERLAND M. Biotechnology for the production of high-quality single-cell proteins using renewable substances[J]. Feed Industry,2019,40(16):60−64.]

    ΦVERLAND M. Biotechnology for the production of high-quality single-cell proteins using renewable substances[J]. Feed Industry, 2019, 40(16): 60−64.
    [35]
    HASHEMPOUR-BALTORK F, HOSSEINI H, SHOJAEE-ALIABADI S, et al. Drug resistance and the prevention strategies in food borne bacteria:An update review[J]. Advanced Pharmaceutical Bulletin,2019,9(3):335−347. doi: 10.15171/apb.2019.041
    [36]
    DENNY A, BUTTRISS J. Plant foods and health:Focus on plant bioactives[J]. Plant Foods& Health Focus on Plant Bioactives,2007,4:1−64.
    [37]
    张金霞, 陈强, 黄晨阳, 等. 食用菌产业发展历史、现状与趋势[J]. 菌物学,2015,34(4):524−540. [ZHANG J X, CHEN Q, HUANG C Y, et al. Development history, current situation and trend of edible fungus industry[J]. Journal of Microbiology,2015,34(4):524−540.]

    ZHANG J X, CHEN Q, HUANG C Y, et al. Development history, current situation and trend of edible fungus industry[J]. Journal of Microbiology, 2015, 34(4): 524−540.
    [38]
    SOUZA F P F, NAIR R B, ANDERSSON D, et al. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi[J]. Fungal Biology & Biotechnology,2018,5(1):1−10.
    [39]
    KIM K, CHOI B, LEE I, et al. Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue[J]. Journal of the Science of Food and Agriculture,2011,91(9):1561−1568. doi: 10.1002/jsfa.4348
    [40]
    SINKE P, SWARTZ E, SANCTORUM H, et al. Ex-antelife cycle assessment of commercial-scale cultivated meat production in 2030[J]. The International Journal of Life Cycle Assessment,2023,28:234−254. doi: 10.1007/s11367-022-02128-8
    [41]
    DOMINGO J L, NADAL M. Carcinogenicity of consumption of red meat and processed meat:A review of scientific news since the IARC decision[J]. Food and Chemical Toxicology,2017,105:256−261. doi: 10.1016/j.fct.2017.04.028
    [42]
    MICHA R, WALLACE S K, MOZAFFARIAN D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus:A systematic review and meta-analysis[J]. Circulation,2010,121(21):2271−2283. doi: 10.1161/CIRCULATIONAHA.109.924977
    [43]
    DU H, GUO Y, BENNETT D A, et al. Red meat, poultry and fish consumption and risk of diabetes:A 9 year prospective cohort study of the China Kadoorie Biobank[J]. Diabetologia,2020,63(4):767−779. doi: 10.1007/s00125-020-05091-x
    [44]
    DOMINGO J L, NADAL M. Carcinogenicity of consumption of red and processed meat:What about environmental contaminants?[J]. Environmental Research,2016,145:109−115. doi: 10.1016/j.envres.2015.11.031
    [45]
    GONZÁLEZ N, MARQUÈS M, NADAL M, et al. Meat consumption:Which are the current global risks? A review of recent (2010-2020) evidences[J]. Food Research International,2020,137:109341. doi: 10.1016/j.foodres.2020.109341
    [46]
    ONG K J, JOHNSTON J, DATAR I, et al. Food safety considerations and research priorities for the cultured meat and seafood industry[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):5421−5448. doi: 10.1111/1541-4337.12853
    [47]
    ZHENG Y Y, SHI Y F, ZHU H Z, et al. Quality evaluation of cultured meat with plant protein scaffold[J]. Food Research International,2022,161:111818. doi: 10.1016/j.foodres.2022.111818
    [48]
    SONG W J, LIU P P, ZHENG Y Y, et al. Production of cultured fat with peanut wire-drawing protein scaffold and quality evaluation based on texture and volatile compounds analysis[J]. Food Research International,2022,160:111636. doi: 10.1016/j.foodres.2022.111636
    [49]
    BODIOU V, MOUTSATSOU P, POST M J. Microcarriers for upscaling cultured meat production[J]. Frontiers in Nutrition,2020(7):10.
    [50]
    REISS J, ROBERTSON S, SUZUKI M. Cell sources for cultivated meat:Applications and considerations throughout the production workflow[J]. Int J Mol Sci,2021,22(14):7513. doi: 10.3390/ijms22147513
    [51]
    SEAH J S H, SINGH S, TAN L P, et al. Scaffolds for the manufacture of cultured meat[J]. Crit Rev Biotechnol,2021,42(2):311−323.
    [52]
    OZHAVA D, BHATIA M, FREMAN J, et al. Sustainable cell sources for cultivated meat[J]. Journal of Biomedical Research & Environmental Sciences,2022,3:1382−1388.
    [53]
    SHI X, GARRY D J. Muscle stem cells in development, regeneration, and disease[J]. Genes & Development,2006,20(13):1692−1708.
    [54]
    KUMAR P, SHARMA N, SHARMA S, et al. In-vitro meat:A promising solution for sustainability of meat sector[J]. Journal of Animal Science and Technology, 2021, 63(4):693-724. [53].
    [55]
    PÉREZ-SERRANO R M, GONZÁLEZ-DÁVALOS M L, LOZANO-FLORES C, et al. PPAR agonists promote the differentiation of porcine bone marrow mesenchymal stem cells into the adipogenic and myogenic lineages[J]. Cells Tissues Organs,2016,203:153−172.
    [56]
    RAMÍREZ-ESPINOSA J J, GONZÁLEZ-DÁVALOS L, SHIMADA A, et al. Bovine (bostaurus) bone marrow mesenchymal cell differentiation to adipogenic and myogenic lineages[J]. Cells Tissues Organs,2016,201(1):51−64. doi: 10.1159/000440878
    [57]
    ZAGURY Y, IANOVICI I, LANDAU S, et al. Engineered marble-like bovine fat tissue for cultured meat[J]. Communication Biology,2022,5(1):927. doi: 10.1038/s42003-022-03852-5
    [58]
    MACHOUR M, HEN N, GOLDFRACHT I, et al. Print-and-grow within a novel support material for 3D bioprinting and post-printing tissue growth[J]. Advanced Science,2022,9(34):e2200882. doi: 10.1002/advs.202200882
    [59]
    BANERJEE K, JANA T, GHOSH Z, et al. PSCRIdb:A database of regulatory interactions and networks of pluripotent stem cell lines[J]. Journal of Biosciences,2020,45:53. doi: 10.1007/s12038-020-00027-4
    [60]
    郑欧阳, 孙钦秀, 刘书成, 等. 细胞培养肉的挑战与发展前景[J]. 食品与发酵工业,2021,47(9):314−320. [ZHENG O Y, SUN Q X, LIU S C, et al. Challenges and prospects of cell culture meat[J]. Food and Fermentation Industry,2021,47(9):314−320.]

    ZHENG O Y, SUN Q X, LIU S C, et al. Challenges and prospects of cell culture meat[J]. Food and Fermentation Industry, 2021, 47(9): 314−320.
    [61]
    DATAR I, BETTI M. Possibilities for an in vitro meat production system[J]. Innovative Food Science and Emerging Technologies,2010,11(1):13−22. doi: 10.1016/j.ifset.2009.10.007
    [62]
    BENJAMINSON M A, GILCHRIEST J A, LORENZ M, et al. In vitro edible muscle protein production system (MPPS):Stage 1, fish[J]. Acta Astronautica,2002,51:879−889. doi: 10.1016/S0094-5765(02)00033-4
    [63]
    LEI Q Z, LI M, DU G C, et al. An effective cytokine combination for ex vivo expansion of porcine muscle stem cells[J]. Food Bioscience,2022,46:101571. doi: 10.1016/j.fbio.2022.101571
    [64]
    关欣, 汪丹丹, 方佳华, 等. 细胞培养肉技术:研究进展与未来展望[J]. 中国食品学报,2022,22(12):1−13. [GUAN X, WANG D D, FANG J H, et al. Cell culture meat technique:Research progress and future prospects[J]. Chinese Journal of Food Science,2022,22(12):1−13.]

    GUAN X, WANG D D, FANG J H, et al. Cell culture meat technique: Research progress and future prospects[J]. Chinese Journal of Food Science, 2022, 22(12): 1−13.
    [65]
    GUO Y, DING S J, DING X, et al. Effects of selected flavonoids on cell proliferation and differentiation of porcine muscle stem cells for cultured meat production[J] Food Res Int, 2022, 160:111459.
    [66]
    BEN-ARYE T, SHANDALOV Y, BEN-SHAUL S, et al. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat[J]. Nature Food,2020,1:210−220. doi: 10.1038/s43016-020-0046-5
    [67]
    POST M J, LEVENBERG S, KAPLAN D L, et al. Scientific, sustainability and regulatory challenges of cultured meat[J]. Nature Food,2020,1:403−415. doi: 10.1038/s43016-020-0112-z
    [68]
    ONG S, CHOUDHURY D, NAING W M. Cell-based meat:Current ambiguities with nomenclature[J]. Trends in Food Science Technology,2020,102:223−231. doi: 10.1016/j.jpgs.2020.02.010
    [69]
    KIM W, LEE H, LEE J, et al. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographicalcues[J]. Biomaterials, 2020, 230:119632.
    [70]
    OSTROVIDOV S, SHI X, ZHANG L, et al. Myotube formation on gelatin nanofibers–multi-walledcarbon nanotubes hybrid scaffolds[J]. Biomaterials,2014,35:6268−6277.
    [71]
    TOMIYAMA A J, KAWECKI N S, ROSENFELD D L, et al. Bridging the gap between the science of cultured meat and public perceptions[J]. Trends in Food Science & Technology,2020,104:144−152.
    [72]
    JANDYAL M, MALAV O P, CHATLI M K, et al. 3D printing of meat:A new frontier of food from download to delicious:A review[J]. International Journal of Current Microbiology and Applied Sciences,2021,10:2095−2111.
    [73]
    MANDRYCKY C, WANG Z, KIM K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances,2016,34:422−434. doi: 10.1016/j.biotechadv.2015.12.011
    [74]
    JIAO A, TROSPER N E, YANG H S, et al. Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control[J]. ACS Nano,2014,8(5):4430−4439. doi: 10.1021/nn4063962
    [75]
    KIM E S, AHN E H, DVIR T, et al. Emerging nanotechnology approaches in tissue engineering and regenerative medicine[J]. International Journal of Nanomedicin,2014,9(Suppl 1):1−5.
    [76]
    ZHU H, WU Z, DING X, et al. Production of cultured meat from pig muscle stem cells[J]. Biomaterials,2022,287:121650. doi: 10.1016/j.biomaterials.2022.121650
    [77]
    PARK Y H, GONG S P, KIM H Y, et al. Development of a serum-free defined system employing growth factors for preantral follicle culture[J]. Molecular Reproduction and Development,2013,80:725−733. doi: 10.1002/mrd.22204
    [78]
    STOUT A J, MIRLIANI A B, WHITE E C, et al. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat[J]. Communications Biology,2022,5:466. doi: 10.1038/s42003-022-03423-8
    [79]
    HENNINGSEN J, RIGBOLT K T, BLAGOEV B, et al. Dynamics of the skeletal muscle secretome during myoblast differentiation[J]. Molecular & Cellular Proteomics,2010,9(11):2482−2496.
    [80]
    KADIM I T, MAHGOUB O, BAQIR S, et al. Cultured meat from muscle stem cells:A review of challenges and prospects[J]. J Integr Agric,2015,14(2):222−233. doi: 10.1016/S2095-3119(14)60881-9
    [81]
    王雯慧. 细胞培养肉前路仍漫长[J]. 中国农村科技,2020(12):20−23. [WANG W H. Cell culture is still a long way ahead[J]. China's Rural Science and Technology,2020(12):20−23.] doi: 10.3969/j.issn.1005-9768.2020.12.004

    WANG W H. Cell culture is still a long way ahead[J]. China's Rural Science and Technology, 2020(12): 20−23. doi: 10.3969/j.issn.1005-9768.2020.12.004
    [82]
    RUBIO N R, FISH K D, TRIMMER B A, et al. Possibilities for engineered insect tissue as a food source[J]. Frontiers in Sustainable Food Systems, 2019, 3:24.
    [83]
    CHODKOWSKA K A, WÓDZ K, WOJCIECHOWSKI J. Sustainable future protein foods:The challenges and the future of cultivated meat[J]. Foods,2022,11(24):4008.
  • Other Related Supplements

  • Cited by

    Periodical cited type(2)

    1. 常旭龙,周青霞,马文聪,詹圳铭,姚欣鑫,周爱梅. 不同发酵剂发酵酸奶的风味及理化特性的研究. 食品工业科技. 2025(08): 263-271 . 本站查看
    2. 徐畅,刘天一,刘文佳,张俐敏,莫继先. 微生物胞外多糖的来源、生物合成及功能研究进展. 生物技术进展. 2024(03): 368-376 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (320) PDF downloads (48) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return