Citation: | JIANG Yuzhen, LIU Junxi, YANG Yang, et al. Exploring the Antidepressant Effects of Plant Polysaccharides on Gut Microbiota Based on the Gut-Brain Axis[J]. Science and Technology of Food Industry, 2024, 45(17): 406−415. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090169. |
[1] |
TYAGI P, TASLEEM M, PRAKASH S, et al. Intermingling of gut microbiota with brain:Exploring the role of probiotics in battle against depressive disorders[J]. Food Research International,2020,137:109489. doi: 10.1016/j.foodres.2020.109489
|
[2] |
HU S, LI A, HUANG T, et al. Gut microbiota changes in patients with bipolar depression[J]. Advanced Science,2019,6(14):1900752. doi: 10.1002/advs.201900752
|
[3] |
GUCEK N K, SELIC P. Depression in intimate partner violence victims in slovenia:A crippling pattern of factors identified in family practice attendees[J]. International Journal of Environmental Research and Public Health,2018,15(2):210. doi: 10.3390/ijerph15020210
|
[4] |
HAMEL C, LANG E, MORISSETTE K, et al. Screening for depression in women during pregnancy or the first year postpartum and in the general adult population:A protocol for two systematic reviews to update a guideline of the Canadian task force on preventive health care[J]. Systematic Reviews,2019,8(1):27. doi: 10.1186/s13643-018-0930-3
|
[5] |
HERRMAN H, PATEL V, KIELING C, et al. Time for united action on depression:A lancet-world psychiatric association commission[J]. Lancet,2022,399(10328):957−1022. doi: 10.1016/S0140-6736(21)02141-3
|
[6] |
MORSHEDI M, VALENLIA K B, HOSSEINIFARD E S, et al. Beneficial psychological effects of novel psychobiotics in diabetic rats:The interaction among the gut, blood and amygdala[J]. Journal of Nutritional Biochemistry,2018,57:145−152. doi: 10.1016/j.jnutbio.2018.03.022
|
[7] |
WATTS D, PFAFFENSELLER B, WOLLENHAUPT-AGUIAR B, et al. Agmatine as a potential therapeutic intervention in bipolar depression:the preclinical landscape[J]. Expert Opinion on Therapeutic Targets,2019,23(4):327−339. doi: 10.1080/14728222.2019.1581764
|
[8] |
CHEN Y L, XIAO N, CHEN Y X, et al. Semen sojae praeparatum alters depression-like behaviors in chronic unpredictable mild stress rats via intestinal microbiota[J]. Food Research International, 2021, 150(Pt B):110808.
|
[9] |
SETIAWAN E, WILSON A A, MIZRAHI R, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes[J]. JAMA Psychiatry,2015,72(3):268−275. doi: 10.1001/jamapsychiatry.2014.2427
|
[10] |
WOELFER M, KASTIES V, KAHLFUSS S, et al. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder[J]. Neuroscience,2019,403:93−110. doi: 10.1016/j.neuroscience.2018.03.034
|
[11] |
SCHEEPERS I M, CRYAN J F, BASTIAANSSEN T, et al. Natural compulsive-like behaviour in the deer mouse (Peromyscus maniculatus bairdii) is associated with altered gut microbiota composition[J]. European Journal of Neuroscience,2020,51(6):1419−1427. doi: 10.1111/ejn.14610
|
[12] |
BORGHI E, VIGNOLI A. Rett syndrome and other neurodevelopmental disorders share common changes in gut microbial community:A descriptive review[J]. International Journal of Molecular Sciences,2019,20(17):4160. doi: 10.3390/ijms20174160
|
[13] |
GUO L, XIAO P L, ZHANG X X, et al. Inulin ameliorates schizophrenia via modulation of the gut microbiota and anti-inflammation in mice[J]. Food & Function,2021,12(3):1156−1175.
|
[14] |
MORAIS L H, IV H L S, MAZMANIAN S K. The gut microbiota-brain axis in behaviour and brain disorders[J]. Nature Reviews Microbiology,2020,19(4):241−255.
|
[15] |
BUTLER M I, CRYAN J F, DINAN T G. Man and the microbiome:A new theory of everything?[J]. Annual Review of Clinical Psychology,2019,15:371−398. doi: 10.1146/annurev-clinpsy-050718-095432
|
[16] |
WINTER G, HART R A, CHARLESWORTH R, et al. Gut microbiome and depression:What we know and what we need to know[J]. Reviews in the Neurosciences,2018,29(6):629−643. doi: 10.1515/revneuro-2017-0072
|
[17] |
DOWLING L R, STRAZZARI M R, KEELY S, et al. Enteric nervous system and intestinal epithelial regulation of the gut-brain axis[J]. Journal of Allergy and Clinical Immunology,2022,150(3):513−522. doi: 10.1016/j.jaci.2022.07.015
|
[18] |
LÜ F, CHEN S, WANG L, et al. The role of microbiota in the pathogenesis of schizophrenia and major depressive disorder and the possibility of targeting microbiota as a treatment option[J]. Oncotarget,2017,8(59):100899−100907. doi: 10.18632/oncotarget.21284
|
[19] |
DI T, CHEN G J, SUN Y, et al. Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra[J]. Journal of Functional Foods,2017,28:64−75. doi: 10.1016/j.jff.2016.11.005
|
[20] |
YUAN D, LI C, HUANG Q, et al. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides[J]. Critical Reviews in Food Science and Nutrition,2023,63(22):5890−5910. doi: 10.1080/10408398.2022.2025535
|
[21] |
GUO Y, CHEN X, GONG P, et al. Advances in the mechanisms of polysaccharides in alleviating depression and its complications[J]. Phytomedicine,2023,109:154566. doi: 10.1016/j.phymed.2022.154566
|
[22] |
MIZUSHIGE T. Neuromodulatory peptides:Orally active anxiolytic-like and antidepressant-like peptides derived from dietary plant proteins[J]. Peptides,2021,142:170569. doi: 10.1016/j.peptides.2021.170569
|
[23] |
YU Y, SHEN M Y, SONG Q Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources:a review[J]. Carbohydrate Polymers,2018,183:91−101. doi: 10.1016/j.carbpol.2017.12.009
|
[24] |
黄媛媛, 陈华国, 谢文, 等. 多糖与肠道菌群相互作用及其构效关系研究进展[J]. 微生物学通报,2022,49(6):2325−2346. [HUANG Y Y, CHEN H G, XIE W, et al. Interaction between polysaccharide and intestinal flora and its structure-effect relationship:A review[J]. Microbiology China,2022,49(6):2325−2346.]
HUANG Y Y, CHEN H G, XIE W, et al. Interaction between polysaccharide and intestinal flora and its structure-effect relationship: A review[J]. Microbiology China, 2022, 49(6): 2325−2346.
|
[25] |
LIU L, WANG H, CHEN X, et al. Gut microbiota and its metabolites in depression:From pathogenesis to treatment[J]. Ebiomedicine,2023,90:104527. doi: 10.1016/j.ebiom.2023.104527
|
[26] |
DALILE B, Van OUDENHOVE L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nature Reviews Gastroenterology & Hepatology,2019,16(8):461−478.
|
[27] |
YAO Y, CAI X, FEI W, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism[J]. Critical Reviews in Food Science and Nutrition,2022,62(1):1−12. doi: 10.1080/10408398.2020.1854675
|
[28] |
TIAN P, O'RIORDAN K J, LEE Y K, et al. Towards a psychobiotic therapy for depression:Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice[J]. Neurobiol Stress,2020,12:100216. doi: 10.1016/j.ynstr.2020.100216
|
[29] |
MORRISON D J, PRESTON T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut microbes,2016,7(3):189−200. doi: 10.1080/19490976.2015.1134082
|
[30] |
LOUIS P, FLINT H J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. Fems Microbiology Letters,2009,294(1):1−8. doi: 10.1111/j.1574-6968.2009.01514.x
|
[31] |
VITAL M, HOWE A C, TIEDJE J M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data[J]. Journal of Microbiology,2014,5(2):e889.
|
[32] |
刘萌萌, 张伊, 张耀元, 等. 天麻多糖对脂多糖诱导抑郁小鼠的作用及机制研究[J]. 中国药师,2021,24(11):2018−2023. [LIU M M, ZHANG Y, ZHANG Y Y, et al. Effects and potential mechanisms of Gastrodia elata polysaccharides in LPS-induced depression model mice[J]. China Pharmacist,2021,24(11):2018−2023.]
LIU M M, ZHANG Y, ZHANG Y Y, et al. Effects and potential mechanisms of Gastrodia elata polysaccharides in LPS-induced depression model mice[J]. China Pharmacist, 2021, 24(11): 2018−2023.
|
[33] |
SHEN Y, YANG X, LI G, et al. The change of gut microbiota in MDD patients under SSRIs treatment[J]. Scientific Reports,2021,11(1):14918. doi: 10.1038/s41598-021-94481-1
|
[34] |
ANTONIUK S, BIJATA M, PONIMASKIN E, et al. Chronic unpredictable mild stress for modeling depression in rodents:Meta-analysis of model reliability[J]. Neuroscience and Biobehavioral Reviews,2019,99:101−116. doi: 10.1016/j.neubiorev.2018.12.002
|
[35] |
YU S, WANG L, JING X, et al. Features of gut microbiota and short-chain fatty acids in patients with first-episode depression and their relationship with the clinical symptoms[J]. Frontiers in Psychology,2023,14:1088268. doi: 10.3389/fpsyg.2023.1088268
|
[36] |
YAN T, NIAN T, LIAO Z, et al. Antidepressant effects of a polysaccharide from okra (Abelmoschus esculentus (L) Moench) by anti-inflammation and rebalancing the gut microbiota[J]. International Journal of Biological Macromolecules,2020,144:427−440. doi: 10.1016/j.ijbiomac.2019.12.138
|
[37] |
SUN S S, WANG K, MA K, et al. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota[J]. Chinese Journal of Natural Medicines,2019,17(1):3−14. doi: 10.1016/S1875-5364(19)30003-2
|
[38] |
陈可琢, 陈实, 任洁贻, 等. 茯苓酸性多糖抗抑郁作用及其调节神经递质和NLRP3通路机制研究[J]. 中国中药杂志,2021,46(19):5088−5095. [CHEN K Z, CHEN S, REN J Y, et al. Antidepressant effect of acidic polysaccharides from Poria and their regulation of neurotransmitters and NLRP3 pathway[J]. China Journal of Chinese Materia Medica,2021,46(19):5088−5095.]
CHEN K Z, CHEN S, REN J Y, et al. Antidepressant effect of acidic polysaccharides from Poria and their regulation of neurotransmitters and NLRP3 pathway[J]. China Journal of Chinese Materia Medica, 2021, 46(19): 5088−5095.
|
[39] |
YANG Y, FAN L, PENG Y, et al. Alcohol-soluble polysaccharides from Dendrobium officinale flowers as an antidepressant by regulating the gut-brain axis[J]. International Journal of Biological Macromolecules,2022,216:836−849. doi: 10.1016/j.ijbiomac.2022.07.220
|
[40] |
ZHANG Y, SUN Y, LIU Y, et al. Polygonum sibiricum polysaccharides alleviate chronic unpredictable mild stress-induced depressive-like behaviors by regulating the gut microbiota composition and SCFAs levels[J]. Journal of Functional Foods,2023,101:105411. doi: 10.1016/j.jff.2023.105411
|
[41] |
XIONG L, WU Y, SHU Q, et al. The pharmacological mechanism of Xiaoyaosan polysaccharide reveals improvement of CUMS-induced depression-like behavior by carbon source-triggered butyrate-producing bacteria[J]. Journal of Applied Microbiology,2023,134(No.4):d52.
|
[42] |
CHEN X L, CAI B Y, WANG J, et al. Mulberry leaf-derived polysaccharide modulates the immune response and gut microbiota composition in immunosuppressed mice[J]. Journal of Functional Foods,2021,83:104545. doi: 10.1016/j.jff.2021.104545
|
[43] |
YANG Y B, LI L L, XU C J, et al. Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis[J]. Gut,2021,70(8):1495−1506. doi: 10.1136/gutjnl-2020-320777
|
[44] |
TROUBAT R, BARONE P, LEMAN S, et al. Neuroinflammation and depression:A review[J]. European Journal of Neuroscience,2021,53(1):151−171. doi: 10.1111/ejn.14720
|
[45] |
STEVENS B R, GOEL R, SEUNGBUM K, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression[J]. Gut,2018,67(8):1555−1557.
|
[46] |
ZHANG M, LI A, YANG Q, et al. Matrine alleviates depressive-like behaviors via modulating microbiota-gut-brain axis in CUMS-induced mice[J]. Journal of Translational Medicine,2023,21(1):1−18. doi: 10.1186/s12967-022-03835-4
|
[47] |
WANG M, SUN P, LI Z, et al. Eucommiae cortex polysaccharides attenuate gut microbiota dysbiosis and neuroinflammation in mice exposed to chronic unpredictable mild stress:beneficial in ameliorating depressive-like behaviors[J]. Journal of Affective Disorders,2023,334:278−292. doi: 10.1016/j.jad.2023.04.117
|
[48] |
WANG X, WANG W, WANG L, et al. Lentinan modulates intestinal microbiota and enhances barrier integrity in a piglet model challenged with lipopolysaccharide[J]. Food & Function,2019,10(1):479−489.
|
[49] |
申丰铭. 从ROS-Calpain-炎症通路研究多花黄精多糖改善小鼠抑郁样行为的作用机制[D]. 合肥:安徽中医药大学, 2021. [SHEN F M. Polysaccharides from Polygonatum cyrtonema Hua prevent depression-like behaviors in mice through regulating Ros-Calpain-inflammation pathway[D]. Hefei:Anhui University of Chinese Medicine, 2021.]
SHEN F M. Polysaccharides from Polygonatum cyrtonema Hua prevent depression-like behaviors in mice through regulating Ros-Calpain-inflammation pathway[D]. Hefei: Anhui University of Chinese Medicine, 2021.
|
[50] |
史云静, 李玉霞. 茯苓多糖通过NF-κB和NLRP3信号通路调节脂多糖引起的焦虑和抑郁样行为[J]. 食品工业科技,2023,44(12):371−377. [SHI Y J, LI Y X. Poria cocos polysaccharides regulate anxiety and depression-like behaviors induced by lipopolysaccharide through NF-κB and NLRP3 signaling pathways[J]. Science and Technology of Food Industry,2023,44(12):371−377.]
SHI Y J, LI Y X. Poria cocos polysaccharides regulate anxiety and depression-like behaviors induced by lipopolysaccharide through NF-κB and NLRP3 signaling pathways[J]. Science and Technology of Food Industry, 2023, 44(12): 371−377.
|
[51] |
AGUS A, PLANCHAIS J, SOKOL H. Gut microbiota regulation of tryptophan metabolism in health and disease[J]. Cell Host Microbe,2018,23(6):716−724. doi: 10.1016/j.chom.2018.05.003
|
[52] |
PLATTEN M, NOLLEN E, ROHRIG U F, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond[J]. Nature Reviews Drug Discovery,2019,18(5):379−401. doi: 10.1038/s41573-019-0016-5
|
[53] |
李海娜, 李丽娜, 王淑艳, 等. 培元解郁方对糖皮质激素诱导大鼠抑郁模型TRP-KYN代谢的影响及神经元可塑性调节机制[J]. 北京中医药大学学报,2017,40(12):1011−1017. [LI H N, LI L N, WANG S Y, et al. Effects of Peiyuan Jieyu formula on TRP-KYN metabolic pathway and its neuron protection mechanism in depressed rats induced by glucocorticoid[J]. Journal of Beijing University of Traditional Chinese Medicine,2017,40(12):1011−1017.] doi: 10.3969/j.issn.1006-2157.2017.12.008
LI H N, LI L N, WANG S Y, et al. Effects of Peiyuan Jieyu formula on TRP-KYN metabolic pathway and its neuron protection mechanism in depressed rats induced by glucocorticoid[J]. Journal of Beijing University of Traditional Chinese Medicine, 2017, 40(12): 1011−1017. doi: 10.3969/j.issn.1006-2157.2017.12.008
|
[54] |
孙美芳, 李月峰, 王冬青, 等. 慢性不可预见性应激模型大鼠海马形态及其糖皮质激素受体表达的动态观察[J]. 江苏大学学报(医学版),2016,26(5):369−374. [SUN M F, LI Y F, WANG D Q, et al. Dynamic change of the expression of glucocorticoid receptor in the hippocampus of rat model of depression by chronic unpredictable mild stress[J]. Journal of Jiangsu University (Medicine Edition),2016,26(5):369−374.]
SUN M F, LI Y F, WANG D Q, et al. Dynamic change of the expression of glucocorticoid receptor in the hippocampus of rat model of depression by chronic unpredictable mild stress[J]. Journal of Jiangsu University (Medicine Edition), 2016, 26(5): 369−374.
|
[55] |
CHEN H, KAN Q, ZHAO L, et al. Prophylactic effect of Tongxieyaofang polysaccharide on depressive behavior in adolescent male mice with chronic unpredictable stress through the microbiome-gut-brain axis[J]. Biomedicine & Pharmacotherapy,2023,161:114525.
|
[56] |
韦震, 宋洪波, 安凤平, 等. 黄精多糖对急性抑郁小鼠模型的改善作用及机制[J]. 食品工业科技,2022,43(6):351−357. [WEI Z, SONG H B, AN F P, et al. Protective effects and mechanism of polysaccharide from Polygonati rhizoma on behavioral despair mice[J]. Science and Technology of Food Industry,2022,43(6):351−357.]
WEI Z, SONG H B, AN F P, et al. Protective effects and mechanism of polysaccharide from Polygonati rhizoma on behavioral despair mice[J]. Science and Technology of Food Industry, 2022, 43(6): 351−357.
|
[57] |
FAN L, PENG Y, WANG J, et al. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors:bidirectional interaction of the phytochemicals and gut microbiota[J]. Phytomedicine,2021,83:153471. doi: 10.1016/j.phymed.2021.153471
|
[58] |
丁超, 许寅, 葛韵芝. 当归多糖对慢性应激抑郁小鼠的行为影响及其机制研究[J]. 西部中医药,2021,34(6):21−27. [DING C, XU Y, GE Y Z. Research on the mechanism and the effects of angelica polysaccharide on the behavior of chronic stress depression mice[J]. Western Journal of Traditional Chinese Medicine,2021,34(6):21−27.]
DING C, XU Y, GE Y Z. Research on the mechanism and the effects of angelica polysaccharide on the behavior of chronic stress depression mice[J]. Western Journal of Traditional Chinese Medicine, 2021, 34(6): 21−27.
|
[59] |
刘佳蕾, 王宇亮, 赵宏, 等. 百合多糖与黄芪多糖联用对慢性应激小鼠抑郁行为的影响及机制[J]. 中国实验方剂学杂志,2022,28(5):62−70. [LIU J L, WANG Y L, ZHAO H, et al. Effect and mechanism of lily polysaccharide combined with Astragalus polysaccharide on depressive behavior in chronic stress mice[J]. Chinese Journal of Experimental Traditional Medical Formulae,2022,28(5):62−70.]
LIU J L, WANG Y L, ZHAO H, et al. Effect and mechanism of lily polysaccharide combined with Astragalus polysaccharide on depressive behavior in chronic stress mice[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(5): 62−70.
|
[60] |
MERTENS K L, KALSBEEK A, SOETERS M R, et al. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system[J]. Frontiers in Neuroscience,2017,11:617. doi: 10.3389/fnins.2017.00617
|
[61] |
黄燕琳, 刘春琳, 陈立军, 等. 基于肠道菌群探讨抑郁症机制的研究进展[J]. 医学综述,2021,27(20):3984−3990. [HUANG Y L, LIU C L, CHEN L J, et al. Research progress in mechanism of depression from perspective of gut microbiota[J]. Medical Recapitulate,2021,27(20):3984−3990.] doi: 10.3969/j.issn.1006-2084.2021.20.006
HUANG Y L, LIU C L, CHEN L J, et al. Research progress in mechanism of depression from perspective of gut microbiota[J]. Medical Recapitulate, 2021, 27(20): 3984−3990. doi: 10.3969/j.issn.1006-2084.2021.20.006
|
[62] |
LU X, YANG R R, ZHANG J L, et al. Tauroursodeoxycholic acid produces antidepressant-like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido-nitrosative stress, and endoplasmic reticulum stress[J]. Fundamental & Clinical Pharmacology,2018,32(4):363−377.
|
[63] |
WANG H, TAN Y Z, MU R H, et al. Takeda G protein-coupled receptor 5 modulates depression-like behaviors via hippocampal CA3 pyramidal neurons afferent to dorsolateral septum[J]. Biological Psychiatry,2021,89(11):1084−1095. doi: 10.1016/j.biopsych.2020.11.018
|
[64] |
GUO W, DENG J, PAN Y, et al. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin[J]. International Journal of Biological Macromolecules,2020,153:1231−1240. doi: 10.1016/j.ijbiomac.2019.10.253
|
[65] |
RAO Y, WEN Q, LIU R, et al. PL-S2, a homogeneous polysaccharide from Radix Puerariae Lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism[J]. International Journal of Biological Macromolecules,2020,165(Pt B):1694−1705.
|
[66] |
NAKAHARA D, NAN C, MORI K, et al. Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet[J]. European Journal of Nutrition,2020,59(7):3231−3244. doi: 10.1007/s00394-019-02162-7
|
[67] |
HUANG S, PANG D, LI X, et al. A sulfated polysaccharide from Gracilaria lemaneiformis regulates cholesterol and bile acid metabolism in high-fat diet mice[J]. Food & Function,2019,10(6):3224−3236.
|
[68] |
刘珮瑶, 王琨, 梁杉, 等. 茯苓多糖组成结构及生物活性研究进展[J]. 食品科学,2023,44(1):380−391. [LIU P Y, WANG K, LIANG S, et al. Advances in understanding the structure and biological activity of Poria cocos polysaccharides[J]. Food Science,2023,44(1):380−391.] doi: 10.7506/spkx1002-6630-20220207-020
LIU P Y, WANG K, LIANG S, et al. Advances in understanding the structure and biological activity of Poria cocos polysaccharides[J]. Food Science, 2023, 44(1): 380−391. doi: 10.7506/spkx1002-6630-20220207-020
|
[69] |
王启龙. 基于免疫亲和色谱的中药多糖活性筛选与构效关系研究[D]. 镇江:江苏大学, 2019. [WANG Q L. Activity screening and structure-activity relationship research of polysaccharides from traditional Chinese medicine via immunoaffinity chromatography[D]. Zhenjiang:Jiangsu University, 2019.]
WANG Q L. Activity screening and structure-activity relationship research of polysaccharides from traditional Chinese medicine via immunoaffinity chromatography[D]. Zhenjiang: Jiangsu University, 2019.
|
[70] |
GUO Y X, CHEN X F, GONG P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus[J]. International Journal of Biological Macromolecules,2021,183:1753−1773. doi: 10.1016/j.ijbiomac.2021.05.139
|
[71] |
HUO J, WU Z, SUN W, et al. Protective effects of natural polysaccharides on intestinal barrier injury:A review[J]. Journal of Agricultural and Food Chemistry,2022,70(3):711−735. doi: 10.1021/acs.jafc.1c05966
|
[72] |
QU J, HUANG P, ZHANG L, et al. Hepatoprotective effect of plant polysaccharides from natural resources:A review of the mechanisms and structure-activity relationship[J]. International Journal of Biological Macromolecules,2020,161:24−34. doi: 10.1016/j.ijbiomac.2020.05.196
|
[73] |
WANG B, YAN L, GUO S, et al. Structural elucidation, modification, and structure-activity relationship of polysaccharides in Chinese herbs:A review[J]. Frontiers in Nutrition,2022,9:908175. doi: 10.3389/fnut.2022.908175
|
[74] |
SUABJAKYONG P, NISHIMURA K, TOIDA T, et al. Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7)[J]. Food & Function,2015,6(8):2834−2844.
|
[75] |
SHAO S, WANG D, ZHENG W, et al. A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors[J]. International Immunopharmacology,2019,71:411−422. doi: 10.1016/j.intimp.2019.02.038
|
[76] |
SHEN F, SONG Z, XIE P, et al. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage[J]. Journal of Ethnopharmacology,2021,275:114164. doi: 10.1016/j.jep.2021.114164
|
[77] |
CHEN P, HEI M, KONG L, et al. One water-soluble polysaccharide from Ginkgo biloba leaves with antidepressant activities via modulation of the gut microbiome[J]. Food & Function,2019,10(12):8161−8171.
|
[78] |
ZHANG W, CHEN L, LI P, et al. Antidepressant and immunosuppressive activities of two polysaccharides from Poria cocos (SCHW. ) Wolf[J]. International Journal of Biological Macromolecules,2018,120(Pt B):1696−1704.
|
[79] |
ZHANG Y, LI H T, SONG L L, et al. Polysaccharide from Ganoderma lucidum ameliorates cognitive impairment by regulating the inflammation of the brain-liver axis in rats[J]. Food & Function,2021,12(15):6900−6914.
|
[80] |
LIU P, BAI X Y, ZHANG T, et al. The protective effect of lonicera japonica polysaccharide on mice with depression by inhibiting NLRP3 inflammasome[J]. Annals of Translational Medicine,2019,7(24):811. doi: 10.21037/atm.2019.12.64
|
[81] |
YAO Y, ZHU Y, GAO Y, et al. Effect of ultrasonic treatment on immunological activities of polysaccharides from adlay[J]. International Journal of Biological Macromolecules,2015,80:246−252. doi: 10.1016/j.ijbiomac.2015.06.033
|
[82] |
ZHANG W, HE J, HU Y, et al. Chemical structure and immune activation of a glucan from Rhizoma Acori Tatarinowii[J]. Frontiers in Nutrition,2022,9:942241. doi: 10.3389/fnut.2022.942241
|
[1] | LIU Changnian, GUO Yan, ZHANG Jiaxin, YU Xiuzhu, LI Qi. Research Progress of Protein/Lipid-Starch Interactions and Their Effect in Slowing Down Starch Digestion Rate[J]. Science and Technology of Food Industry, 2025, 46(9): 1-10. DOI: 10.13386/j.issn1002-0306.2024070226 |
[2] | ZHANG Yun, ZHANG Kangyi, ZHAO Di, GUO Dongxu, ZHANG Guozhi. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97-106. DOI: 10.13386/j.issn1002-0306.2022010171 |
[3] | YUAN Lu, HU Jie-lun, YIN Jun-yi. Progress on the Effect of Microwave Irradiation on Structural Characteristics of Starch and Its Application in Starch Derived Food Processing[J]. Science and Technology of Food Industry, 2020, 41(18): 330-337,343. DOI: 10.13386/j.issn1002-0306.2020.18.052 |
[4] | MIAO Lan-ge, XU Yan, ZHAO Si-ming, JIA Cai-hua, NIU Meng, LIN Qin-lu. Effects of Anthocyanin on Physicochemical Properties of Starches with Different Amylose Contents[J]. Science and Technology of Food Industry, 2020, 41(14): 22-28. DOI: 10.13386/j.issn1002-0306.2020.14.004 |
[5] | CAO Ying, XIA Wen, WANG Fei, LI Ji-hua, LIN Yan-yun. Research Progress on the Effect of Physical Modification on Starch Properties[J]. Science and Technology of Food Industry, 2019, 40(21): 315-319,325. DOI: 10.13386/j.issn1002-0306.2019.21.051 |
[6] | ZHANG Yu, ZHANG Kang-yi, ZHANG Guo-zhi. Research Progress on Starch Retrogradation Process Mechanism and Application of Starch Anti-retrogradation Agent[J]. Science and Technology of Food Industry, 2019, 40(13): 316-321. DOI: 10.13386/j.issn1002-0306.2019.13.053 |
[7] | WEI Ping, YOU Xiang-rong, ZHANG Ya-yuan, SUN Jian, HUANG Cheng-zu, LI Ming-juan, WANG Ying, ZHOU Kui, XIE Xiao-qiang. Influences of Adding Starch on Potato Rice Noodle Quality[J]. Science and Technology of Food Industry, 2019, 40(11): 79-84. DOI: 10.13386/j.issn1002-0306.2019.11.014 |
[8] | HUANG Jun- rong, LI Yan-fang, PU Hua-yin, LI Hong-liang. Research progress on application of texture analyzer in quality of starch and starch- based food[J]. Science and Technology of Food Industry, 2017, (04): 390-395. DOI: 10.13386/j.issn1002-0306.2017.04.065 |
[9] | LI Xue-hong, CHEN Zhi-jing, LU Yong, NIE Yu-hong. Research on the factors and characterization methods of starch digestibility[J]. Science and Technology of Food Industry, 2015, (22): 376-378. DOI: 10.13386/j.issn1002-0306.2015.22.069 |
[10] | WU Li- jing, CHE Li- ming, CHEN Xiao-dong. Effect of tea polyphenols on the retrogradation of sweet potato starch[J]. Science and Technology of Food Industry, 2014, (21): 123-127. DOI: 10.13386/j.issn1002-0306.2014.21.018 |