SHEN Tian, NIU Ruimin, XU Zehua, et al. Effects of UV-B Irradiation Time on Fruit Quality and Flavonoid Metabolites of Wine Grapes[J]. Science and Technology of Food Industry, 2024, 45(17): 73−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090157.
Citation: SHEN Tian, NIU Ruimin, XU Zehua, et al. Effects of UV-B Irradiation Time on Fruit Quality and Flavonoid Metabolites of Wine Grapes[J]. Science and Technology of Food Industry, 2024, 45(17): 73−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090157.

Effects of UV-B Irradiation Time on Fruit Quality and Flavonoid Metabolites of Wine Grapes

More Information
  • Received Date: September 13, 2023
  • Available Online: June 30, 2024
  • In order to explore the effect of UV-B irradiation time on the fruit quality and flavonoids of Cabernet Sauvignon wine grape, the experiment set up four gradients of UV-B irradiation for 2, 4, 6 and 8 h each day, with no UV-B irradiation as the control (CK). The fruit quality and flavonoids of grapes with different UV-B irradiation time were detected and analyzed. The results showed that short-term UV-B irradiation increased the content of soluble sugar in fruit, and the contents of total phenols, tannins, total flavonoids, flavan-3-ols and total anthocyanins increased under different UV-B irradiation time. Different UV-B irradiation time had a significant effect on flavonoid metabolites in wine grape skin, and 13 differential metabolites were screened out, and 5 substances were significantly up-regulated and 8 substances were significantly down-regulated. Seven differential metabolites were enriched in the flavonoid and secondary metabolite synthesis pathways, accounting for 77.78% of the total metabolites. Comprehensive evaluation of the fruit quality and the measured value of flavonoid products in the peel used principal component analysis. The scores from high to low were UV-B irradiation for 2 h>UV-B irradiation for 8 h>UV-B irradiation for 4 h>UV-B irradiation for 6 h>CK. UV-B irradiation of wine grape Cabernet Sauvignon for 2 h, the fruit quality and flavonoid metabolites were the best.
  • [1]
    HASELGROVE L, BOTTING D, HEESWIJCK R, et al. Canopy microclimate and berry composition:the effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries[J]. Australian Journal of Grape and Wine Research,2000,6(2):141−149. doi: 10.1111/j.1755-0238.2000.tb00173.x
    [2]
    RESHEF N, WALBAUM N, AGAM N. Sunlight modulates fruit metabolic profile and shapes the spatial pattern of compound accumulation within the grape cluster[J]. Frontiers in Plant Science,2017,8:70.
    [3]
    周应嫄, 李想, 盛建军, 等. 植物酚类化合物对UV-B辐射增强的响应[J]. 植物生理学报,2020,56(6):1155−1164. [ZHOU Y Y, LI X, SHENG J J, et al. Response of plant phenolic compounds to enhanced UV-B radiation[J]. Plant Physiology Journal,2020,56(6):1155−1164.]

    ZHOU Y Y, LI X, SHENG J J, et al. Response of plant phenolic compounds to enhanced UV-B radiation[J]. Plant Physiology Journal, 2020, 56(6): 1155−1164.
    [4]
    SEKOWSKI S, TEREBKA M, VEIKO A, et al. Epigallocate-chin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin-Theoretical and experimental studies[J]. J Photochem Photobiol B,2018,356:379−388. doi: 10.1016/j.jphotochem.2018.01.018
    [5]
    王璐. GbHY5转录因子响应UV-B调控银杏类黄酮合成的分子机制[D]. 扬州:扬州大学, 2022. [WANG L. Molecular mechanism of GbHY5 transcription factor regulating flavonoid synthesis in Ginkgo biloba in response to UV-B[D]. Yangzhou:Yangzhou University, 2022.]

    WANG L. Molecular mechanism of GbHY5 transcription factor regulating flavonoid synthesis in Ginkgo biloba in response to UV-B[D]. Yangzhou: Yangzhou University, 2022.
    [6]
    YANNARELLI G G, NORIEGA G O, BATLLE A, et al. Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species[J]. Planta,2006,224(5):1154−1162. doi: 10.1007/s00425-006-0297-x
    [7]
    贺军民, 佘小平, 王瑞斌, 等. UV-B辐射增强对NaCl胁迫下小麦幼苗生理生态的影响[J]. 西北植物学报,2004,10:1810−1815. [HE J M, SHE X P, WANG R B, et al. PhysiologicaI and ecological effects of enhanced UV-B radiation on wheat seedling under NaCl stress condition[J]. Acta Botanica Boreali-Occidentalia Sinica,2004,10:1810−1815.] doi: 10.3321/j.issn:1000-4025.2004.10.007

    HE J M, SHE X P, WANG R B, et al. PhysiologicaI and ecological effects of enhanced UV-B radiation on wheat seedling under NaCl stress condition[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 10: 1810−1815. doi: 10.3321/j.issn:1000-4025.2004.10.007
    [8]
    杨乐, 杨俊枫, 侯智霞, 等. UV-B对不同发育时期离体蓝莓主要果实品质及相关酶活性的影响[J]. 西北植物学报,2015,35(12):2477−2482. [YANG L, YANG J F, HOU Z X, et al. Effects of UV-B treatment on the major quality of blueberry and related enzyme activities in different developmental stages[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(12):2477−2482.] doi: 10.7606/j.issn.1000-4025.2015.12.2477

    YANG L, YANG J F, HOU Z X, et al. Effects of UV-B treatment on the major quality of blueberry and related enzyme activities in different developmental stages[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(12): 2477−2482. doi: 10.7606/j.issn.1000-4025.2015.12.2477
    [9]
    李昌亨, 贾杨超, 张伟, 等. 采后UV-B对葡萄果实中多酚及PAL活性的影响[J]. 中国园艺文摘,2014,5:10−12. [LI C H, JIA Y C, ZHANG W, et al. Effects of UV-B radiation on the content of polyphenols and the activity of PAL in the postharvest berries of grapevine cv. Cabernet Sauvignon[J]. Chinese Horticulture Abstracts,2014,5:10−12.] doi: 10.3969/j.issn.1672-0873.2014.01.004

    LI C H, JIA Y C, ZHANG W, et al. Effects of UV-B radiation on the content of polyphenols and the activity of PAL in the postharvest berries of grapevine cv. Cabernet Sauvignon[J]. Chinese Horticulture Abstracts, 2014, 5: 10−12. doi: 10.3969/j.issn.1672-0873.2014.01.004
    [10]
    盛建军, 李想, 何永美, 等. UV-B辐射对花青素合成代谢的影响及分子机理[J]. 植物生理学报, 2019, 55(7):949-958. [SHENG J J, LI X, HE Y M, et al. Effect of UV-B radiation on anthocyanin anabolism and its molecular mechanism[J]. Plant Physiology Journal 2019, 55(7):949–958.]

    SHENG J J, LI X, HE Y M, et al. Effect of UV-B radiation on anthocyanin anabolism and its molecular mechanism[J]. Plant Physiology Journal 2019, 55(7): 949–958.
    [11]
    马宗恒. 光照强度对葡萄果实品质及花青苷合成的调控机理研究[D]. 兰州:甘肃农业大学, 2019. [MA Z H. Regulation mechanism of light intensity on fruit quality and anthocyanin synthesis in grape (V. vinifera L.) berry[J]. Lanzhou:Gansu Agricultural University, 2019.]

    MA Z H. Regulation mechanism of light intensity on fruit quality and anthocyanin synthesis in grape (V. vinifera L.) berry[J]. Lanzhou: Gansu Agricultural University, 2019.
    [12]
    李晨, 刘建廷, 樊永信, 等. UV-B对设施桃叶片光合功能及叶绿体超微结构的影响[J]. 植物学报,2022,57(4):434−443. [LI C, LIU J T, FAN Y X, et al. Effects of UV-B on photosynthetic function and chloroplast ultrastructure of peach leaves grown in greenhouse[J]. Chinese Bulletin of Botany,2022,57(4):434−443.] doi: 10.11983/CBB21136

    LI C, LIU J T, FAN Y X, et al. Effects of UV-B on photosynthetic function and chloroplast ultrastructure of peach leaves grown in greenhouse[J]. Chinese Bulletin of Botany, 2022, 57(4): 434−443. doi: 10.11983/CBB21136
    [13]
    张艺, 于存浩, 马晓红, 等. UV-B处理对大豆异黄酮合成影响及GmUVR8基因克隆与表达分析[J]. 大豆科学,2022,41(1):28−35. [ZHANG Y, YU C H, MA X H, et al. Analysis of isoflavone synthesis influenced by UV-B treatment and cloning of GmUVR8 gene in soybean[J]. Soybean Science,2022,41(1):28−35.] doi: 10.11861/j.issn.1000-9841.2022.01.0028

    ZHANG Y, YU C H, MA X H, et al. Analysis of isoflavone synthesis influenced by UV-B treatment and cloning of GmUVR8 gene in soybean[J]. Soybean Science, 2022, 41(1): 28−35. doi: 10.11861/j.issn.1000-9841.2022.01.0028
    [14]
    卢素文, 郑暄昂, 王佳洋, 等. 葡萄类黄酮代谢研究进展[J]. 园艺学报,2021,48(12):2506−2524. [LU S W, ZHENG X A, WANG J Y, et al. Research progress on the metabolism of flavonoids in grape[J]. Acta Horticulturae Sinica,2021,48(12):2506−2524.]

    LU S W, ZHENG X A, WANG J Y, et al. Research progress on the metabolism of flavonoids in grape[J]. Acta Horticulturae Sinica, 2021, 48(12): 2506−2524.
    [15]
    高俊凤. 植物生理学实验技术[M]. 北京:高等教育出版社, 2000:145−163. [GAO J F. Experimental techniques in plant physiology[M]. Beijing:Higher Education Press, 2000:145−163.]

    GAO J F. Experimental techniques in plant physiology[M]. Beijing: Higher Education Press, 2000: 145−163.
    [16]
    JAYAPRKASHA G K, SINGH R, SAKARIAH K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro[J]. Food Chemistry,2001,73(3):285−290. doi: 10.1016/S0308-8146(00)00298-3
    [17]
    王华. 葡萄与葡萄酒实验技术操作规范[M]. 西安:西安地图出版社, 1999. [WANG H. Grape and wine experimental technical practice code[M]. Xi'an:Xi'an Map Publishing House, 1999.]

    WANG H. Grape and wine experimental technical practice code[M]. Xi'an: Xi'an Map Publishing House, 1999.
    [18]
    LIU Y X, PAN Q H, YAN G L, et al. Changes of flavan-3-ols with different degrees of polymerization in seeds of 'Shiraz', 'Cabernet Sauvignon' and 'Marselan' grapes after veraison[J]. Molecules,2010,15(11):7763−7774. doi: 10.3390/molecules15117763
    [19]
    PEINADO J, LERMA N L, MORENOO J, et al. Antioxidant activity of different phenolics fractions isolated in must from Pedro Ximenez grapes at different stages of the off-vine drying process[J]. Food Chemistry,2009,114(3):1050−1055. doi: 10.1016/j.foodchem.2008.10.068
    [20]
    LI Y G, TANNER G, LARKIN P. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safely in forage legumes[J]. Journal of the Science of Food and Agriculture,1996,70(1):89−101. doi: 10.1002/(SICI)1097-0010(199601)70:1<89::AID-JSFA470>3.0.CO;2-N
    [21]
    WANG X, ZHANG X C, HOU H X, et al. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.)[J]. Food Research International,2020,138:109711. doi: 10.1016/j.foodres.2020.109711
    [22]
    DONG R F, SU J, NIAN H, et al. Chemical fingerprint and quantitative analysis of flavonoids for guality control of sea buckthorn leaves by HPLC and UHPLC-ESI-OTOF-MS[J]. Journa of Functional Foods,2017,37:513−522. doi: 10.1016/j.jff.2017.08.019
    [23]
    LI X Y, SONG H, YAO S, et al. Quantitative analysis and recovery optimisation of flavonoids and anthocyanins in sugar-making process of sugarcane industry[J]. Food Chemistry,2011,125(1):150−157. doi: 10.1016/j.foodchem.2010.08.053
    [24]
    唐天睿. UV-B辐射增强对特早熟柑橘果实品质变化及色素积累影响[D]. 昆明:云南农业大学, 2022. [TANG T R. Effects of enhanced UV-B radiation on fruit quality and pigment accumulation of early maturing citrus[J]. Kunming:Yunnan Agricultural University, 2022.]

    TANG T R. Effects of enhanced UV-B radiation on fruit quality and pigment accumulation of early maturing citrus[J]. Kunming: Yunnan Agricultural University, 2022.
    [25]
    刘一诺, 敖曼, 李波, 等. UV-B辐射对植物生长发育的影响及其应用价值[J]. 土壤与作物,2020,9(2):191−202. [LIU Yinuo, AO Man, LI Bo, et al. Effect of ultraviolet-B(UV-B) radiation on plant growth and development and its application value[J]. Soils and Crops,2020,9(2):191−202.] doi: 10.11689/j.issn.2095-2961.2020.02.011

    LIU Yinuo, AO Man, LI Bo, et al. Effect of ultraviolet-B(UV-B) radiation on plant growth and development and its application value[J]. Soils and Crops, 2020, 9(2): 191−202. doi: 10.11689/j.issn.2095-2961.2020.02.011
    [26]
    杨博涵, 欧阳亚南, 闵卓, 等. UV-B辐射对葡萄叶片中酚类物质含量及显微结构的影响[J]. 西北农林科技大学学报(自然科学版),2019,47(5):59−66. [YANG B H, OUYANG Y N, MIN Z, et al. Effects of UV-B radiation on contents of phenols and sub-cellar structure of grape leaves[J]. Journal of Northwest A& F University,2019,47(5):59−66.]

    YANG B H, OUYANG Y N, MIN Z, et al. Effects of UV-B radiation on contents of phenols and sub-cellar structure of grape leaves[J]. Journal of Northwest A& F University, 2019, 47(5): 59−66.
    [27]
    MARGARITA C, AVELINAFERNADEZ G, PETER B, et al. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure[J]. Journal of Food Engineering,2009,90(4):415−421. doi: 10.1016/j.jfoodeng.2008.07.003
    [28]
    ÁLVAREZ G F, KORBEE N, FIGUEROA F L. Effects of UV radiation on photosynthesis, antioxidant capacity and the accumulation of bioactive compounds in Gracilariopsis longissima, Hydropuntia cornea and Halopithys incurva (Rhodophyta)[J]. J Phycol,2019,55(6):1258−1273. doi: 10.1111/jpy.12899
    [29]
    NEUGART S, TOBLER M, BARNES P W. Different irradiances of UV and PAR in the same ratios alter the flavonoid profiles of Arabidopsis thaliana wild types and UV-signalling pathway mutants[J]. Photochem Photobiol Sci,2019,18(7):1685−1699. doi: 10.1039/c8pp00496j
    [30]
    JI H, TANG W, ZHOU X, et al. Combined effects of blue and ultraviolet lights on the accumulation of flavonoids in tartary buckwheat sprouts[J]. Pol J Food Nutr Sci,2016,66(2):93−98. doi: 10.1515/pjfns-2015-0042
    [31]
    刘佳钰, 王蓉, 张弛, 等. UV-B辐射与植物次级代谢产物变化的研究进展[J]. 基因组学与应用生物学,2017,36(8):3157−3166. [LIU J Y, WANG R, ZHANG C, et al. Research progress on the influence of UV-B radiation on changes of secondary metabolites in plant[J]. Genomics and Applied Biology,2017,36(8):3157−3166.]

    LIU J Y, WANG R, ZHANG C, et al. Research progress on the influence of UV-B radiation on changes of secondary metabolites in plant[J]. Genomics and Applied Biology, 2017, 36(8): 3157−3166.
    [32]
    LI Y Y, MAO K, ZHAO C, et al. MdCOPI ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple[J]. Plant Physiol,2012,160(2):1011−1022. doi: 10.1104/pp.112.199703
    [33]
    周应嫄, 李想, 凌成婷, 等. UV-B辐射对元阳红米籽粒酚类含量及其抗氧化能力的影响[J]. 农业环境科学学报,2022,41(1):10−18. [ZHOU Y Y, LI X, LING C T, et al. Effects of UV-B radiation on phenolic content and antioxidant capacity of Yuanyang red rice seeds[J]. Journal of Agro-Environment Science,2022,41(1):10−18.] doi: 10.11654/jaes.2021-0476

    ZHOU Y Y, LI X, LING C T, et al. Effects of UV-B radiation on phenolic content and antioxidant capacity of Yuanyang red rice seeds[J]. Journal of Agro-Environment Science, 2022, 41(1): 10−18. doi: 10.11654/jaes.2021-0476
    [34]
    张琳, 王修蘋, 李祖然, 等. 植物响应UV-B辐射的表观遗传调控和胁迫记忆研究进展[J]. 植物生理学报,2023,59(7):1195−1210. [ZHANG L, WANG X P, LI Z R, et al. Research progress on the epigenetic regulation and stress memory of plant to UV-B radiation responses[J]. Plant Physiology Journal,2023,59(7):1195−1210.]

    ZHANG L, WANG X P, LI Z R, et al. Research progress on the epigenetic regulation and stress memory of plant to UV-B radiation responses[J]. Plant Physiology Journal, 2023, 59(7): 1195−1210.
  • Other Related Supplements

  • Cited by

    Periodical cited type(11)

    1. 刘继艳,王冰,李超宇,于淼. 五味子非药用部位活性成分和药理作用研究进展. 中草药. 2024(09): 3179-3189 .
    2. 吴溪,许杨,吴德玲,赵想,汪孰敏,高家荣. 基于UPLC-Q-TRAP-MS分析养心安神药对酸枣仁-五味子配伍煎煮前后10个指标成分含量变化. 中华中医药学刊. 2024(05): 190-195 .
    3. 刘妍妍,毕秀霞,董林林,成亚亚,贾小杰,李洪超. 北五味子提取物基于TLR/NF-κB信号通路对老年失眠大鼠的干预效果. 中国老年学杂志. 2024(18): 4524-4528 .
    4. 刘伟,张昊,李新殿,李慧萍,李伟. 超高压提取法对五味子果实及藤茎中木脂素类成分含量的影响. 特产研究. 2024(06): 87-95 .
    5. 康心茹,刘立科,傅容湛. 百合水提物和乙醇提取物对小鼠睡眠的影响. 食品研究与开发. 2023(06): 51-56 .
    6. 万祥旭,黄笑然,周宝丽,王宇航,金志民. 五味子药用成分在鼠类生理生化及病理中的应用研究进展. 中南农业科技. 2023(03): 240-243 .
    7. 付路静,王海洋,黄九林,梁如,梅皓. 南五味子嫩芽香辣酱的研制. 食品工业. 2023(07): 56-61 .
    8. 郭文霞,郭佳琦,傅容湛. 绞股蓝珍珠粉胶囊对小鼠睡眠的改善作用. 中国兽医杂志. 2023(10): 144-149 .
    9. 张雪妍,朱翠玲,闫海峰,孔维远,李滟郦. 基于小陷胸汤在心血管疾病中的相关研究特点论精简经典名方研究现状. 上海中医药杂志. 2023(12): 27-31 .
    10. 董培良,刘柯萌,曹庆宇,陈元金,许天恩,韩华. 五藤片的成型工艺研究. 中医药导报. 2022(07): 59-63 .
    11. 李贺,陈红旭,牛胜男,陈建光. 五味子藤茎多糖小鼠经口最大耐受量的测定. 北华大学学报(自然科学版). 2022(06): 763-767 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (75) PDF downloads (16) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return