LIU Guiyan, WANG Bei, YANG Ruoxi, et al. Preparation and Properties of Oligo-chitosan Cross-linked Gelatin Biodegradable Films[J]. Science and Technology of Food Industry, 2024, 45(13): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080140.
Citation: LIU Guiyan, WANG Bei, YANG Ruoxi, et al. Preparation and Properties of Oligo-chitosan Cross-linked Gelatin Biodegradable Films[J]. Science and Technology of Food Industry, 2024, 45(13): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080140.

Preparation and Properties of Oligo-chitosan Cross-linked Gelatin Biodegradable Films

More Information
  • Received Date: August 15, 2023
  • Available Online: April 27, 2024
  • Objective: The aim was to evaluate the effect of oligo-chitosan modification on the properties of gelatin-based films. Methods: The gelatin-based films were prepared by using gelatin extracted from scrap pig skin as a cheap raw material and chitosan and polyvinyl alcohol as cross-linking agents. The structural and mechanical properties were characterized by Fourier infrared spectroscopy, X-ray power diffractometry, scanning electron microscopy, spectroscopy, and tensile test. Meanwhile, the ability of gelatin-based films in antioxidant, antibacterial, water stability and biodegradation were evaluated. Results: The multi-cross-linked gelatin-based films showed excellent mechanical properties, with a highest fracture stress of 37.09 MPa, a maximum tearing energy of 56.71 kJ/m2, and a good physical form maintained after 48 h of immersion in water. In addition, the films possessed excellent light transmission (up to 92.32%), good oxidation resistance (radical scavenging capacity up to 75.12%), excellent antimicrobial and biodegradability (complete degradation time <45 h). Conclusions: The addition of oligo-chitosan has changed the properties of gelatin-based films in mechanics and biodegradation, and endowed the films with good antibacterial and antioxidant capacity, indicating that it had great potential application value in food packaging.
  • [1]
    迟敏, 李利元, 黄东杰. 淀粉基食品薄膜在肉制品保鲜中的应用[J]. 食品安全质量检测学报,2023,14(12):117−225. [CHI M, LI L Y, HUANG D J. Application of starch-based food films in the preservation of meat products[J]. Journal of Food Safety & Quality,2023,14(12):117−225.]

    CHI M, LI L Y, HUANG D J. Application of starch-based food films in the preservation of meat products[J]. Journal of Food Safety & Quality, 2023, 14(12): 117−225.
    [2]
    CALVA-ESTRADA S J, JIMÉNEZ-FERNÁNDEZ M, LUGO-CERVANTES E. Protein-based films:Advances in the development of biomaterials applicable to food packaging[J]. Food Engineering Reviews,2019,11:78−92. doi: 10.1007/s12393-019-09189-w
    [3]
    ZHAO Y, DU J, ZHOU, H, et al. Biodegradable intelligent film for food preservation and real-time visual detection of food freshness[J]. Food Hydrocolloids,2022,129:107665−107672. doi: 10.1016/j.foodhyd.2022.107665
    [4]
    FAHMY H M, ELDIN R E S, SEREA E S A, et al. Advances in nanotechnology and antibacterial properties of biodegradable food packaging materials[J]. RSC advances,2020,10(35):20467−20484. doi: 10.1039/D0RA02922J
    [5]
    陈良. 多重交联明胶基可生物降解薄膜的构效调控[D]. 西安:陕西科技大学, 2023. [CHEN L. Structure and performance regulation of gelatin-based multi-cross-linked biodegradable film[D]. Xi'an:Shaanxi University of Science and Technology, 2023.]

    CHEN L. Structure and performance regulation of gelatin-based multi-cross-linked biodegradable film[D]. Xi'an: Shaanxi University of Science and Technology, 2023.
    [6]
    SAVCHUK O, RAKSHA N, OSTAPCHENKO L, et al. Extraction and characterization of collagen obtained from collagen-containing wastes of the leather industry[J]. Solid State Phenomena,2017,267:172−176. doi: 10.4028/www.scientific.net/SSP.267.172
    [7]
    杨帅帅, 李海朝. 明胶膜改性研究进展[J]. 应用化工,2018,47(3):599−602. [YANG S S, LI H C. Research progress in modification of gelatin film[J]. Applied Chemical Industry,2018,47(3):599−602.] doi: 10.3969/j.issn.1671-3206.2018.03.042

    YANG S S, LI H C. Research progress in modification of gelatin film[J]. Applied Chemical Industry, 2018, 47(3): 599−602. doi: 10.3969/j.issn.1671-3206.2018.03.042
    [8]
    AKRAMI-HASAN-KOHAL M, GHORBANI M, MAHMOODZADEH F, et al. Development of reinforced aldehyde-modified kappa-carrageenan/gelatin film by incorporation of halloysite nanotubes for biomedical applications[J]. International Journal of Biological Macromolecules,2020,160:669−676. doi: 10.1016/j.ijbiomac.2020.05.222
    [9]
    OLAD A, HAGH H B K. Graphene oxide and amin-modified graphene oxide incorporated chitosan-gelatin scaffolds as promising materials for tissue engineering[J]. Composites Part B:Engineering,2019,162:692−702. doi: 10.1016/j.compositesb.2019.01.040
    [10]
    陈书霖, 陶忠, 吴菲菲, 等. 鱼皮明胶蛋白膜的制备及其性质改良[J]. 集美大学学报(自然科学版),2012,17(5):335−342. [CHEN S L, TAO Z, WU F F, et al. Preparation and improvement of gelatin films based on tilapia skin[J]. Journal of Jimei University (Natural Science),2012,17(5):335−342.] doi: 10.3969/j.issn.1007-7405.2012.05.003

    CHEN S L, TAO Z, WU F F, et al. Preparation and improvement of gelatin films based on tilapia skin[J]. Journal of Jimei University (Natural Science), 2012, 17(5): 335−342. doi: 10.3969/j.issn.1007-7405.2012.05.003
    [11]
    CHOU S F, LUO L J, LAI J Y, et al. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials[J]. Materials Science and Engineering:C,2017,71:1145−1155.
    [12]
    陶忠, 郑惠彬, 翁武银. 化学交联与酶法交联对鱼糜-明胶复合膜性质的影响[J]. 食品与发酵工业,2013,39(5):25−30. [TAO Z, ZHENG H B, WENG W Y. Effect of chemical and enzymatic cross-linking on the properties of surimi-gelatin composite films[J]. Food and Fermentation Industries,2013,39(5):25−30.]

    TAO Z, ZHENG H B, WENG W Y. Effect of chemical and enzymatic cross-linking on the properties of surimi-gelatin composite films[J]. Food and Fermentation Industries, 2013, 39(5): 25−30.
    [13]
    SÁNCHEZ Á, MENGÍBAR M, RIVERA-RODRÍGUEZ G, et al. The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides[J]. Carbohydrate Polymers,2017,157:251−257. doi: 10.1016/j.carbpol.2016.09.055
    [14]
    林碧莲, 陈浩, 代传芝, 等. 壳寡糖的酶法可控制备及其在预包装豆腐保鲜中的应用[J]. 食品与发酵工业,2023,49(12):136−143. [LIN B L, CHEN H, DAI C Z, et al. Enzymatic controlled preparation of chitosan oligosaccharides and its application in preservation of pre-packaged tofu[J]. Food and Fermentation Industries,2023,49(12):136−143.]

    LIN B L, CHEN H, DAI C Z, et al. Enzymatic controlled preparation of chitosan oligosaccharides and its application in preservation of pre-packaged tofu[J]. Food and Fermentation Industries, 2023, 49(12): 136−143.
    [15]
    CASTILLO L A, FARENZENA S, PINTOS E, et al. Active films based on thermoplastic corn starch and chitosan oligomer for food packaging applications[J]. Food Packaging and Shelf Life,2017,14:128−136. doi: 10.1016/j.fpsl.2017.10.004
    [16]
    王亚珍. 壳聚糖基复合膜的制备、性能及应用[D]. 上海:上海海洋大学, 2015. [WANG Y Z. Preparation, properties and application of chitosan based composite films[D]. Shanghai:Shanghai Ocean University, 2015.]

    WANG Y Z. Preparation, properties and application of chitosan based composite films[D]. Shanghai: Shanghai Ocean University, 2015.
    [17]
    BAO S, XU S, WANG Z. Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles[J]. Journal of the Science of Food and Agriculture,2009,89(15):2692−2700. doi: 10.1002/jsfa.3775
    [18]
    QIANG T, CHEN L, YAN Z, et al. Evaluation of a novel collagenous matrix membrane cross-linked with catechins catalyzed by laccase:A sustainable biomass[J]. Journal of Agricultural and Food Chemistry,2019,67(5):1504−1512. doi: 10.1021/acs.jafc.8b05810
    [19]
    TAN W, DONG F, ZHANG J, et al. Physical and antioxidant properties of edible chitosan ascorbate films[J]. Journal of Agricultural and Food Chemistry,2019,67(9):2530−2539. doi: 10.1021/acs.jafc.8b04567
    [20]
    VERLEE A, MINCKE S, STEVENS C V. Recent developments in antibacterial and antifungal chitosan and its derivatives[J]. Carbohydrate Polymers,2017,164:268−283. doi: 10.1016/j.carbpol.2017.02.001
    [21]
    CHEN L, QIANG T, CHEN X, et al. Fabrication and evaluation of biodegradable multi-cross-linked mulch film based on waste gelatin[J]. Chemical Engineering Journal,2021,419:129639−129650. doi: 10.1016/j.cej.2021.129639
    [22]
    CHEN L, QIANG T, CHEN X, et al. Tough and biodegradable gelatin-based film via the synergistic effect of multi-cross-linking[J]. ACS Applied Polymer Materials,2021,4(1):357−368.
    [23]
    LIN J, PAN D, SUN Y, et al. The modification of gelatin films:Based on various cross-linking mechanism of glutaraldehyde at acidic and alkaline conditions[J]. Food Science & Nutrition,2019,7(12):4140−4146.
    [24]
    AHMAD M, BENJAKUL S, PRODPRAN T, et al. Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils[J]. Food Hydrocolloids,2012,28(1):189−199. doi: 10.1016/j.foodhyd.2011.12.003
    [25]
    SANWLANI S, KUMAR P, BOHIDAR H B. Hydration of gelatin molecules in glycerol-water solvent and phase diagram of gelatin organogels[J]. The Journal of Physical Chemistry B,2011,115(22):7332−7340. doi: 10.1021/jp201877d
    [26]
    ASHORI A, KIANI H, MOZAFFARI S A. Mechanical properties of reinforced polyvinyl chloride composites:Effect of filler form and content[J]. Journal of Applied Polymer Science,2011,120(3):1788−1793. doi: 10.1002/app.33378
    [27]
    JORDAN J L, CASEM D T, BRADLEY J M, et al. Mechanical properties of low-density polyethylene[J]. Journal of Dynamic Behavior of Materials,2016,2:411−420. doi: 10.1007/s40870-016-0076-0
    [28]
    LI J, ILLEPERUMA W R, SUO Z, et al. Hybrid hydrogels with extremely high stiffness and toughness[J]. ACS Macro Letters,2014,3(6):520−523. doi: 10.1021/mz5002355
    [29]
    CAZÓN P, VÁZQUEZ M, VELAZQUEZ G. Composite films with UV-barrier properties of bacterial cellulose with glycerol and poly (vinyl alcohol):Puncture properties, solubility, and swelling degree[J]. Biomacromolecules,2019,20(8):3115−3125. doi: 10.1021/acs.biomac.9b00704
    [30]
    ABD EL-HACK M E, EL-SAADONY M T, SHAFI M E, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications:A review[J]. International Journal of Biological Macromolecules,2020,164:2726−2744. doi: 10.1016/j.ijbiomac.2020.08.153
    [31]
    ANRAKU M, GEBICKI J M, IOHARA D, et al. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies[J]. Carbohydrate Polymers,2018,199:141−149. doi: 10.1016/j.carbpol.2018.07.016
  • Other Related Supplements

  • Cited by

    Periodical cited type(10)

    1. 宋永贵,陈运丽,苏丹,李前民,李惠珍,艾志福,杨明,朱根华,陈丽玲. 龙骨-牡蛎通过调节肠道微生态增强柴胡加龙骨牡蛎汤的抗抑郁效应. 中成药. 2025(02): 625-633 .
    2. 崔雨婷,张方圆,许伟明,李子贇,胡镜清. 基于肠道菌群与冠心病的关系探讨“阴火”科学内涵. 世界中医药. 2024(09): 1279-1285 .
    3. 叶清珠,王苗苗. 植物抗菌色素在抗菌纺织品中的应用. 上海纺织科技. 2024(07): 8-11+17 .
    4. 尹东,杜丽坤,徐洪涛,任那,张天昊. 基于肠道菌群探析中医药治疗肥胖的研究进展. 西部中医药. 2024(09): 111-114 .
    5. 王其龙,杨景森,黄凯勇,朱翠. 小檗碱调控动物肠道菌群稳态的研究进展. 中国畜牧杂志. 2022(02): 23-26+31 .
    6. 罗晓璐,李丽娜,黎京荣,彭啸峰,吴鹏,朱翠. 饲喂有抗或无抗饲粮的黄羽肉鸡在不同日龄下肠道菌群的变化. 广东畜牧兽医科技. 2022(01): 6-13 .
    7. 余佳,高欣悦,付凤萍,吴建英,余琳,陈红英. 半仿生-比色法测定三黄泻心汤中总生物碱的溶出量. 湖北农业科学. 2022(03): 140-143 .
    8. 柯群华,彭晶,王胜义. 中药与肠道菌群及其代谢相关研究进展. 中兽医医药杂志. 2022(02): 35-40 .
    9. 刘良浩,蒋志滨,于海洋,吴志斌,李泠君,唐甜,高洁. 黄连素缓解肠易激综合征作用机制的研究进展. 中国病理生理杂志. 2022(05): 944-948 .
    10. 姚广丰,张奇,张楠,隋玲玲,刘佳,李威,胡铁军. 盐酸小檗碱相关杂质的合成. 辽宁化工. 2022(06): 763-765 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return