Citation: | ZENG Jing, GUO Jianjun, WANG Tong, et al. Enhanced Extracellular Type III Pullulan Hydrolase Production by Co-expressing Molecular Chaperone in Brevibacillus choshinensis and Fermentation Optimization[J]. Science and Technology of Food Industry, 2024, 45(10): 149−157. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080133. |
[1] |
NAIK B, KUMAR V, GOYAL S K, et al. Pullulanase:unleashing the power of enzyme with a promising future in the food industry[J]. Frontiers in Bioengineering and Biotechnology,2023,11:1139611. doi: 10.3389/fbioe.2023.1139611
|
[2] |
NISHA M, SATYANARAYANA T. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases[J]. Applied Microbiology and Biotechnology,2016,100(13):5661−5679. doi: 10.1007/s00253-016-7572-y
|
[3] |
WANG X Y, NIE Y, XU Y. Industrially produced pullulanases with thermostability:Discovery, engineering, and heterologous expression[J]. Bioresource Technology, 2019:360-371.
|
[4] |
AKASSOU M, GROLEAU D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms:A review[J]. Critical Reviews in Biotechnology,2019,39(3):337−350. doi: 10.1080/07388551.2019.1566202
|
[5] |
OKAFOR D C, OFOEDU C E, NWAKAUDU A, et al. Enzymes as additives in starch processing:A short overview[M]. New York:Academic Press, 2019:149-168.
|
[6] |
MIAO M, JIANG B, JIN Z Y, et al. Microbial starch-converting enzymes:recent insights and perspectives[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(5):1238−1260. doi: 10.1111/1541-4337.12381
|
[7] |
HAN T, ZENG F, LI Z, et al. Biochemical characterization of a recombinant pullulanase from Thermococcus kodakarensis KOD1[J]. Letters in Applied Microbiology,2013,57(4):336−343. doi: 10.1111/lam.12118
|
[8] |
AHMAD N, RASHID N, HAIDER M S, et al. Novel maltotriose-hydrolyzing thermoacidophilic type III pullulan hydrolase from Thermococcus kodakarensis[J]. Applied and Environmental Microbiology,2014,80(3):1108−1115. doi: 10.1128/AEM.03139-13
|
[9] |
AHMAD N, RASHID N, HAIDER M S, et al. Single step liquefaction and saccharification of corn starch using an acidophilic, calcium independent and hyperthermophilic pullulanase:US9340778[P]. 2016-05-17[2020-04-08]. http://www.google.com/patents/US20140227744.
|
[10] |
TOOR K J, AHMAD N, MUHAMMAD M A, et al. TK-PUL, a pullulan hydrolase type III from Thermococcus kodakarensis, a potential candidate for simultaneous liquefaction and saccharification of starch[J]. Amylase,2020,4(1):45−55. doi: 10.1515/amylase-2020-0004
|
[11] |
曾静, 郭建军, 袁林. 嗜热酸性普鲁兰水解酶Ⅲ的高效分泌表达及其酶学性质[J]. 食品工业科技,2020,41(3):98−103,109. [ZENG J, GUO J J, YUAN L. Efficient secretory expression of thermoacidiphilic type III pullulan hydrolase and its enzymatic properties[J]. Science and Technology of Food industry,2020,41(3):98−103,109.]
ZENG J, GUO J J, YUAN L. Efficient secretory expression of thermoacidiphilic type III pullulan hydrolase and its enzymatic properties[J]. Science and Technology of Food industry, 2020, 41(3): 98−103,109.
|
[12] |
HANAGATA H, MIZUKAMI M, MIYAUCHI A. Efficient expression of antibody fragments with the Brevibacillus expression system[J]. Antibodies,2014,3(2):242−252. doi: 10.3390/antib3020242
|
[13] |
MIZUKAMI M, HANAGATA H, MIYAUCHI A. Brevibacillus expression system:Host-vector system for efficient production of secretory proteins[J]. Current Pharmaceutical Biotechnology,2010,11(3):251−258. doi: 10.2174/138920110791112031
|
[14] |
YAO D B, ZHANG K, WU J. Available strategies for improved expression of recombinant proteins in Brevibacillus expression system:A review[J]. Critical Reviews in Biotechnology,2021,40(7):1044−1058.
|
[15] |
OKAMOTO A, KOSUGI A, KOIZUMI Y, et al. High efficiency transformation of Bacillus brevis by electroporation[J]. Bioscience, Biotechnology, and Biochemistry,1997,61(1):202−203. doi: 10.1271/bbb.61.202
|
[16] |
GREEN M R, SAMBROOK J. Molecular cloning:A laboratory manual[M]. New York:Cold Spring Harbor Laboratory Press, 2012:101-200.
|
[17] |
LI Z, SU L Q, DUAN X G, et al. Efficient expression of maltohexaose-forming α-amylase from Bacillus stearothermophilus in Brevibacillus choshinensis SP3 and its use in maltose production[J]. Biomed Research International,2017,2017:5479762.
|
[18] |
MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426−428. doi: 10.1021/ac60147a030
|
[19] |
YANG H Q, QU J F, ZOU W, et al. An overview and future prospects of recombinant protein production in Bacillus subtilis[J]. Applied Microbiology and Biotechnology,2021,105(18):6607−6626. doi: 10.1007/s00253-021-11533-2
|
[20] |
ZHANG K, TAN R T, YAO D B, et al. Enhanced production of soluble Pyrococcus furiosus α-amylase in Bacillus subtilis through chaperone co-expression, heat treatment and fermentation optimization[J]. Journal of Microbiology and Biotechnology,2021,31(4):570. doi: 10.4014/jmb.2101.01039
|
[21] |
YAO D B, ZHANG K, ZHU X Y, et al. Enhanced extracellular α-amylase production in Brevibacillus choshinensis by optimizing extracellular degradation and folding environment[J]. Journal of Industrial Microbiology and Biotechnology,2022,49(1):kuab061. doi: 10.1093/jimb/kuab061
|
[22] |
XU L Y, ZHANG Y Y, DONG Y H, et al. Enhanced extracellular β-mannanase production by overexpressing PrsA lipoprotein in Bacillus subtilis and optimizing culture conditions[J]. Journal of Basic Microbiology,2022,62(7):815−823. doi: 10.1002/jobm.202200080
|
[23] |
QUESADA-GANUZA A, ANTELO-VARELA M, MOURITZEN J C, et al. Identification and optimization of PrsA in Bacillus subtilis for improved yield of amylase[J]. Microbial Cell Factories,2019,18(1):158. doi: 10.1186/s12934-018-1049-x
|
[24] |
CHEN J Q, GAI Y M, FU G, et al. Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein[J]. Biotechnology Letters,2015,37:899−906. doi: 10.1007/s10529-014-1755-3
|
[25] |
ZOU C, DUAN X G, WU J. Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis[J]. Journal of Industrial Microbiology and Biotechnology,2016,43(4):495−504. doi: 10.1007/s10295-015-1719-1
|
[26] |
CHENG Y M, LU M T, YEH C M. Functional expression of recombinant human trefoil factor 1 by Escherichia coli and Brevibacillus choshinensis[J]. BMC Biotechnology,2015,15(1):32. doi: 10.1186/s12896-015-0115-2
|
[27] |
ZOU C, DUAN X G, WU J. Magnesium ions increase the activity of Bacillus deramificans pullulanase expressed by Brevibacillus choshinensis[J]. Applied Microbiology and Biotechnology,2016,100:7115−7123. doi: 10.1007/s00253-016-7386-y
|
[28] |
MATSUNAGA R, TSUMOTO K. Addition of arginine hydrochloride and proline to the culture medium enhances recombinant protein expression in Brevibacillus choshinensis:The case of RBD of SARS-CoV-2 spike protein and its antibody[J]. Protein Expression and Purification,2022,194:106075. doi: 10.1016/j.pep.2022.106075
|
[29] |
MAEHASHI K, MATANO M, SAITO M, et al. Extracellular production of riboflavin-binding protein, a potential bitter inhibitor, by Brevibacillus choshinensis[J]. Protein Expression and Purification,2010,71(1):85−90. doi: 10.1016/j.pep.2009.12.016
|
[30] |
LI H P, XU C M, WEN B Y, et al. Extracellular production of recombinant sus scrofa trefoil factor 3 by Brevibacillus choshinensis[J]. Experimental and Therapeutic Medicine,2020,19(3):2149−2154.
|
1. |
何高阳. 短小芽孢杆菌拮抗植物病原真菌研究进展. 中南农业科技. 2024(09): 231-236+258 .
![]() |