HE Xianyu, LI Rongji, LI Xiaoyan, et al. Ganoderma lucidum Polysaccharides Extraction by Choline Chloride/Lactic Acid/Guaiacol Ternary Deep Eutectic Solvent and Its Antioxidant Activities[J]. Science and Technology of Food Industry, 2024, 45(14): 34−41. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080126.
Citation: HE Xianyu, LI Rongji, LI Xiaoyan, et al. Ganoderma lucidum Polysaccharides Extraction by Choline Chloride/Lactic Acid/Guaiacol Ternary Deep Eutectic Solvent and Its Antioxidant Activities[J]. Science and Technology of Food Industry, 2024, 45(14): 34−41. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080126.

Ganoderma lucidum Polysaccharides Extraction by Choline Chloride/Lactic Acid/Guaiacol Ternary Deep Eutectic Solvent and Its Antioxidant Activities

More Information
  • Received Date: August 14, 2023
  • Available Online: May 20, 2024
  • In this study, choline chloride/lactic acid/guaiacol ternary deep eutectic solvent (DES) was used to extract Ganoderma lucidum polysaccharides (GLPs). The operational parameters of GLPs extraction by DES were optimized, and the obtained GLPs structure was characterized by Fourier transform infrared spectrophotometer (FT-IR) and gel chromatography (GPC). Furthermore, the in vitro antioxidant activities of GLPs were investigated. In the end, density functional theory (DFT) was leveraged to gain preliminary insights into the molecular mechanism underpinning polysaccharide extraction facilitated by DES. Results unveiled that when the moisture content within DES was maintained at 50%, extraction was carried out at a temperature of 80 ℃ for 1 h, and the liquid-to-solid mass-volume ratio stood at 1:30 g/mL, the extraction yield of GLPs reached 9.20%±0.27%. FT-IR and GPC results showed that GLPs had typical polysaccharide structures in the 4000~500 cm−1 regions, and the number average mass weight (Mn) of GLPs was 8057 Da with the polydispersity index (PDI) of 1.6. In the context of in vitro antioxidant activity experiments, when GLPs content was 5 mg/mL, the total reducing power was measured at 0.67±0.04. Notably, the IC50 values for GLPs' scavenging capabilities against DPPH, OH, and ABTS+ free radicals were determined to be 2.366, 6.179, and 2.440 mg/mL, respectively. DES simulation analyses revealed a binding energy of 65.29 kcal/mol between DES and glucose, a substantially higher value compared to the binding energy observed between water and glucose (20.38 kcal/mol). The GLPs extraction by DES was facilitated through the pivotal role of triple hydrogen bond interactions. The findings in this study elucidated the intrinsic mechanism at molecular level that underscores the superior effectiveness of DES in comparison to traditional hot water extraction methods.
  • [1]
    钟涛, 张国新, 周迪夷, 等. 灵芝多糖对糖尿病肾病小鼠肾小管上皮细胞间充质转化的抑制作用[J]. 中国医药导报,2020,17(6):9−12. [ZHONG T, ZHANG G X, ZHOU D Y, et al. Inhibitory effect of Ganoderma lucidum polysaccharide on renal tubular endothelial-to-mesenchymaltransition of diabetic nephropathy mice[J]. China Medical Herald,2020,17(6):9−12.]

    ZHONG T, ZHANG G X, ZHOU D Y, et al. Inhibitory effect of Ganoderma lucidum polysaccharide on renal tubular endothelial-to-mesenchymaltransition of diabetic nephropathy mice[J]. China Medical Herald, 2020, 17(6): 9−12.
    [2]
    ZHAO C, FAN J J, LIU Y Y, et al. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis[J]. Food Chemistry,2019,271:148−156. doi: 10.1016/j.foodchem.2018.07.115
    [3]
    LI M Y, YU L L, ZHAI Q X, et al. Combined Ganoderma lucidum polysaccharide and ciprofloxacin therapy alleviates Salmonella enterica infection, protects the intestinal barrier, and regulates gut microbiota[J]. Food & Function,2023,14:6896−6913.
    [4]
    WANG W L, TAN J Q, NIMA L M, et al. Polysaccharides from fungi:a review on their extraction, purification, structural features, and biological activities[J]. Food Chemistry:X,2022,15:100414.
    [5]
    宁娜, 韩建军, 杨广安, 等. 灵芝多糖提取工艺研究进展[J]. 山东化工,2020,49(20):63. [NING N, HAN J, YANG G, et al. Research progress on extraction technology of polysaccharides from Ganoderma lucidum[J]. Shandong Chemical Industry,2020,49(20):63.] doi: 10.3969/j.issn.1008-021X.2020.20.025

    NING N, HAN J, YANG G, et al. Research progress on extraction technology of polysaccharides from Ganoderma lucidum[J]. Shandong Chemical Industry, 2020, 49(20): 63. doi: 10.3969/j.issn.1008-021X.2020.20.025
    [6]
    王冬梅, 刘云. 低共熔溶剂(DES)分级分离木质纤维素组分新技术[J]. 北京化工大学学报(自然科学版),2018,45(6):40−47. [WANG D M, LIU Y. Fractionation of lignocellulose with deep eutectic solvent[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition),2018,45(6):40−47.]

    WANG D M, LIU Y. Fractionation of lignocellulose with deep eutectic solvent[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(6): 40−47.
    [7]
    郭振. 糖类化合物在离子液体和低共熔溶剂中的溶解性能研究[D]. 北京:北京化工大学, 2016. [GUO Z. Carbohydrate compounds dissolved in ionic liquids and deep eutectic solvent performance study[D]. Beijing:Beijing University of Chemical Technology, 2016.]

    GUO Z. Carbohydrate compounds dissolved in ionic liquids and deep eutectic solvent performance study[D]. Beijing: Beijing University of Chemical Technology, 2016.
    [8]
    JING Y, JIANG Y Z, HUI N T, et al. Effect of deep eutectic solvent extraction on Auricularia auricula polysaccharide solubilization and antioxidant potential[J]. Sustainable Chemistry and Pharmacy,2023,34:101166. doi: 10.1016/j.scp.2023.101166
    [9]
    LIN C, YANG Y Y, RONG R Z, et al. The extraction of phenolic acids and polysaccharides from Lilium lancifolium Thunb. using a deep eutectic solvent[J]. Analytical Methods:Advancing Methods and Applications,2021,13(10):1226−1231.
    [10]
    NIE J G, CHEN D T, LU Y B. Deep eutectic solvents based ultrasonic extraction of polysaccharides from edible brown seaweed Sargassum horneri[J]. Journal of Marine Science and Engineering,2020,8(6):440. doi: 10.3390/jmse8060440
    [11]
    ZHANG H L, CUI S H, ZHA X Q, et al. Jellyfish skin polysaccharides:extraction and inhibitory activity on macrophage derived foam cell formation[J]. Carbohydrate Polymers,2014,106:393−402. doi: 10.1016/j.carbpol.2014.01.041
    [12]
    DUBOIS, M, GILLES, K, HAMILTON, J, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
    [13]
    教小磐, 刘云. 甜茶叶多糖的表征、体外抗氧化活性与体内毒性[J]. 食品科学,2020,41(15):201−207. [JIAO X P, LIU Y. Characterization, antioxidant activity in vitro and toxicity in vivo of polysaccharides from Rubus suavissimus S. Lee leaves[J]. Food Science,2020,41(15):201−207.] doi: 10.7506/spkx1002-6630-20190511-114

    JIAO X P, LIU Y. Characterization, antioxidant activity in vitro and toxicity in vivo of polysaccharides from Rubus suavissimus S. Lee leaves[J]. Food Science, 2020, 41(15): 201−207. doi: 10.7506/spkx1002-6630-20190511-114
    [14]
    LU X, ZHAO Y, SUN Y, et al. Characterization of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects[J]. Food Chemistry,2013,141(4):3415−3423. doi: 10.1016/j.foodchem.2013.06.058
    [15]
    杨新河, 黄明军, 马蔚, 等. 不同黑茶多糖的组成分析及其抗氧化活性[J]. 食品工业科技,2017,38(20):16−20. [YANG X H, HUAN M J, MA W, et al. Composition and antioxidant activity of polysaccharides of different dark tea[J]. Science and Technology of Food Industry,2017,38(20):16−20.]

    YANG X H, HUAN M J, MA W, et al. Composition and antioxidant activity of polysaccharides of different dark tea[J]. Science and Technology of Food Industry, 2017, 38(20): 16−20.
    [16]
    BI H T, GAO T T, LI Z H, et al. Structural elucidation and antioxidant activity of a water-soluble polysaccharide from the fruit bodies of Bulgaria inquinans (Fries)[J]. Food Chemistry,2013,138(2/3):1470−1475.
    [17]
    XU Y, JIANG H, SUN C, et al. Antioxidant and hepatoprotective effects of purified Rhodiola rosea polysaccharides[J]. International Journal of Biological Macromolecules,2018,117:167−178. doi: 10.1016/j.ijbiomac.2018.05.168
    [18]
    CAI C, WANG Y, YU W, et al. Temperature-responsive deep eutectic solvents as green and recyclable media for the efficient extraction of polysaccharides from Ganoderma lucidum[J]. Journal of Cleaner Production,2020,274:123047. doi: 10.1016/j.jclepro.2020.123047
    [19]
    LU X, LI N, QIAO X, et al. Effects of thermal treatment on polysaccharide degradation during black garlic processing[J]. LWT - Food Science and Technology,2018,95:223−229. doi: 10.1016/j.lwt.2018.04.059
    [20]
    张锦钰. 低共熔溶剂提取淮山多糖及其结构、生物活性研究[D]. 长沙:湖南农业大学, 2020. [ZHANG J Y. Study on structure and bioactivity of Polysaccharides extracted from Chinese Yam using deep eutectic solvents[D]. Changsha:Hunan Agricultural University, 2020.]

    ZHANG J Y. Study on structure and bioactivity of Polysaccharides extracted from Chinese Yam using deep eutectic solvents[D]. Changsha: Hunan Agricultural University, 2020.
    [21]
    宋林珍, 朱丽云, 高永生, 等. 茶多糖的结构特征与降血糖活性[J]. 食品科学,2018,39(19):162−168. [SONG L Z, ZHU L Y, GAO Y S, et al. Structural characteristics and hypoglycemic activity of Polysaccharides from Green Tea Leaves[J]. Food Science,2018,39(19):162−168.] doi: 10.7506/spkx1002-6630-201819025

    SONG L Z, ZHU L Y, GAO Y S, et al. Structural characteristics and hypoglycemic activity of Polysaccharides from Green Tea Leaves[J]. Food Science, 2018, 39(19): 162−168. doi: 10.7506/spkx1002-6630-201819025
    [22]
    WANG D, ZHAO Y, SUN Y, et al. Protective effects of Ziyang tea polysaccharides on CCl4-induced oxidative liver damage in mice[J]. Food Chemistry,2014,143:371−378. doi: 10.1016/j.foodchem.2013.08.005
    [23]
    KANG Q Z, CHEN S S, LI S F, et al. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction[J]. International Journal of Biological Macromolecules,2018,124:1137−1144.
    [24]
    WEN L R, SHENG Z L, WANG J P, et al. Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity[J]. Food Chemistry,2022,373:131374. doi: 10.1016/j.foodchem.2021.131374
    [25]
    REN L, ZHANG J, ZHANG T H. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells[J]. Food Chemistry,2021,340:127933. doi: 10.1016/j.foodchem.2020.127933
    [26]
    LU J H, HE R J, SUN P L, et al. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review[J]. International Journal of Biological Macromolecules,2020,150:765−774. doi: 10.1016/j.ijbiomac.2020.02.035
    [27]
    何喜珍. 不同分子量大豆多糖的制备、表征和抗氧化研究[D]. 上海:华东师范大学, 2016. [HE X Z. Preparation, characterization and antioxidation study of different molecular weight of Soluble Soybean Polysaccharides[D]. Shanghai:East China Normal University, 2016.]

    HE X Z. Preparation, characterization and antioxidation study of different molecular weight of Soluble Soybean Polysaccharides[D]. Shanghai: East China Normal University, 2016.
    [28]
    ZHANG Z F, LÜ G Y, HE W Q, et al. Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes[J]. Carbohydrate Polymers,2013,98(2):1524−1531. doi: 10.1016/j.carbpol.2013.07.052
    [29]
    魏炜, 李彦伟, 刘凤霞, 等. 响应面法优化超高压提取黄精多糖工艺[J]. 精细化工,2019,36(5):875−881. [WEI W, LI Y W, LIU F X, et al. Optimization of ultrahigh pressure extraction of Polysaccharides from Polygonatum cyrtonema Hua by response surface methodology[J]. Fine Chemicals,2019,36(5):875−881.]

    WEI W, LI Y W, LIU F X, et al. Optimization of ultrahigh pressure extraction of Polysaccharides from Polygonatum cyrtonema Hua by response surface methodology[J]. Fine Chemicals, 2019, 36(5): 875−881.
    [30]
    李亚辉, 马艳弘, 黄开红, 等. 响应面法优化复合酶提取芦荟多糖工艺及其抗氧化活性分析[J]. 食品科学,2014,35(18):63−68. [LI Y H, MA Y H, HUANG K H, et al. Response surface methodology for optimisation of complex enzyme extraction process of Aloe vera polysaccharide and its antioxidant activity analysis[J]. Food Science,2014,35(18):63−68.] doi: 10.7506/spkx1002-6630-201418012

    LI Y H, MA Y H, HUANG K H, et al. Response surface methodology for optimisation of complex enzyme extraction process of Aloe vera polysaccharide and its antioxidant activity analysis[J]. Food Science, 2014, 35(18): 63−68. doi: 10.7506/spkx1002-6630-201418012
    [31]
    徐静珠, 吴彩娥, 应瑞峰, 等. 青钱柳叶多糖不同组分体外降血糖及抗氧化活性研究[J]. 南京林业大学学报(自然科学版),2017,41(4):6−12. [XU J Z, WU C E. YING R F, et al. Hypoglycemic and antioxidant activity of various polysaccharides from Cyclocarya paliurus leaves in vitro[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2017,41(4):6−12.] doi: 10.3969/j.issn.1000-2006.201610064

    XU J Z, WU C E. YING R F, et al. Hypoglycemic and antioxidant activity of various polysaccharides from Cyclocarya paliurus leaves in vitro[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(4): 6−12. doi: 10.3969/j.issn.1000-2006.201610064
    [32]
    梁惠, 史艳财, 熊忠臣, 等. 不同冲泡条件下的槐米茶茶汤对ABTS阳离子自由基的清除作用[J]. 广西科学院学报,2023,39(1):108−118. [LIANG H, SHI Y C, XIONG Z C, et al. Scavenging effect of Sophora japonica tea soup on ABTS cationic free radical under different brewing conditions[J]. Journal of Guangxi Academy of Sciences,2023,39(1):108−118.]

    LIANG H, SHI Y C, XIONG Z C, et al. Scavenging effect of Sophora japonica tea soup on ABTS cationic free radical under different brewing conditions[J]. Journal of Guangxi Academy of Sciences, 2023, 39(1): 108−118.
    [33]
    朱帅, 黄梦玲, 吴倩倩, 等. 蛋黄卵磷脂的结构、提取、功能与脂质体研究进展[J]. 粮油食品科技,2020,28(3):18−25. [ZHU S, HUANG M L, WU Q Q, et al. State-of-the-art of egg yolk lecithin:Molecular structure, extraction strategies, bio-activities and liposome application[J]. Science and Technology of Cereals, Oils and Foods,2020,28(3):18−25]

    ZHU S, HUANG M L, WU Q Q, et al. State-of-the-art of egg yolk lecithin: Molecular structure, extraction strategies, bio-activities and liposome application[J]. Science and Technology of Cereals, Oils and Foods, 2020, 28(3): 18−25
    [34]
    SUI X C, GUO Q B, XIA Y M, et al. Structure features of the intracellular polysaccharide from Ganoderma lucidum and the irrelative immune-anticancer activities of GLPs[J]. Bioactive Carbohydrates and Dietary Fiber,2016,8(2):43−50. doi: 10.1016/j.bcdf.2016.11.001
    [35]
    LI J, GU F F, CAI C, et al. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum[J]. International Journal of Biological Macromolecules,2020,143:806−813. doi: 10.1016/j.ijbiomac.2019.09.141
    [36]
    SANTRA M, KUNZRU D, RABARI D. A stability analysis of choline chloride:Urea deep eutectic solvent using density functional theory[J]. Computational and Theoretical Chemistry,2022,1217:113921. doi: 10.1016/j.comptc.2022.113921
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 张瑜. 气质膨化即食牛蹄筋加工工艺研究. 保鲜与加工. 2024(03): 40-46 .
    2. 卢相龙,胡秦晓,秦斐. 杏皮水酸奶冻饮品制作工艺优化及品质研究. 饮料工业. 2024(05): 45-50 .
    3. 薛山,黄艺萍. 四维辅助三维响应面法优化菠萝蜜种泥果冻配方. 食品工业. 2022(01): 156-161 .
    4. 李想,宋弘扬,赵存朝,盛军,陶亮,田洋. 一种特色百香果果冻产品的研制. 食品工业科技. 2021(06): 159-165 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (153) PDF downloads (21) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return