Citation: | ZHAO Yidi, LIU Yuan, ZHANG Kai, et al. Optimization of Germination of Tartary Buckwheat with Slightly Acidic Electrolyzed Water by Response Surface Methodology and Its Selenium-enriched Rules[J]. Science and Technology of Food Industry, 2024, 45(17): 155−162. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080010. |
[1] |
杨芙莲, 赵丽娜. 甜荞麦麸皮蛋白质提取工艺研究[J]. 陕西科技大学学报(自然科学版),2015,33(1):126−130. [YANG F L, ZHAO L N. Study on extraction technology of sweet buckwheat bran protein[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition),2015,33(1):126−130.]
YANG F L, ZHAO L N. Study on extraction technology of sweet buckwheat bran protein[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition), 2015, 33(1): 126−130.
|
[2] |
左光明. 苦荞主要营养功能成分关键利用技术研究[D]. 贵阳:贵州大学, 2009. [ZUO G M. Study on key utilization technology of main nutritional functional components of tartary buckwheat[D]. Guiyang:Guizhou University, 2009.]
ZUO G M. Study on key utilization technology of main nutritional functional components of tartary buckwheat[D]. Guiyang: Guizhou University, 2009.
|
[3] |
HU Y Y, HOU Z X, YI R K, et al. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice[J]. Food & Function,2017,8(8):2803−2816.
|
[4] |
LI S Q, ZHANG Q H. Advances in the development of functional foods from buckwheat[J]. Critical Reviews in Food Science and Nutrition,2001,41(6):451−464. doi: 10.1080/20014091091887
|
[5] |
DAI C, ZHANG X, MENG M, et al. The protective effect of a buckwheat-enriched diet on renal injury in high salt-induced hypertension in rats[J]. Food & Function,2016,7(8):296−301.
|
[6] |
SUN X, TONG L, LIANG T, et al. Effect of oat and tartary buckwheat-based food on cholesterol-lowering and gut microbiota in hypercholesterolemic hamsters[J]. Journal of Oleo Science,2019,68(3):157−162.
|
[7] |
ZHANG C, ZHANG R, LI Y M, et al. Cholesterol-lowering activity of tartary buckwheat protein[J]. Journal of Agricultural and Food Chemistry,2017,65(9):1900−1906. doi: 10.1021/acs.jafc.7b00066
|
[8] |
胡园园, 易若琨, 王仲明, 等. 苦荞中D-手性肌醇的纯化及其抗氧化活性研究[J]. 食品工业科技,2017,38(14):82−86. [HU Y Y, YI R K, WANG Z M, et al. Purification and antioxidant activity of D-chiral inositol from tartary buckwheat[J]. Food Industry Science and Technology,2017,38(14):82−86.]
HU Y Y, YI R K, WANG Z M, et al. Purification and antioxidant activity of D-chiral inositol from tartary buckwheat[J]. Food Industry Science and Technology, 2017, 38(14): 82−86.
|
[9] |
LI Y Y, DUAN S Z, JIA H Y, et al. Flavonoids from tartary buck-wheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells[J]. Acta Biochimica et Biophysica Sinica,2014,46(6):460−470. doi: 10.1093/abbs/gmu023
|
[10] |
肖兵. 抗性淀粉对糖尿病小鼠血糖和短链脂肪酸的影响及代餐产品开发[D]. 南昌:南昌大学, 2018. [XIAO B. Effect of resistant starch on blood sugar and short-chain fatty acids in diabetic mice and development of meal replacement products[D]. Nanchang:Nanchang University, 2018.]
XIAO B. Effect of resistant starch on blood sugar and short-chain fatty acids in diabetic mice and development of meal replacement products[D]. Nanchang: Nanchang University, 2018.
|
[11] |
GUO Y X, ZHU Y H, CHEN C X, et al. Effects of aeration treatment on gamma-aminobutyric acid accumulation in germinated tartary buckwheat (Fagopyrum tataricum)[J]. Journal of Chemistry,2016,51(2016):1−9.
|
[12] |
ZHOU X, HAO T, ZHOU Y, et al. Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination[J]. Journal of Food Science and Technology,2015,52(4):2458−2463. doi: 10.1007/s13197-014-1290-1
|
[13] |
邓秋秋, 庞文婷, 亢凯杰, 等. 微酸性电解水浸渍对天麻鲜切片贮藏品质影响的动力学研究[J]. 食品工业科技,2023,45(10):1−14. [DENG Q Q, PANG W T, KANG K J, et al. Kinetic study on the effect of slightly acidic electrolytic water immersion on the storage quality of fresh slices of Gastrodia elata[J]. Food Industry Science and Technology,2023,45(10):1−14.]
DENG Q Q, PANG W T, KANG K J, et al. Kinetic study on the effect of slightly acidic electrolytic water immersion on the storage quality of fresh slices of Gastrodia elata[J]. Food Industry Science and Technology, 2023, 45(10): 1−14.
|
[14] |
朱旭冉, 程铭, 邢维海, 等. 电生功能水对三种蔬菜质构及营养品质的影响[J]. 食品与发酵工业,2020,46(15):201−207. [ZHU X R, CHENG M, XING W H, et al. Effects of electrolyzed functional water on texture and nutritional quality of three vegetables[J]. Food and Fermentation Industry,2020,46(15):201−207.]
ZHU X R, CHENG M, XING W H, et al. Effects of electrolyzed functional water on texture and nutritional quality of three vegetables[J]. Food and Fermentation Industry, 2020, 46(15): 201−207.
|
[15] |
MELANIE W R, MONIKA S, SUSANNE B, et al. Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health[J]. Frontiers in Plant Science,2017,8(1):1365−1377.
|
[16] |
LIN Y, JIANG L Q. Research progress on the immunomodulatory effect of trace element selenium and its effect on immune-related diseases[J]. Food Therapy and Health Care,2020,2(2):86−98.
|
[17] |
PAPADOMICHELAKIS G, ZOIDIS E, PAPPAS A C, et al. Dietary organic selenium addition and accumulation of toxic and essential trace elements in liver and meat of growing rabbits[J]. Meat Science,2018,145(9):383−388.
|
[18] |
LIU M, JING H, ZHANG J, et al. Optimization of mycelia selenium polysaccharide extraction from Agrocybe cylindracea SL-02 and assessment of their antioxidant and anti-ageing activities[J]. Plos One,2016,11(8):1−15.
|
[19] |
FORDYCE F M, ZHANG G, GREEN K, et al. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China[J]. Applied Geochemistry,2000,15(1):117−132. doi: 10.1016/S0883-2927(99)00035-9
|
[20] |
徐静, 熊纪敏, 辛鹏举, 等. 微酸性电解水的性能与口腔应用研究进展[J]. 中华医院感染学杂志,2018,28(12):1913−1916. [XU J, XIONG J M, XIN P J, et al. Research progress on properties and oral application of slightly acidic electrolyzed water[J]. Chinese Journal of Hospital Infection,2018,28(12):1913−1916.]
XU J, XIONG J M, XIN P J, et al. Research progress on properties and oral application of slightly acidic electrolyzed water[J]. Chinese Journal of Hospital Infection, 2018, 28(12): 1913−1916.
|
[21] |
石志芳, 席磊, 程璞, 等. 微酸性电解水猪场消毒效果研究[J]. 西北农林科技大学学报(自然科学版),2020,48(5):22−30,41. [SHI Z F, XI L, CHENG P, et al. Study on disinfection effect of slightly acidic electrolyzed water in pig farms[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition),2020,48(5):22−30,41.]
SHI Z F, XI L, CHENG P, et al. Study on disinfection effect of slightly acidic electrolyzed water in pig farms[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2020, 48(5): 22−30,41.
|
[22] |
刘媛, 朱旭冉, 王健, 等. 电生功能水清洗对鲜切蔬菜农药残留去除的影响[J]. 食品与发酵工业,2022,48(6):125−133. [LIU Y, ZHU X R, WANG J, et al. Effect of cleaning in electrolyzed functional water on removal of pesticide residues in fresh-cut vegetables[J]. Food and Fermentation Industry,2022,48(6):125−133.]
LIU Y, ZHU X R, WANG J, et al. Effect of cleaning in electrolyzed functional water on removal of pesticide residues in fresh-cut vegetables[J]. Food and Fermentation Industry, 2022, 48(6): 125−133.
|
[23] |
艾楷棋, 曹凯, 叶章颖, 等. 微酸性电解水对番茄幼苗生长和光合作用的影响[J]. 北方园艺,2021,46(3):1−7. [AI K Q, CAO K, YE Z Y, et al. Effects of slightly acidic electrolyzed water on growth and photosynthesis of tomato seedlings[J]. Northern Gardening,2021,46(3):1−7.]
AI K Q, CAO K, YE Z Y, et al. Effects of slightly acidic electrolyzed water on growth and photosynthesis of tomato seedlings[J]. Northern Gardening, 2021, 46(3): 1−7.
|
[24] |
LI L L, MU T H, ZHANG M. Contribution of ultrasound and slightly acid electrolytic water combination on inactivating Rhizopus stolonifer in sweet potato[J]. Ultrasonics Sonochemistry,2021,29(73):105528.
|
[25] |
张鑫, 杨普云, 杜静, 等. 酸性电解水防治水稻稻曲病效果初探[J]. 中国植保导刊,2019,39(9):69−72. [ZHANG X, YANG P Y, DU J, et al. Preliminary study on the effect of acid electrolyzed water on controlling rice false smut[J]. China Plant Protection Guide,2019,39(9):69−72.] doi: 10.3969/j.issn.1672-6820.2019.09.013
ZHANG X, YANG P Y, DU J, et al. Preliminary study on the effect of acid electrolyzed water on controlling rice false smut[J]. China Plant Protection Guide, 2019, 39(9): 69−72. doi: 10.3969/j.issn.1672-6820.2019.09.013
|
[26] |
ZHANG C L, ZHANG Y Y, ZHAO Z Y, et al. The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout[J]. Food Control,2019,29(104):83−90.
|
[27] |
LIU R, HAO J, LIU H, et al. Application of electrolyzed functional water on producing mung bean sprouts[J]. Food Control,2011,21(22):1311−1315.
|
[28] |
周艳鑫. 电生功能水在芽苗菜生产中的应用研究[D]. 北京:中国农业大学, 2011. [ZHOU Y X. Study on the application of electrolyzed functional water in sprout vegetable production[D]. Beijing:China Agricultural University, 2011.]
ZHOU Y X. Study on the application of electrolyzed functional water in sprout vegetable production[D]. Beijing: China Agricultural University, 2011.
|
[29] |
LIU R, HE X, SHI J, et al. The effect of electrolyzed water on decontamination, germination and γ-aminobutyric acid accumulation of brown rice[J]. Food Control,2013,33(1):1−5. doi: 10.1016/j.foodcont.2013.02.008
|
[30] |
王田蕊. 电生功能水处理对苦荞发芽影响研究[D]. 张家口:河北北方学院, 2022. [WANG T R. Effect of electrogenerated functional water treatment on the germination of tartary buckwheat[D]. Zhangjiakou:Hebei North University, 2022.]
WANG T R. Effect of electrogenerated functional water treatment on the germination of tartary buckwheat[D]. Zhangjiakou: Hebei North University, 2022.
|
[31] |
何伟俊, 吴俏槿, 夏雨, 等. 苦荞萌动的浸麦工艺优化[J]. 食品工业,2020,41(9):81−85. [HE W J, WU Q J, XIA Y, et al. Optimization of steeping technology for sprouting buckwheat[J]. Food Industry,2020,41(9):81−85.]
HE W J, WU Q J, XIA Y, et al. Optimization of steeping technology for sprouting buckwheat[J]. Food Industry, 2020, 41(9): 81−85.
|
[32] |
文婷婷, 田艺心, 朱岩芳, 等. 蚕豆种皮结构细胞壁成分及其与透水性的关系[J]. 科技通报,2013,29(5):63−67. [WEN T T, TIAN Y T, ZHU Y T, et al. Cell wall composition of Vicia faba seed coat structure and its relationship with water permeability[J]. Bulletin of Science and Technology,2013,29(5):63−67.] doi: 10.3969/j.issn.1001-7119.2013.05.014
WEN T T, TIAN Y T, ZHU Y T, et al. Cell wall composition of Vicia faba seed coat structure and its relationship with water permeability[J]. Bulletin of Science and Technology, 2013, 29(5): 63−67. doi: 10.3969/j.issn.1001-7119.2013.05.014
|
[33] |
李英, 沈永宝. 枳椇种子休眠原因及解除方法[J]. 南京林业大学学报(自然科学版),2014,38(2):57−62. [LI Y, SHEN Y B. Causes of seed dormancy of Hovenia dulcis Thunb. and methods of removing it[J]. Journal of Nanjing Forestry University (Natural Science Edition),2014,38(2):57−62.]
LI Y, SHEN Y B. Causes of seed dormancy of Hovenia dulcis Thunb. and methods of removing it[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(2): 57−62.
|
[34] |
杨万霞, 洑香香, 方升佐. 青钱柳种子的种皮构造及其对透水性的影响[J]. 南京林业大学学报(自然科学版),2005,29(5):25−28. [YANG W X, FU X X, FANG S X. Seed coat structure of Cyclocarya paliurus and its influence on water permeability[J]. Journal of Nanjing Forestry University (Natural Science Edition),2005,29(5):25−28.] doi: 10.3969/j.issn.1000-2006.2005.05.006
YANG W X, FU X X, FANG S X. Seed coat structure of Cyclocarya paliurus and its influence on water permeability[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2005, 29(5): 25−28. doi: 10.3969/j.issn.1000-2006.2005.05.006
|
[35] |
宋超, 王跃华, 赵钢, 等. 不同酸处理对苦荞种子萌发和幼苗生长的影响[J]. 种子,2015,34(8):79−82. [SONG C, WANG Y H, ZHAO G, et al. Effects of different acid treatments on seed germination and seedling growth of tartary buckwheat[J]. Seeds,2015,34(8):79−82.]
SONG C, WANG Y H, ZHAO G, et al. Effects of different acid treatments on seed germination and seedling growth of tartary buckwheat[J]. Seeds, 2015, 34(8): 79−82.
|
[36] |
郭丽丽, 李小兰, 孙杰, 等. 基于响应面的苦荞萌发工艺优化及抗氧化活性研究[J]. 食品工业,2022,43(11):6−12. [GUO L L, LI X L, SUN J, et al. Optimization of germination process and antioxidant activity of tartary buckwheat based on response surface methodology[J]. Food Industry,2022,43(11):6−12.]
GUO L L, LI X L, SUN J, et al. Optimization of germination process and antioxidant activity of tartary buckwheat based on response surface methodology[J]. Food Industry, 2022, 43(11): 6−12.
|
[37] |
吕小京, 操德群, 徐年军. 响应面试验优化酶解法制备海洋微藻微拟球藻抗氧化肽工艺[J]. 食品科学,2018,39(6):183−188. [LÜ X J, CAO D Q, XU N J. Optimization of enzymatic preparation of antioxidant peptides from protein hydrolysate of the marine microalgae nannochloropsis by response surface methodology[J]. Food Science,2018,39(6):183−188.] doi: 10.7506/spkx1002-6630-201806029
LÜ X J, CAO D Q, XU N J. Optimization of enzymatic preparation of antioxidant peptides from protein hydrolysate of the marine microalgae nannochloropsis by response surface methodology[J]. Food Science, 2018, 39(6): 183−188. doi: 10.7506/spkx1002-6630-201806029
|
[38] |
BERSTEIN D, AZAIZEH H, EDELSTEIN M, et al. Effects of selenium on growth parameters of tomato and basil under fertigation management[J]. Hortscience,2016,51(8):1050−1056. doi: 10.21273/HORTSCI.51.8.1050
|
[39] |
边淑惠, 邢国芳, 梁昕, 等. 不同形态硒及用量对幼苗期谷子生长与生理的影响[J]. 作物志,2023,38(1):152−157. [BIAN S H, XING G F, LIANG X, et al. Effects of different forms of selenium and its dosage on the growth and physiology of millet in seedling stage[J]. Crops Journal,2023,38(1):152−157.]
BIAN S H, XING G F, LIANG X, et al. Effects of different forms of selenium and its dosage on the growth and physiology of millet in seedling stage[J]. Crops Journal, 2023, 38(1): 152−157.
|
[40] |
LIU X, YANG Y, DENG X, et al. Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate[J]. Environmental and Experimental Botany,2017,135:13−20. doi: 10.1016/j.envexpbot.2016.12.005
|
[41] |
童晓萌, 柴春祥, 王永强. 萌发对苦荞籽粒品质的影响及工艺优化[J]. 食品与机械,2021,37(4):176−183. [TONG X M, CHAI C X, WANG Y Q. Effect of germination on grain quality of tartary buckwheat and optimization of technology[J]. Food and Machinery,2021,37(4):176−183.]
TONG X M, CHAI C X, WANG Y Q. Effect of germination on grain quality of tartary buckwheat and optimization of technology[J]. Food and Machinery, 2021, 37(4): 176−183.
|
[42] |
严宏康. 富硒麦芽的制备工艺及其制麦特性和酿造性能的研究[D]. 广州:华南理工大学, 2022. [YAN H K. Study on the preparation technology, malting characteristics and brewing performance of selenium-enriched malt[D]. Guangzhou:South China University of Technology, 2022.]
YAN H K. Study on the preparation technology, malting characteristics and brewing performance of selenium-enriched malt[D]. Guangzhou: South China University of Technology, 2022.
|