Citation: | WANG Ningxiaoxuan, LI Xin, HUANG Yuli, et al. Advances in the Application of Machine Learning to Microbial Structure and Quality Control of Traditional Fermented Foods[J]. Science and Technology of Food Industry, 2024, 45(13): 360−367. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070288. |
[1] |
董玺梅, 阮志强, 蒋雪薇. 酱香风味传统发酵食品中微生物与风味形成的相关性[J]. 中国食品学报,2022,22(7):397−406. [DONG X M, RUAN Z Q, JIANG X W. Relationship between microorganisms and flavor formation in traditional fermented food with flavor of soy sauce[J]. Chinese Journal of Food Science,2022,22(7):397−406.]
DONG X M, RUAN Z Q, JIANG X W. Relationship between microorganisms and flavor formation in traditional fermented food with flavor of soy sauce[J]. Chinese Journal of Food Science, 2022, 22(7): 397−406.
|
[2] |
STAVROS P. The rendering of traditional fermented foods in human diet:Distribution of health benefits and nutritional benefits[J]. Fermentation,2022,8(12):751. doi: 10.3390/fermentation8120751
|
[3] |
OSCAR Z, IFAGBEMI B C, YENOUKOUNME E K, et al. Traditional fermented foods of benin republic:Microbiological safety and health benefits[J]. Discover Food,2023,3(1):3. doi: 10.1007/s44187-023-00043-x
|
[4] |
廖一漠, 敖晓琳, 康海燕, 等. 传统发酵食品中乳酸菌与酵母菌互作机制研究进展[J]. 食品与发酵工业,2023,49(3):340−346. [LIAO Y M, AO X L, KANG H Y, et al. Research progress on interaction mechanism between lactic acid bacteria and yeast in traditional fermented food[J]. Food and Fermentation Industry,2023,49(3):340−346.]
LIAO Y M, AO X L, KANG H Y, et al. Research progress on interaction mechanism between lactic acid bacteria and yeast in traditional fermented food[J]. Food and Fermentation Industry, 2023, 49(3): 340−346.
|
[5] |
陈镜如, 边鑫, 杨杨, 等. 中国传统发酵食品微生物多样性研究进展[J]. 中国调味品,2022,47(2):205−210. [CHEN J R, BIAN X, YANG Y, et al. Research progress on microbial diversity of traditional fermented foods in china[J]. Chinese Seasoning,2022,47(2):205−210.] doi: 10.3969/j.issn.1000-9973.2022.02.042
CHEN J R, BIAN X, YANG Y, et al. Research progress on microbial diversity of traditional fermented foods in china[J]. Chinese Seasoning, 2022, 47(2): 205−210. doi: 10.3969/j.issn.1000-9973.2022.02.042
|
[6] |
XU M, SU S, ZHANG Z, et al. Two sides of the same coin:Meta-analysis uncovered the potential benefits and risks of traditional fermented foods at a large geographical scale[J]. Frontiers in Microbiology,2022,13:1045096. doi: 10.3389/fmicb.2022.1045096
|
[7] |
WU Q, ZHU Y, FANG C, et al. Can we control microbiota in spontaneous food fermentation?–Chinese liquor as a case example[J]. Trends in Food Science & Technology,2021,110:321−331.
|
[8] |
岳向阳. 基于机器学习的发酵过程建模与优化[D]. 无锡:江南大学, 2021. [YUE X Y. Modeling and optimization of fermentation process based on machine learning[D]. Wuxi:Jiangnan University, 2021.]
YUE X Y. Modeling and optimization of fermentation process based on machine learning[D]. Wuxi: Jiangnan University, 2021.
|
[9] |
WIKANDARI R, KINANTI D A, PERMATASARI R D, et al. Correlations between the chemical, microbiological characteristics and sensory profile of fungal fermented food[J]. Fermentation,2021,7(4):261. doi: 10.3390/fermentation7040261
|
[10] |
LUCA R, MICHELE C, CONCETTA B M. Chromatographic determination of biogenic amines in four typical Italian cheeses:Correlations with processing and nutritional characteristics through a chemometric approach[J]. Journal of the Science of Food and Agriculture,2019,99(11):4963−4968. doi: 10.1002/jsfa.9730
|
[11] |
DAKILA L, STEVEN S, SEAN R. Advancements within modern machine learning methodology:Impacts and prospects in biomarker discovery[J]. Current Medicinal Chemistry,2021,28(32):6512−6531. doi: 10.2174/0929867328666210208111821
|
[12] |
TAKI H R, RAED M S, FAISAL F, et al. Recent advances in computer-aided medical diagnosis using machine learning algorithms with optimization techniques[J]. IEEE Access,2021,9:137847−137868. doi: 10.1109/ACCESS.2021.3108892
|
[13] |
RICKERBY H F, PUTINTSEVA K, COZENS C. Machine learning-driven protein engineering:A case study in computational drug discovery[J]. Engineering Biology,2020,4(1):7−9. doi: 10.1049/enb.2019.0019
|
[14] |
王铖, 王珍珍, 陈其彪, 等. 基于机器学习的代谢组学解析腊八蒜储藏过程中代谢物差异[J]. 食品工业科技,2023,44(8):26−34. [WANG C, WANG Z Z, CHEN Q B, et al. Metabolomics analysis of metabolite differences during storage of Laba garlic based on machine learning[J]. Food Industry Science and Technology,2023,44(8):26−34.]
WANG C, WANG Z Z, CHEN Q B, et al. Metabolomics analysis of metabolite differences during storage of Laba garlic based on machine learning[J]. Food Industry Science and Technology, 2023, 44(8): 26−34.
|
[15] |
YU H, LIU S, ZHOU Z, et al. Impact of aging microbiome on metabolic profile of natural aging Huangjiu through machine learning[J]. Foods,2023,12(4):906. doi: 10.3390/foods12040906
|
[16] |
MIRIAM Z, LIA R, TOMMASO B, et al. Bacterial community of grana padano PDO cheese and generical hard cheeses:DNA metabarcoding and DNA metafingerprinting analysis to assess similarities and differences[J]. Foods (Basel, Switzerland),2021,10(8):1826.
|
[17] |
CLAUDIA G V, DAMIR D T, FRANK R D, et al. Development of artificial neural network models to assess beer acceptability based on sensory properties using a robotic pourer:A comparative model approach to achieve an artificial intelligence system[J]. Beverages,2019,5(2):33. doi: 10.3390/beverages5020033
|
[18] |
NEDA O Đ, NEVENA T, IRENA T N, et al. Antioxidant activity of selected polyphenolics in yeast cells:The case study of Montenegrin Merlot wine[J]. Molecules,2018,23(8):1971. doi: 10.3390/molecules23081971
|
[19] |
ZHANG Y, HOU Y, ZHANG S, et al. Bifidobacterium animalis A12, a probiotic strain that promotes glucose and lipid metabolism, improved the texture and aroma of the fermented sausage[J]. Foods,2023,12(2):336. doi: 10.3390/foods12020336
|
[20] |
SHI H, ZHOU X, YAO Y, et al. Insights into the microbiota and driving forces to control the quality of vinegar[J]. LWT,2022,157:113085. doi: 10.1016/j.lwt.2022.113085
|
[21] |
YANG Y, ZHONG H, YANG T, et al. Characterization of the key aroma compounds of a sweet rice alcoholic beverage fermented with Saccharomycopsis fibuligera[J]. Journal of Food Science and Technology,2020,58(10):1−13.
|
[22] |
AQIN D. Database task processing optimization based on performance evaluation and machine learning algorithm[J]. Soft Computing,2023,27(10):6811−6821. doi: 10.1007/s00500-023-08111-1
|
[23] |
刘凡平. 神经网络与深度学习应用实战[M]. 北京:电子工业出版社, 2018. [LIU F P. Practical application of neural networks and deep learning[M]. Beijing:Electronic Industry Press, 2018.]
LIU F P. Practical application of neural networks and deep learning[M]. Beijing: Electronic Industry Press, 2018.
|
[24] |
EISEUL K, SEUNGMIN Y, DAEHYUN J, et al. Differentiation between Weissella cibaria and Weissella confusa using machine-learning-combined MALDI-TOF MS[J]. International Journal of Molecular Sciences,2023,24(13):11009. doi: 10.3390/ijms241311009
|
[25] |
ALI A, FATANE B, FARIDEH T Y, et al. Kinetic pattern and microbial population dynamic characterization of Escherichia coli and Salmonella enteritidis in Frankfurter sausage:An experimental and modeling study[J]. Journal of Food Safety,2019,39(5):e12669. doi: 10.1111/jfs.12669
|
[26] |
LU K, LIU L, XU Z, et al. The analysis of volatile compounds through flavoromics and machine learning to identify the origin of traditional chinese fermented shrimp paste from different regions[J]. LWT,2022,171:114096. doi: 10.1016/j.lwt.2022.114096
|
[27] |
马金克, 宋瑶, 韩坤宸, 等. 用随机森林回归算法辨析长寿人群饮食特征与健康指标间量化关系[J]. 食品工业科技,2022,43(8):389−398. [MA J K, SONG Y, HAN K C, et al. The quantitative relationship between dietary characteristics and health indicators of long-lived population was analyzed by random forest regression algorithm[J]. Food Industry Science and Technology,2022,43(8):389−398.]
MA J K, SONG Y, HAN K C, et al. The quantitative relationship between dietary characteristics and health indicators of long-lived population was analyzed by random forest regression algorithm[J]. Food Industry Science and Technology, 2022, 43(8): 389−398.
|
[28] |
王雨. 米酒风味的嗅觉-味觉跨模态表征方法研究[D]. 镇江:江苏大学, 2022. [WANG Y. Study on smell-taste cross-modal characterization of rice wine flavor[D]. Zhenjiang:Jiangsu University, 2022.]
WANG Y. Study on smell-taste cross-modal characterization of rice wine flavor[D]. Zhenjiang: Jiangsu University, 2022.
|
[29] |
刘文慧. 毕赤酵母多工况发酵过程菌体浓度软测量方法研究[D]. 镇江:江苏大学, 2022. [LIU W H. Study on soft measurement method of bacteria concentration during Pichia pastoris fermentation under multiple conditions[D]. Zhenjiang:Jiangsu University, 2022.]
LIU W H. Study on soft measurement method of bacteria concentration during Pichia pastoris fermentation under multiple conditions[D]. Zhenjiang: Jiangsu University, 2022.
|
[30] |
龚敏慧, 单成俊, 李双健, 等. 基于响应面法和人工神经网络优化复合乳酸菌发酵蓝莓汁产胞外多糖工艺[J]. 食品工业科技,2023,44(17):242−250. [GONG M H, SHAN C J, LI S J, et al. Optimization of extracellular polysaccharide production from blueberry juice fermented by complex lactic acid bacteria based on response surface method and artificial neural network[J]. Food Industry Science and Technology,2023,44(17):242−250.]
GONG M H, SHAN C J, LI S J, et al. Optimization of extracellular polysaccharide production from blueberry juice fermented by complex lactic acid bacteria based on response surface method and artificial neural network[J]. Food Industry Science and Technology, 2023, 44(17): 242−250.
|
[31] |
ZHANG Y, JIA S, ZHANG W. Predicting acetic acid content in the final beer using neural networks and support vector machine[J]. Journal of the Institute of Brewing,2012,118(4):361−367. doi: 10.1002/jib.50
|
[32] |
樊苏皖. 镇江香醋固态发酵过程参数检测与分析方法研究[D]. 镇江:江苏大学, 2021. [FAN S W. Study on parameters detection and analysis of Zhenjiang balsamic vinegar during solid state fermentation[D]. Zhenjiang:Jiangsu University, 2021.]
FAN S W. Study on parameters detection and analysis of Zhenjiang balsamic vinegar during solid state fermentation[D]. Zhenjiang: Jiangsu University, 2021.
|
[33] |
GENG Z, LIANG L, HAN Y, et al. Risk early warning of food safety using novel long short-term memory neural network integrating sum product based analytic hierarchy process[J]. British Food Journal,2021,124(3):898−914.
|
[34] |
DIÁNA N S Á, MÁRTA L, ZSUZSANNA V, et al. The effect of grapevine variety and wine region on the primer parameters of wine based on 1H NMR-spectroscopy and machine learning methods[J]. Diversity,2022,14(2):74. doi: 10.3390/d14020074
|
[35] |
马舒岑, 史建琦, 黄滟鸿, 等. 基于最小不满足核的随机森林局部解释性分析[J]. 软件学报,2022,33(7):2447−2463. [MA S C, SHI J Q, HUANG Y H, et al. Local interpretative analysis of random forest based on minimum unsatisfied kernel[J]. Journal of Software,2022,33(7):2447−2463.]
MA S C, SHI J Q, HUANG Y H, et al. Local interpretative analysis of random forest based on minimum unsatisfied kernel[J]. Journal of Software, 2022, 33(7): 2447−2463.
|
[36] |
张肖, 朱铧丞, 杨阳, 等. 基于随机森林算法的酒精浓度在线测量系统[J]. 真空电子技术,2023(2):80−86. [ZHANG X, ZHU H C, YANG Y, et al. Online alcohol concentration measurement system based on random forest algorithm[J]. Vacuum Electronics Technology,2023(2):80−86.]
ZHANG X, ZHU H C, YANG Y, et al. Online alcohol concentration measurement system based on random forest algorithm[J]. Vacuum Electronics Technology, 2023(2): 80−86.
|
[37] |
DĘBSKA B, GUZOWSKA-ŚWIDER B. Decision trees in selection of featured determined food quality[J]. Analytica Chimica Acta,2011,705(1-2):261−271. doi: 10.1016/j.aca.2011.06.030
|
[38] |
GERE A, DANNER L, DE ANTONI N, et al. Visual attention accompanying food decision process:An alternative approach to choose the best models[J]. Food Quality and Preference,2016,51:1−7. doi: 10.1016/j.foodqual.2016.01.009
|
[39] |
EMILIA J, DOROTA W, KATARZYNA R, et al. The influence of lactic acid fermentation on selected properties of pickled red, yellow, and green bell peppers[J]. Molecules,2022,27(23):8637. doi: 10.3390/molecules27238637
|
[40] |
WILBERT G, ANAID P B, ANAYANCY L, et al. Microbial community structure, physicochemical characteristics and predictive functionalities of the Mexican Tepache fermented beverage[J]. Microbiological Research,2022,260:127045. doi: 10.1016/j.micres.2022.127045
|
[41] |
PARK S Y, KANG M, YUN S, et al. Changes and machine learning-based prediction in quality characteristics of sliced korean cabbage (Brassica rapa L. Pekinensis) kimchi:Combined effect of nano-foamed structure film packaging and subcooled storage[J]. LWT,2022,171:114122. doi: 10.1016/j.lwt.2022.114122
|
[42] |
向书娅, 翟茹, 张海燕, 等. 不同地区发酵浆水中微生物群落结构比较及优势菌群的鉴定[J]. 现代食品科技,2023,39(3):121−128. [XIANG S Y, ZHAI R, ZHANG H Y, et al. Comparison of microbial community structure and identification of dominant flora in fermented pulp water from different regions[J]. Modern Food Science and Technology,2023,39(3):121−128.]
XIANG S Y, ZHAI R, ZHANG H Y, et al. Comparison of microbial community structure and identification of dominant flora in fermented pulp water from different regions[J]. Modern Food Science and Technology, 2023, 39(3): 121−128.
|
[43] |
YANG Z, LIU S, LÜ J, et al. Microbial succession and the changes of flavor and aroma in Chouguiyu, a traditional chinese fermented fish[J]. Food Bioscience,2020,37:100725. doi: 10.1016/j.fbio.2020.100725
|
[44] |
王玉静, 陆梓涔, 陈俊煜, 等. 高通量测序技术的发展及其在临床检测中的应用[J]. 厦门大学学报(自然科学版),2021,60(5):811−820. [WANG Y J, LU Z C, CHEN J Y, et al. Development of high-throughput sequencing technology and its application in clinical detection[J]. Journal of Xiamen University (Natural Science),2021,60(5):811−820.]
WANG Y J, LU Z C, CHEN J Y, et al. Development of high-throughput sequencing technology and its application in clinical detection[J]. Journal of Xiamen University (Natural Science), 2021, 60(5): 811−820.
|
[45] |
MANON L, EMMANUEL D, DE OLIVEIRA DÉBORAH, et al. Prediction of genetic groups within Brettanomyces bruxellensis through cell morphology using a deep learning tool[J]. Journal of Fungi,2021,7(8):581. doi: 10.3390/jof7080581
|
[46] |
YU T, SU S, HU J, et al. A new strategy for microbial taxonomic identification through micro-biosynthetic gold nanoparticles and machine learning[J]. Advanced Materials (Deerfield Beach, Fla.),2022,34(11):e2109365. doi: 10.1002/adma.202109365
|
[47] |
CAVA R, HIGUERO N, LADERO L. High-pressure processing and storage temperature on Listeria monocytogenes, microbial counts and oxidative changes of two traditional dry-cured meat products[J]. Meat Science,2021,171:108273. doi: 10.1016/j.meatsci.2020.108273
|
[48] |
ALOTHMAN M, BREMER P J, LUSK K, et al. When does milk spoil? The use of rejection threshold methodology to investigate the influence of total microbial numbers on the acceptability of fresh chilled pasteurised milk[J]. Beverages,2023,9(2):53. doi: 10.3390/beverages9020053
|
[49] |
苏梦缘, 伍新叶, 朱曦, 等. 微生态制剂活菌的计数方法分析[J]. 中南农业科技,2022,43(3):139−143. [SU M Y, WU X Y, ZHU X, et al. Analysis of counting methods of viable bacteria in microecological preparations[J]. Central South Agricultural Science and Technology,2022,43(3):139−143.]
SU M Y, WU X Y, ZHU X, et al. Analysis of counting methods of viable bacteria in microecological preparations[J]. Central South Agricultural Science and Technology, 2022, 43(3): 139−143.
|
[50] |
CAI H, PEI S, ZHANG Y, et al. Construction of a dynamic model to predict the growth of Staphylococcus aureus and the formation of enterotoxins during Kazak cheese maturation[J]. Food Microbiology,2023,112:104234. doi: 10.1016/j.fm.2023.104234
|
[51] |
BRANISLAV Š, BRANIMIR P, PREDRAG I, et al. Coriander essential oil as natural food additive improves quality and safety of cooked pork sausages with different nitrite levels[J]. Meat Science,2019,157:107879. doi: 10.1016/j.meatsci.2019.107879
|
[52] |
牧其尔, 徐伟良, 李春冬, 等. 发酵乳制品风味物质种类、形成途径以及提取和检测方法的研究进展[J]. 中国酿造,2022,41(7):6−10. [MU Q E, XU W L, LI C D, et al. Research progress on types, formation pathways, extraction and detection methods of flavor substances in fermented dairy products[J]. Chinese Brewing,2022,41(7):6−10.]
MU Q E, XU W L, LI C D, et al. Research progress on types, formation pathways, extraction and detection methods of flavor substances in fermented dairy products[J]. Chinese Brewing, 2022, 41(7): 6−10.
|
[53] |
杨凤英, 秦洋, 赵千慧, 等. 冠突散囊菌对大曲发酵性能、微生物区系以及白酒风味的影响[J]. 食品工业科技,2023,44(16):180−186. [YANG F Y, QIN Y, ZHAO Q H, et al. Effects of Coronarium on fermentation performance, microflora and liquor flavor of Dakoji[J]. Food Industry Science and Technology,2023,44(16):180−186.]
YANG F Y, QIN Y, ZHAO Q H, et al. Effects of Coronarium on fermentation performance, microflora and liquor flavor of Dakoji[J]. Food Industry Science and Technology, 2023, 44(16): 180−186.
|
[54] |
QIU S, CHEN K, LIU C, et al. Non-saccharomyces yeasts highly contribute to characterisation of flavour profiles in greengage fermentation[J]. Food Research International,2022,157:111391. doi: 10.1016/j.foodres.2022.111391
|
[55] |
ZHENG Z, QIU S, WEI Z. A novel voltammetric electronic tongue based on nanocomposites modified electrodes for the discrimination of red wines from different geographical origins[J]. Chemosensors,2022,10(8):332. doi: 10.3390/chemosensors10080332
|
[56] |
VÉRONIQUE G, MARCO S. R, FRANCISCO R, et al. Prediction of sugar content in port wine vintage grapes using machine learning and hyperspectral imaging[J]. Processes,2021,9(7):1241. doi: 10.3390/pr9071241
|
[57] |
王茜, 孙娇娇, 侯静, 等. 不同品种啤酒花对啤酒特征香气物质的影响[J]. 农产品加工,2021(17):5−10. [WANG Q, SUN J J, HOU J, et al. Effects of different varieties of hops on characteristic aroma substances in beer[J]. Agricultural Product Processing,2021(17):5−10.]
WANG Q, SUN J J, HOU J, et al. Effects of different varieties of hops on characteristic aroma substances in beer[J]. Agricultural Product Processing, 2021(17): 5−10.
|
[58] |
KATARINA L, BRNČIĆ M, ĆURKO N, et al. Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine[J]. Ultrasonics Sonochemistry,2019,59(C):104725.
|
[59] |
LIU Q, ZHANG X, LEI Z, et al. Machine learning based age-authentication assisted by chemo-kinetics:Case study of strong-flavor Chinese Baijiu[J]. Food Research International,2023,167:112594. doi: 10.1016/j.foodres.2023.112594
|
[60] |
WU H, TIAN L, CHEN B, et al. Verification of imported red wine origin into china using multi isotope and elemental analyses[J]. Food Chemistry,2019,301:125137. doi: 10.1016/j.foodchem.2019.125137
|
[61] |
WU H, LIN G, TIAN L, et al. Origin verification of french red wines using isotope and elemental analyses coupled with chemometrics[J]. Food Chemistry,2021,339:127760. doi: 10.1016/j.foodchem.2020.127760
|
[62] |
YANG Y, LIU H, GU Y. A model transfer learning framework with back-propagation neural network for wine and chinese liquor detection by electronic nose[J]. IEEE Access,2020,8:105278−105285. doi: 10.1109/ACCESS.2020.2999591
|
[63] |
ZHU W, BENKWITZ F, KILMARTIN P A. Volatile-based prediction of Sauvignon blanc quality gradings with static headspace-gas chromatography-ion mobility spectrometry (SHS-GC-IMS) and interpretable machine learning techniques[J]. Journal of Agricultural and Food Chemistry,2021,69(10):3255−3265. doi: 10.1021/acs.jafc.0c07899
|
[64] |
CLAUDIA G V, SIGFREDO F, CARMEN H. Rapid method for faults detection in beer using a low-cost electronic nose and machine learning modelling[J]. Biology and Life Sciences Forum,2021,6(1):46.
|
[65] |
CLAUDIA G V, SIGFREDO F, CARMEN H. Smart detection of faults in beers using near-infrared spectroscopy, a low-cost electronic nose and artificial intelligence[J]. Fermentation,2021,7(3):117. doi: 10.3390/fermentation7030117
|
[66] |
JUAN C R G, EVA S A E, ADENILTON J S, et al. Wine quality rapid detection using a compact electronic nose system:Application focused on spoilage thresholds by acetic acid[J]. LWT,2019,108:377−384. doi: 10.1016/j.lwt.2019.03.074
|
[67] |
VASILIKI S, CLAUDIA G V, ALEXIS P, et al. Assessment of volatile aromatic compounds in smoke tainted cabernet Sauvignon wines using a low-cost e-nose and machine learning modelling[J]. Molecules,2021,26(16):5108. doi: 10.3390/molecules26165108
|
[68] |
ALEXANDER B, JOSEP E, MICHAEL P, et al. Predicting alcohol concentration during beer fermentation using ultrasonic measurements and machine learning[J]. Fermentation,2021,7(1):34. doi: 10.3390/fermentation7010034
|
[69] |
LIU. F, LI M, WANG Q, et al. Future foods:Alternative proteins, food architecture, sustainable packaging, and precision nutrition[J]. Critical Reviews in Food Science and Nutrition,2022,63(23):21−22.
|
[70] |
LIVINGSTONE K M, RAMOS-LOPEZ O, PÉRUSSE L, et al. Reprint of:Precision nutrition:A review of current approaches and future endeavors[J]. Trends in Food Science & Technology,2022,130:51−62.
|
[71] |
徐亮, 程镜蓉, 张业辉, 等. 人工神经网络在风干腊肠加工过程模拟控制中的应用[J]. 现代食品科技,2018,34(11):151−156. [XU L, CHENG J R, ZHANG Y H, et al. Application of artificial neural network in the simulation control of air-dried sausage processing[J]. Modern Food Science and Technology,2018,34(11):151−156.]
XU L, CHENG J R, ZHANG Y H, et al. Application of artificial neural network in the simulation control of air-dried sausage processing[J]. Modern Food Science and Technology, 2018, 34(11): 151−156.
|
[72] |
FERNANDA B L, SUPRANI M C, SANTOS P A C D, et al. Artificial neural networks modeling of non-fat yogurt texture properties:Effect of process conditions and food composition[J]. Food and Bioproducts Processing,2021,126(3):164−174.
|
[73] |
ANATOLIY K, YURIJ P, JOEL J, et al. The use of machine learning for comparative analysis of amperometric and chemiluminescent methods for determining antioxidant activity and determining the phenolic profile of wines[J]. Applied System Innovation,2022,5(5):104. doi: 10.3390/asi5050104
|
[74] |
PALLAVI J K, SUKUMAR M. Categorizing functional yoghurt using artificial neural network[J]. Asian Journal of Biological and Life Sciences,2020,9(2):129−138. doi: 10.5530/ajbls.2020.9.20
|
[75] |
NISHA S, SWETA N, SATYA E J. Extraction and optimization of exopolysaccharide from Lactobacillus sp. using response surface methodology and artificial neural networks[J]. Preparative Biochemistry & Biotechnology,2019,49(10):987−996.
|