Citation: | ZHAO Kexin, LAN Weihao, DU Jiali, et al. Effects of Exogenous Sugar Treatment on Enrichment of γ-Aminobutyric Acid in Peanut Sprouts[J]. Science and Technology of Food Industry, 2024, 45(13): 75−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070283. |
[1] |
赵雨晴, 陈涛, 袁明. 褪黑素在果实发育和采后保险中的作用综述[J]. 园艺学报,2021,48(6):1233−1249. [ZHAO Y Q, CHEN T, YUAN M. A review of the role of melatonin in fruit development and postharvest insurance[J]. Journal of Horticulture,2021,48(6):1233−1249.]
ZHAO Y Q, CHEN T, YUAN M. A review of the role of melatonin in fruit development and postharvest insurance[J]. Journal of Horticulture, 2021, 48(6): 1233−1249.
|
[2] |
刘东东, 朱晨, 王峰, 等. 作用于γ-氨基丁酸受体的杀虫剂研究进展[J]. 化学试剂,2022,44(1):21−31. [LIU D D, ZHU C, WANG F, et al. Advances in insecticides targeting gamma-aminobutyric acid receptors[J]. Chemical Reagent,2022,44(1):21−31.]
LIU D D, ZHU C, WANG F, et al. Advances in insecticides targeting gamma-aminobutyric acid receptors[J]. Chemical Reagent, 2022, 44(1): 21−31.
|
[3] |
刘璐, 吴江丽, 杨金桃, 等. 发酵鱼酱酸产GABA乳酸菌的分离筛选及发酵特性[J]. 食品科学,2021,42(18):73−79. [LIU L, WU J L, YANG J T, et al. Isolation, screening and fermentation characteristics of GABA-producing lactic acid bacteria in fermented fish sauce[J]. Food Science,2021,42(18):73−79.] doi: 10.7506/spkx1002-6630-20200914-182
LIU L, WU J L, YANG J T, et al. Isolation, screening and fermentation characteristics of GABA-producing lactic acid bacteria in fermented fish sauce[J]. Food Science, 2021, 42(18): 73−79. doi: 10.7506/spkx1002-6630-20200914-182
|
[4] |
宁亚维, 马梦戈, 杨正, 等. γ-氨基丁酸的制备方法及其功能食品研究进展[J]. 食品与发酵工业,2020,46(23):238−247. [NING Y W, MA M G, YANG Z, et al. Progress in preparation of γ-aminobutyric acid and its functional food[J]. Food and Fermentation Industry,2020,46(23):238−247.]
NING Y W, MA M G, YANG Z, et al. Progress in preparation of γ-aminobutyric acid and its functional food[J]. Food and Fermentation Industry, 2020, 46(23): 238−247.
|
[5] |
刘畅. 大豆中γ-氨基丁酸富集及提取的研究[D]. 哈尔滨:东北农业大学, 2013. [LIU C. Study on enrichment and extraction of γ-aminobutyric acid from soybean[D]. Harbin:Northeast Agricultural University, 2013.]
LIU C. Study on enrichment and extraction of γ-aminobutyric acid from soybean[D]. Harbin: Northeast Agricultural University, 2013.
|
[6] |
陈惠. 发芽蚕豆γ-氨基丁酸富集与调控技术研究[D]. 南京:南京农业大学, 2012. [CHEN H. Study on enrichment and regulation of gamma-aminobutyric acid in germinated broad bean[D]. Nanjing:Nanjing Agricultural University, 2012.]
CHEN H. Study on enrichment and regulation of gamma-aminobutyric acid in germinated broad bean[D]. Nanjing: Nanjing Agricultural University, 2012.
|
[7] |
付诗鸣, 郑心, 伍辰光, 等. 花生发芽前后酚类物质的提取工艺优化及其抗氧化活性比较[J]. 食品工业,2019,40(9):140−143. [FU S M, ZHENG X, WU C G, et al. Optimization of extraction process and comparison of antioxidant activities of phenols from peanut before and after germination[J]. Food Industry,2019,40(9):140−143.]
FU S M, ZHENG X, WU C G, et al. Optimization of extraction process and comparison of antioxidant activities of phenols from peanut before and after germination[J]. Food Industry, 2019, 40(9): 140−143.
|
[8] |
宋晓峰. 花生芽菜的绿色高效生产技术研究及开发利用[D]. 潍坊:潍坊市农业科学院, 2021. [SONG X F. Research and development of green and efficient production technology of peanut sprouts[D]. Weifang:Weifang Academy of Agricultural Sciences, 2021.]
SONG X F. Research and development of green and efficient production technology of peanut sprouts[D]. Weifang: Weifang Academy of Agricultural Sciences, 2021.
|
[9] |
SMEEKEN S, HELLMANN H A. Sugar sensing and signaling in plants[J]. Frontiers in Plant Science,2014,5:113.
|
[10] |
林杨, 唐琦勇, 楚敏, 等. γ-氨基丁酸的功能、生产及食品应用研究进展[J]. 中国调味品,2021,46(6):173−179. [LIN Y, TANG Q Y, CHU M, et al. Research progress on the function, production and food application of gamma-aminobutyric acid[J]. Chinese Seasoning,2021,46(6):173−179.] doi: 10.3969/j.issn.1000-9973.2021.06.035
LIN Y, TANG Q Y, CHU M, et al. Research progress on the function, production and food application of gamma-aminobutyric acid[J]. Chinese Seasoning, 2021, 46(6): 173−179. doi: 10.3969/j.issn.1000-9973.2021.06.035
|
[11] |
XIE K, WI C, CHI Z, et al. Enhancement of γ-aminobutyric acid (GABA) and other health-promoting metabolites in germinated broccoli by mannose treatment[J]. Scientia Horticulturae,2021,276:109706−109714. doi: 10.1016/j.scienta.2020.109706
|
[12] |
范龙泉, 杨丽文, 高洪波, 等. γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响[J]. 应用生态学报,2012,23(6):1599−1606. [FAN L Q, YANG L W, GAO H B, et al. Effects of gamma-aminobutyric acid on polyamine metabolism of muskmelon seedlings under hypoxia stress[J]. Journal of Applied Ecology,2012,23(6):1599−1606.]
FAN L Q, YANG L W, GAO H B, et al. Effects of gamma-aminobutyric acid on polyamine metabolism of muskmelon seedlings under hypoxia stress[J]. Journal of Applied Ecology, 2012, 23(6): 1599−1606.
|
[13] |
侯莹, 祁雪鹤, 任慧, 等. 鲜切处理对猕猴桃中γ-氨基丁酸富集的影响[J]. 食品工业科技,2020,41(20):58−63,84. [HOU Y, QI X H, REN H, et al. Effect of fresh cutting treatment on the enrichment of gamma-aminobutyric acid in kiwifruit[J]. Food Industry Science and Technology,2020,41(20):58−63,84.]
HOU Y, QI X H, REN H, et al. Effect of fresh cutting treatment on the enrichment of gamma-aminobutyric acid in kiwifruit[J]. Food Industry Science and Technology, 2020, 41(20): 58−63,84.
|
[14] |
曾晴, 谢菲, 尹京苑, 等. 大豆发芽富集γ-氨基丁酸的培养液组分优化及盐胁迫下的富集机理[J]. 食品科学,2017,38(12):96−103. [ZENG Q, XIE F, YIN J Y, et al. Composition optimization of culture medium for enrichment of gamma-aminobutyric acid in soybean germination and enrichment mechanism under salt stress[J]. Food Science,2017,38(12):96−103.] doi: 10.7506/spkx1002-6630-201712015
ZENG Q, XIE F, YIN J Y, et al. Composition optimization of culture medium for enrichment of gamma-aminobutyric acid in soybean germination and enrichment mechanism under salt stress[J]. Food Science, 2017, 38(12): 96−103. doi: 10.7506/spkx1002-6630-201712015
|
[15] |
尹永祺, 吴进贤, 刘春泉, 等. 低氧与低温胁迫对发芽玉米籽粒中γ-氨基丁酸富集的影响[J]. 食品科学,2015,36(1):89−93. [YIN Y Q, WU J X, LIU C Q, et al. Effects of hypoxia and low temperature stress on γ-aminobutyric acid concentration in germinated maize grains[J]. Food Science,2015,36(1):89−93.] doi: 10.7506/spkx1002-6630-201501017
YIN Y Q, WU J X, LIU C Q, et al. Effects of hypoxia and low temperature stress on γ-aminobutyric acid concentration in germinated maize grains[J]. Food Science, 2015, 36(1): 89−93. doi: 10.7506/spkx1002-6630-201501017
|
[16] |
RAO H, CHEN C, TIAN Y, et al. Germination results in reduced allergenicity of peanut by degradation of allergens and resveratrol enrichment[J]. Innovative Food Science & Emerging Technologies,2018,50:188−195.
|
[17] |
寇德麟, 杨丰伟, 吴征宇, 等. 富含γ-氨基丁酸的青花菜芽菜酸奶的研制[J]. 保鲜与加工,2022,22(3):35−42. [KOU D L, YANG F W, WU Z Y, et al. Development of broccoli sprout yogurt rich in gamma-aminobutyric acid[J]. Preservation and Processing,2022,22(3):35−42.]
KOU D L, YANG F W, WU Z Y, et al. Development of broccoli sprout yogurt rich in gamma-aminobutyric acid[J]. Preservation and Processing, 2022, 22(3): 35−42.
|
[18] |
NGUYEN Q C B, SHAHINOZZAMAN M, TIEN K T N, et al. Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice[J]. Journal of Cereal Science,2020,93:102985. doi: 10.1016/j.jcs.2020.102985
|
[19] |
SNEDDEN W A, ARAZI T, FROMM H, et al. Calcium/calmodulin activation of soybean glutamate decarboxylase[J]. Plant Physiology,1995,108(2):543−549. doi: 10.1104/pp.108.2.543
|
[20] |
王斌, 丁俊胄, 贾才华, 等. 环境胁迫植物富集γ-氨基丁酸的研究进展[J]. 食品工业科技,2018,39(18):342−346, 352. [WANG B, DING J Z, JIA C H, et al. Research progress on enrichment of gamma-aminobutyric acid in plants under environmental stress[J]. Food Industry Science and Technology,2018,39(18):342−346, 352.]
WANG B, DING J Z, JIA C H, et al. Research progress on enrichment of gamma-aminobutyric acid in plants under environmental stress[J]. Food Industry Science and Technology, 2018, 39(18): 342−346, 352.
|
[21] |
YANG R, GUO Q, GU Z. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia[J]. Food Chemistry,2013,136(1):152−159. doi: 10.1016/j.foodchem.2012.08.008
|
[22] |
BAO H, CHEN X, LÜ S, et al. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway[J]. Plant, Cell & Environment,2015,38(3):600−613.
|
[23] |
王凯凯, 孙朦, 宋佳敏, 等. γ-氨基丁酸(GABA)形成机理及富集方法的研究进展[J]. 食品工业科技,2018,39(14):323−329. [WANG K K, SUN M, SONG J M, et al. Research progress on formation mechanism and enrichment methods of gamma-aminobutyric acid (GABA)[J]. Food Industry Science and Technology,2018,39(14):323−329.]
WANG K K, SUN M, SONG J M, et al. Research progress on formation mechanism and enrichment methods of gamma-aminobutyric acid (GABA)[J]. Food Industry Science and Technology, 2018, 39(14): 323−329.
|
[24] |
JI J, SHI Z, XIE T, et al. Responses of gaba shunt coupled with carbon and nitrogen metabolism in poplar under nacl and CdCl2 stresses[J]. Ecotoxicology and Environmental Safety,2020,193:110322−110334. doi: 10.1016/j.ecoenv.2020.110322
|
[25] |
姚森. 高γ-氨基丁酸含量的发芽糙米品种筛选及应用[D]. 武汉:华中农业大学, 2008. [YAO S. Screening and application of germinated brown rice varieties with high gamma-aminobutyric acid content[D]. Wuhan:Huazhong Agricultural University, 2008.]
YAO S. Screening and application of germinated brown rice varieties with high gamma-aminobutyric acid content[D]. Wuhan: Huazhong Agricultural University, 2008.
|
[26] |
郭元新. 盐和低氧胁迫下发芽大豆γ-氨基丁酸富集与调控机理研究[D]. 南京:南京农业大学, 2011. [GUO Y X. Study on the enrichment and regulation mechanism of gamma-aminobutyric acid in germinated soybean under salt and hypoxia stress[D]. Nanjing: Nanjing Agricultural University, 2011.]
GUO Y X. Study on the enrichment and regulation mechanism of gamma-aminobutyric acid in germinated soybean under salt and hypoxia stress[D]. Nanjing: Nanjing Agricultural University, 2011.
|
[27] |
YANG R, FENG L, WANG S, et al. Accumulation of γ-aminobutyric acid in soybean by hypoxia germination and freeze-thawing incubation[J]. Journal of the Science of Food and Agriculture,2016,96(6):2090−2096. doi: 10.1002/jsfa.7323
|
[28] |
WANG K, XU F, CAO S, et al. Effects of exogenous calcium chloride (CaCl2) and ascorbic acid (AsA) on the γ-aminobutyric acid (GABA) metabolism in shredded carrots[J]. Postharvest Biology and Technology,2019,159:111−117.
|
[29] |
杨晓梦, 杜娟, 曾亚文, 等. 大麦籽粒蛋白质及其相关功能成分含量的QTL分析[J]. 中国农业科学,2017,50(2):205−215. [YANG X M, DU J, ZENG Y W, et al. QTL analysis of protein and related functional components in barley grains[J]. Agricultural Science in China,2017,50(2):205−215.] doi: 10.3864/j.issn.0578-1752.2017.02.001
YANG X M, DU J, ZENG Y W, et al. QTL analysis of protein and related functional components in barley grains[J]. Agricultural Science in China, 2017, 50(2): 205−215. doi: 10.3864/j.issn.0578-1752.2017.02.001
|
[30] |
WANG K H, LAI Y H, CHANG J C, et al. Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable[J]. Journal of Agricultural and Food Chemistry,2005,53(2):242−246. doi: 10.1021/jf048804b
|
[31] |
朱惠文, 汤静, 金鹏, 等. 贮藏温度对鲜切胡萝卜品质及总酚和γ-氨基丁酸含量的影响[J]. 食品科学,2019,40(9):213−219. [ZHU H W, TANG J, JIN P, et al. Effects of storage temperature on quality and contents of total phenol and gamma-aminobutyric acid of fresh-cut carrot[J]. Food Science,2019,40(9):213−219.] doi: 10.7506/spkx1002-6630-20180507-087
ZHU H W, TANG J, JIN P, et al. Effects of storage temperature on quality and contents of total phenol and gamma-aminobutyric acid of fresh-cut carrot[J]. Food Science, 2019, 40(9): 213−219. doi: 10.7506/spkx1002-6630-20180507-087
|