ZHAO Kexin, LAN Weihao, DU Jiali, et al. Effects of Exogenous Sugar Treatment on Enrichment of γ-Aminobutyric Acid in Peanut Sprouts[J]. Science and Technology of Food Industry, 2024, 45(13): 75−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070283.
Citation: ZHAO Kexin, LAN Weihao, DU Jiali, et al. Effects of Exogenous Sugar Treatment on Enrichment of γ-Aminobutyric Acid in Peanut Sprouts[J]. Science and Technology of Food Industry, 2024, 45(13): 75−82. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070283.

Effects of Exogenous Sugar Treatment on Enrichment of γ-Aminobutyric Acid in Peanut Sprouts

More Information
  • Received Date: August 01, 2023
  • Available Online: April 26, 2024
  • In order to explore the influence of sugar treatment on the enrichment of γ-aminobutyric acid (GABA) in peanut sprouts, this paper selected the optimal application concentration of different types of exogenous sugars (mannose, sucrose and glucose). The effects of GABA on the germination of peanut seeds and the related substances of GABA anabolic metabolism were investigated and the possible mechanism of action was studied. The results showed that mannose, sucrose and glucose treatment could significantly (P<0.05) increase the content of GABA in peanut sprouts, and the activity of glutamate decarboxylase (GAD), diamine oxidase (DAO), polyamine oxidase (PAO) and the contents of glutamic acid, putrescine, spermidine and spermidine were significantly changed in oxidase (P<0.05). At the same time, according to the test results, different exogenous sugar treatments could increase the contents of ascorbic acid, protein and resveratrol in peanut sprouts to different degrees. GABA in peanut sprouts can be enriched by exogenous sugar treatment, and its influence mechanism may be GABA branch and polyamine degradation pathway.
  • [1]
    赵雨晴, 陈涛, 袁明. 褪黑素在果实发育和采后保险中的作用综述[J]. 园艺学报,2021,48(6):1233−1249. [ZHAO Y Q, CHEN T, YUAN M. A review of the role of melatonin in fruit development and postharvest insurance[J]. Journal of Horticulture,2021,48(6):1233−1249.]

    ZHAO Y Q, CHEN T, YUAN M. A review of the role of melatonin in fruit development and postharvest insurance[J]. Journal of Horticulture, 2021, 48(6): 1233−1249.
    [2]
    刘东东, 朱晨, 王峰, 等. 作用于γ-氨基丁酸受体的杀虫剂研究进展[J]. 化学试剂,2022,44(1):21−31. [LIU D D, ZHU C, WANG F, et al. Advances in insecticides targeting gamma-aminobutyric acid receptors[J]. Chemical Reagent,2022,44(1):21−31.]

    LIU D D, ZHU C, WANG F, et al. Advances in insecticides targeting gamma-aminobutyric acid receptors[J]. Chemical Reagent, 2022, 44(1): 21−31.
    [3]
    刘璐, 吴江丽, 杨金桃, 等. 发酵鱼酱酸产GABA乳酸菌的分离筛选及发酵特性[J]. 食品科学,2021,42(18):73−79. [LIU L, WU J L, YANG J T, et al. Isolation, screening and fermentation characteristics of GABA-producing lactic acid bacteria in fermented fish sauce[J]. Food Science,2021,42(18):73−79.] doi: 10.7506/spkx1002-6630-20200914-182

    LIU L, WU J L, YANG J T, et al. Isolation, screening and fermentation characteristics of GABA-producing lactic acid bacteria in fermented fish sauce[J]. Food Science, 2021, 42(18): 73−79. doi: 10.7506/spkx1002-6630-20200914-182
    [4]
    宁亚维, 马梦戈, 杨正, 等. γ-氨基丁酸的制备方法及其功能食品研究进展[J]. 食品与发酵工业,2020,46(23):238−247. [NING Y W, MA M G, YANG Z, et al. Progress in preparation of γ-aminobutyric acid and its functional food[J]. Food and Fermentation Industry,2020,46(23):238−247.]

    NING Y W, MA M G, YANG Z, et al. Progress in preparation of γ-aminobutyric acid and its functional food[J]. Food and Fermentation Industry, 2020, 46(23): 238−247.
    [5]
    刘畅. 大豆中γ-氨基丁酸富集及提取的研究[D]. 哈尔滨:东北农业大学, 2013. [LIU C. Study on enrichment and extraction of γ-aminobutyric acid from soybean[D]. Harbin:Northeast Agricultural University, 2013.]

    LIU C. Study on enrichment and extraction of γ-aminobutyric acid from soybean[D]. Harbin: Northeast Agricultural University, 2013.
    [6]
    陈惠. 发芽蚕豆γ-氨基丁酸富集与调控技术研究[D]. 南京:南京农业大学, 2012. [CHEN H. Study on enrichment and regulation of gamma-aminobutyric acid in germinated broad bean[D]. Nanjing:Nanjing Agricultural University, 2012.]

    CHEN H. Study on enrichment and regulation of gamma-aminobutyric acid in germinated broad bean[D]. Nanjing: Nanjing Agricultural University, 2012.
    [7]
    付诗鸣, 郑心, 伍辰光, 等. 花生发芽前后酚类物质的提取工艺优化及其抗氧化活性比较[J]. 食品工业,2019,40(9):140−143. [FU S M, ZHENG X, WU C G, et al. Optimization of extraction process and comparison of antioxidant activities of phenols from peanut before and after germination[J]. Food Industry,2019,40(9):140−143.]

    FU S M, ZHENG X, WU C G, et al. Optimization of extraction process and comparison of antioxidant activities of phenols from peanut before and after germination[J]. Food Industry, 2019, 40(9): 140−143.
    [8]
    宋晓峰. 花生芽菜的绿色高效生产技术研究及开发利用[D]. 潍坊:潍坊市农业科学院, 2021. [SONG X F. Research and development of green and efficient production technology of peanut sprouts[D]. Weifang:Weifang Academy of Agricultural Sciences, 2021.]

    SONG X F. Research and development of green and efficient production technology of peanut sprouts[D]. Weifang: Weifang Academy of Agricultural Sciences, 2021.
    [9]
    SMEEKEN S, HELLMANN H A. Sugar sensing and signaling in plants[J]. Frontiers in Plant Science,2014,5:113.
    [10]
    林杨, 唐琦勇, 楚敏, 等. γ-氨基丁酸的功能、生产及食品应用研究进展[J]. 中国调味品,2021,46(6):173−179. [LIN Y, TANG Q Y, CHU M, et al. Research progress on the function, production and food application of gamma-aminobutyric acid[J]. Chinese Seasoning,2021,46(6):173−179.] doi: 10.3969/j.issn.1000-9973.2021.06.035

    LIN Y, TANG Q Y, CHU M, et al. Research progress on the function, production and food application of gamma-aminobutyric acid[J]. Chinese Seasoning, 2021, 46(6): 173−179. doi: 10.3969/j.issn.1000-9973.2021.06.035
    [11]
    XIE K, WI C, CHI Z, et al. Enhancement of γ-aminobutyric acid (GABA) and other health-promoting metabolites in germinated broccoli by mannose treatment[J]. Scientia Horticulturae,2021,276:109706−109714. doi: 10.1016/j.scienta.2020.109706
    [12]
    范龙泉, 杨丽文, 高洪波, 等. γ-氨基丁酸对低氧胁迫下甜瓜幼苗多胺代谢的影响[J]. 应用生态学报,2012,23(6):1599−1606. [FAN L Q, YANG L W, GAO H B, et al. Effects of gamma-aminobutyric acid on polyamine metabolism of muskmelon seedlings under hypoxia stress[J]. Journal of Applied Ecology,2012,23(6):1599−1606.]

    FAN L Q, YANG L W, GAO H B, et al. Effects of gamma-aminobutyric acid on polyamine metabolism of muskmelon seedlings under hypoxia stress[J]. Journal of Applied Ecology, 2012, 23(6): 1599−1606.
    [13]
    侯莹, 祁雪鹤, 任慧, 等. 鲜切处理对猕猴桃中γ-氨基丁酸富集的影响[J]. 食品工业科技,2020,41(20):58−63,84. [HOU Y, QI X H, REN H, et al. Effect of fresh cutting treatment on the enrichment of gamma-aminobutyric acid in kiwifruit[J]. Food Industry Science and Technology,2020,41(20):58−63,84.]

    HOU Y, QI X H, REN H, et al. Effect of fresh cutting treatment on the enrichment of gamma-aminobutyric acid in kiwifruit[J]. Food Industry Science and Technology, 2020, 41(20): 58−63,84.
    [14]
    曾晴, 谢菲, 尹京苑, 等. 大豆发芽富集γ-氨基丁酸的培养液组分优化及盐胁迫下的富集机理[J]. 食品科学,2017,38(12):96−103. [ZENG Q, XIE F, YIN J Y, et al. Composition optimization of culture medium for enrichment of gamma-aminobutyric acid in soybean germination and enrichment mechanism under salt stress[J]. Food Science,2017,38(12):96−103.] doi: 10.7506/spkx1002-6630-201712015

    ZENG Q, XIE F, YIN J Y, et al. Composition optimization of culture medium for enrichment of gamma-aminobutyric acid in soybean germination and enrichment mechanism under salt stress[J]. Food Science, 2017, 38(12): 96−103. doi: 10.7506/spkx1002-6630-201712015
    [15]
    尹永祺, 吴进贤, 刘春泉, 等. 低氧与低温胁迫对发芽玉米籽粒中γ-氨基丁酸富集的影响[J]. 食品科学,2015,36(1):89−93. [YIN Y Q, WU J X, LIU C Q, et al. Effects of hypoxia and low temperature stress on γ-aminobutyric acid concentration in germinated maize grains[J]. Food Science,2015,36(1):89−93.] doi: 10.7506/spkx1002-6630-201501017

    YIN Y Q, WU J X, LIU C Q, et al. Effects of hypoxia and low temperature stress on γ-aminobutyric acid concentration in germinated maize grains[J]. Food Science, 2015, 36(1): 89−93. doi: 10.7506/spkx1002-6630-201501017
    [16]
    RAO H, CHEN C, TIAN Y, et al. Germination results in reduced allergenicity of peanut by degradation of allergens and resveratrol enrichment[J]. Innovative Food Science & Emerging Technologies,2018,50:188−195.
    [17]
    寇德麟, 杨丰伟, 吴征宇, 等. 富含γ-氨基丁酸的青花菜芽菜酸奶的研制[J]. 保鲜与加工,2022,22(3):35−42. [KOU D L, YANG F W, WU Z Y, et al. Development of broccoli sprout yogurt rich in gamma-aminobutyric acid[J]. Preservation and Processing,2022,22(3):35−42.]

    KOU D L, YANG F W, WU Z Y, et al. Development of broccoli sprout yogurt rich in gamma-aminobutyric acid[J]. Preservation and Processing, 2022, 22(3): 35−42.
    [18]
    NGUYEN Q C B, SHAHINOZZAMAN M, TIEN K T N, et al. Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice[J]. Journal of Cereal Science,2020,93:102985. doi: 10.1016/j.jcs.2020.102985
    [19]
    SNEDDEN W A, ARAZI T, FROMM H, et al. Calcium/calmodulin activation of soybean glutamate decarboxylase[J]. Plant Physiology,1995,108(2):543−549. doi: 10.1104/pp.108.2.543
    [20]
    王斌, 丁俊胄, 贾才华, 等. 环境胁迫植物富集γ-氨基丁酸的研究进展[J]. 食品工业科技,2018,39(18):342−346, 352. [WANG B, DING J Z, JIA C H, et al. Research progress on enrichment of gamma-aminobutyric acid in plants under environmental stress[J]. Food Industry Science and Technology,2018,39(18):342−346, 352.]

    WANG B, DING J Z, JIA C H, et al. Research progress on enrichment of gamma-aminobutyric acid in plants under environmental stress[J]. Food Industry Science and Technology, 2018, 39(18): 342−346, 352.
    [21]
    YANG R, GUO Q, GU Z. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia[J]. Food Chemistry,2013,136(1):152−159. doi: 10.1016/j.foodchem.2012.08.008
    [22]
    BAO H, CHEN X, LÜ S, et al. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway[J]. Plant, Cell & Environment,2015,38(3):600−613.
    [23]
    王凯凯, 孙朦, 宋佳敏, 等. γ-氨基丁酸(GABA)形成机理及富集方法的研究进展[J]. 食品工业科技,2018,39(14):323−329. [WANG K K, SUN M, SONG J M, et al. Research progress on formation mechanism and enrichment methods of gamma-aminobutyric acid (GABA)[J]. Food Industry Science and Technology,2018,39(14):323−329.]

    WANG K K, SUN M, SONG J M, et al. Research progress on formation mechanism and enrichment methods of gamma-aminobutyric acid (GABA)[J]. Food Industry Science and Technology, 2018, 39(14): 323−329.
    [24]
    JI J, SHI Z, XIE T, et al. Responses of gaba shunt coupled with carbon and nitrogen metabolism in poplar under nacl and CdCl2 stresses[J]. Ecotoxicology and Environmental Safety,2020,193:110322−110334. doi: 10.1016/j.ecoenv.2020.110322
    [25]
    姚森. 高γ-氨基丁酸含量的发芽糙米品种筛选及应用[D]. 武汉:华中农业大学, 2008. [YAO S. Screening and application of germinated brown rice varieties with high gamma-aminobutyric acid content[D]. Wuhan:Huazhong Agricultural University, 2008.]

    YAO S. Screening and application of germinated brown rice varieties with high gamma-aminobutyric acid content[D]. Wuhan: Huazhong Agricultural University, 2008.
    [26]
    郭元新. 盐和低氧胁迫下发芽大豆γ-氨基丁酸富集与调控机理研究[D]. 南京:南京农业大学, 2011. [GUO Y X. Study on the enrichment and regulation mechanism of gamma-aminobutyric acid in germinated soybean under salt and hypoxia stress[D]. Nanjing: Nanjing Agricultural University, 2011.]

    GUO Y X. Study on the enrichment and regulation mechanism of gamma-aminobutyric acid in germinated soybean under salt and hypoxia stress[D]. Nanjing: Nanjing Agricultural University, 2011.
    [27]
    YANG R, FENG L, WANG S, et al. Accumulation of γ-aminobutyric acid in soybean by hypoxia germination and freeze-thawing incubation[J]. Journal of the Science of Food and Agriculture,2016,96(6):2090−2096. doi: 10.1002/jsfa.7323
    [28]
    WANG K, XU F, CAO S, et al. Effects of exogenous calcium chloride (CaCl2) and ascorbic acid (AsA) on the γ-aminobutyric acid (GABA) metabolism in shredded carrots[J]. Postharvest Biology and Technology,2019,159:111−117.
    [29]
    杨晓梦, 杜娟, 曾亚文, 等. 大麦籽粒蛋白质及其相关功能成分含量的QTL分析[J]. 中国农业科学,2017,50(2):205−215. [YANG X M, DU J, ZENG Y W, et al. QTL analysis of protein and related functional components in barley grains[J]. Agricultural Science in China,2017,50(2):205−215.] doi: 10.3864/j.issn.0578-1752.2017.02.001

    YANG X M, DU J, ZENG Y W, et al. QTL analysis of protein and related functional components in barley grains[J]. Agricultural Science in China, 2017, 50(2): 205−215. doi: 10.3864/j.issn.0578-1752.2017.02.001
    [30]
    WANG K H, LAI Y H, CHANG J C, et al. Germination of peanut kernels to enhance resveratrol biosynthesis and prepare sprouts as a functional vegetable[J]. Journal of Agricultural and Food Chemistry,2005,53(2):242−246. doi: 10.1021/jf048804b
    [31]
    朱惠文, 汤静, 金鹏, 等. 贮藏温度对鲜切胡萝卜品质及总酚和γ-氨基丁酸含量的影响[J]. 食品科学,2019,40(9):213−219. [ZHU H W, TANG J, JIN P, et al. Effects of storage temperature on quality and contents of total phenol and gamma-aminobutyric acid of fresh-cut carrot[J]. Food Science,2019,40(9):213−219.] doi: 10.7506/spkx1002-6630-20180507-087

    ZHU H W, TANG J, JIN P, et al. Effects of storage temperature on quality and contents of total phenol and gamma-aminobutyric acid of fresh-cut carrot[J]. Food Science, 2019, 40(9): 213−219. doi: 10.7506/spkx1002-6630-20180507-087
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (106) PDF downloads (18) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return