ZHANG Mingyi, SUN Qingjie, YANG Jie. Applications of Bacillus Proteases in the Food Industry: A Review[J]. Science and Technology of Food Industry, 2024, 45(13): 352−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070279.
Citation: ZHANG Mingyi, SUN Qingjie, YANG Jie. Applications of Bacillus Proteases in the Food Industry: A Review[J]. Science and Technology of Food Industry, 2024, 45(13): 352−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070279.

Applications of Bacillus Proteases in the Food Industry: A Review

More Information
  • Received Date: August 01, 2023
  • Available Online: May 05, 2024
  • Bacillus protease, a microbial protease known for its diverse range, significant activity and extensive research, has been widely used in the food industry. This review covers various aspects, including the screening and selection of protease high-producing Bacillus strains, the construction of engineered bacteria, the optimization of fermentation conditions for protease production, and the application of Bacillus protease in the food industry, specifically with plant proteins and animal proteins as substrates. Moreover, the future research direction and development trend are forecasted. The purpose of this review is to serve as a scholarly resource for future investigation and practical utilization of Bacillus protease.
  • [1]
    BANERJEE G, RAY A K. Impact of microbial proteases on biotechnological industries[J]. Biotechnology and Genetic Engineering Reviews,2017,33(2):119−143. doi: 10.1080/02648725.2017.1408256
    [2]
    MOHD A S, KUMAR P, SHARMA N, et al. Application of plant proteases in meat tenderization:Recent trends and future prospects[J]. Foods,2023,12(6):1206−1336. doi: 10.3390/foods12061206
    [3]
    LIANG Q, YUAN M, XU L, et al. Application of enzymes as a feed additive in aquaculture[J]. Marine Life Science and Technology,2022,4(2):208−221. doi: 10.1007/s42995-022-00128-z
    [4]
    KAMAL S, REHMAN S, IQBAL H. Biotechnological valorization of proteases:From hyper-production to industrial exploitation-A review[J]. Environmental Progress and Sustainable Energy,2016,36(2):511−522.
    [5]
    GARG S, NURGALI K, MISHRA V K. Food proteins as source of opioid peptides-A review[J]. Current Medicinal Chemistry,2016,23(9):893−910. doi: 10.2174/0929867323666160219115226
    [6]
    POLGÁR L. Common feature of the four types of protease mechanism[J]. Biological Chemistry Hoppe-Seyler,1990,371:327−331.
    [7]
    于建荣, 毛开云, 陈大明. 工业酶制剂新产品开发和产业化情况分析[J]. 生物产业技术,2015(3):53−57. [YU J R, MAO K Y, CHEN D M. Analysis of product development and industrialization of industrial enzyme preparation[J]. Biotechnology and Business,2015(3):53−57.]

    YU J R, MAO K Y, CHEN D M. Analysis of product development and industrialization of industrial enzyme preparation[J]. Biotechnology and Business, 2015(3): 53−57.
    [8]
    艾雨晴, 陈松骏, 秦娟, 等. 微生物产蛋白酶的研究进展[J]. 食品工业科技,2021,42(19):451−458. [AI Y Q, CHEN S J, QIN J, et al. Advances in proteases produced by microorganisms[J]. Science and Technology of Food Industry,2021,42(19):451−458.]

    AI Y Q, CHEN S J, QIN J, et al. Advances in proteases produced by microorganisms[J]. Science and Technology of Food Industry, 2021, 42(19): 451−458.
    [9]
    乔羽, 于迪, 范振宇, 等. 山西老陈醋发酵过程中高产蛋白酶芽孢杆菌的筛选与鉴定[J]. 食品与发酵科技,2017,53(6):11−16,33. [QIAO Y, YU D, FAN Z Y, et al. Screening and identification of high protease producing Bacillus subtilis during the fermentation process of Shanxi aged vinegar[J]. Food and Fermentation Technology,2017,53(6):11−16,33.]

    QIAO Y, YU D, FAN Z Y, et al. Screening and identification of high protease producing Bacillus subtilis during the fermentation process of Shanxi aged vinegar[J]. Food and Fermentation Technology, 2017, 53(6): 11−16,33.
    [10]
    孙同毅, 邵伟光, 高志芹, 等. 一株产碱性蛋白酶的嗜碱芽孢杆菌的分离和鉴定[J]. 现代生物医学进展,2008(7):1256−1258. [SUN T Y, SHAO W G, GAO Z Q, et al. Isolation and identification of an alkaline protease producing Bacillus subtilis[J]. Progress in Modern Biomedical Sciences,2008(7):1256−1258.] doi: 10.3969/j.issn.1673-6273.2008.07.019

    SUN T Y, SHAO W G, GAO Z Q, et al. Isolation and identification of an alkaline protease producing Bacillus subtilis[J]. Progress in Modern Biomedical Sciences, 2008(7): 1256−1258. doi: 10.3969/j.issn.1673-6273.2008.07.019
    [11]
    朱檬, 刘国瑞, 张军, 等. 一株喜油嗜热芽孢杆菌G1201产高温蛋白酶的性质研究及异源表达初探[J]. 中国饲料,2022(9):30−37. [ZHU M, LIU G R, ZHANG J, et al. Study on the properties and heterologous expression of high-temperature protease produced by an Geobacillus thermoleovorans G1201[J]. China Feed,2022(9):30−37.]

    ZHU M, LIU G R, ZHANG J, et al. Study on the properties and heterologous expression of high-temperature protease produced by an Geobacillus thermoleovorans G1201[J]. China Feed, 2022(9): 30−37.
    [12]
    MUSHTAQ H, GANAI S A, JEHANGIR A, et al. Molecular and functional characterization of protease from psychrotrophic Bacillus sp. HM49 in North-western Himalaya[J]. PLoS One,2023,18(3):e0283677. doi: 10.1371/journal.pone.0283677
    [13]
    WEN Y X, QIANG J Y, ZHOU G X, et al. Characterization of redox and salinity-tolerant alkaline protease from Bacillus halotolerans strain DS5[J]. Frontiers in Microbiology,2022,13:935072. doi: 10.3389/fmicb.2022.935072
    [14]
    BALACHANDRAN C, VISHALI A, NAGENDRAN N A, et al. Optimization of protease production from Bacillus halodurans under solid state fermentation using agrowastes[J]. Saudi Journal of Biological Sciences,2021,28(8):4263−4269. doi: 10.1016/j.sjbs.2021.04.069
    [15]
    ROSAZZA T, EIGENTLER L, EARL C, et al. Bacillus subtilis extracellular protease production incurs a context-dependent cost[J]. Molecular Microbiology,2023,120(2):105−121. doi: 10.1111/mmi.15110
    [16]
    黄子凌, 莫港澳, 李文, 等. 高产中性蛋白酶菌株的诱变选育及益生特性[J]. 食品与发酵工业,2021,47(17):84−90. [HUANG Z L, MO G A, LI W, et al. Mutation breeding and probiotic characteristics of high yield neutral protease strains[J]. Food and Fermentation Industry,2021,47(17):84−90.]

    HUANG Z L, MO G A, LI W, et al. Mutation breeding and probiotic characteristics of high yield neutral protease strains[J]. Food and Fermentation Industry, 2021, 47(17): 84−90.
    [17]
    胡悦, 李汉文, 喻晨, 等. LiCl-ARTP复合诱变选育高产碱性蛋白酶菌株及其发酵条件优化[J]. 中国酿造,2021,40(2):59−65. [HU Y, LI H W, YU C, et al. Breeding of high yield alkaline protease strains by LiCl-ARTP composite mutation and optimization of fermentation conditions[J]. Chinese Brewing,2021,40(2):59−65.] doi: 10.11882/j.issn.0254-5071.2021.02.012

    HU Y, LI H W, YU C, et al. Breeding of high yield alkaline protease strains by LiCl-ARTP composite mutation and optimization of fermentation conditions[J]. Chinese Brewing, 2021, 40(2): 59−65. doi: 10.11882/j.issn.0254-5071.2021.02.012
    [18]
    李西波, 张旭, 杨柳, 等. 高产酸性蛋白酶菌株的选育及酶学性质研究[J]. 中国调味品,2018,43(3):28−33,40. [LI X B, ZHANG X, YANG L, et al. Breeding of high-yield acidic protease strains and study on their enzymatic properties[J]. Chinese Seasoning,2018,43(3):28−33,40.] doi: 10.3969/j.issn.1000-9973.2018.03.007

    LI X B, ZHANG X, YANG L, et al. Breeding of high-yield acidic protease strains and study on their enzymatic properties[J]. Chinese Seasoning, 2018, 43(3): 28−33,40. doi: 10.3969/j.issn.1000-9973.2018.03.007
    [19]
    刘丽莉, 杨陈柳, 尤晓颜, 等. 蜡样芽孢杆菌胶原蛋白酶基因的异源表达与活性分析[J]. 中国食品学报,2020,20(1):69−75. [LIU L L, YANG C L, YOU X Y, et al. Heterologous expression and activity analysis of Bacillus cereus collagenase gene[J]. Journal of China Foods Limited,2020,20(1):69−75.]

    LIU L L, YANG C L, YOU X Y, et al. Heterologous expression and activity analysis of Bacillus cereus collagenase gene[J]. Journal of China Foods Limited, 2020, 20(1): 69−75.
    [20]
    周冠宇, 李江华, 彭政, 等. 定点突变提高枯草芽孢杆菌角蛋白酶的低温催化活性[J]. 微生物学通报,2022,49(1):1−13. [ZHOU G Y, LI J H, PENG Z, et al. Site-directed mutagenesis enhances low-temperature catalytic activity of Bacillus subtilis keratinase[J]. Microbiology Bulletin,2022,49(1):1−13.]

    ZHOU G Y, LI J H, PENG Z, et al. Site-directed mutagenesis enhances low-temperature catalytic activity of Bacillus subtilis keratinase[J]. Microbiology Bulletin, 2022, 49(1): 1−13.
    [21]
    TAKENAKA S, TAKADA A, KIMURA Y, et al. Improvement of the halotolerance of a Bacillus serine protease by protein surface engineering[J]. Journal of Basic Microbiol,2021,62(2):174−184.
    [22]
    SO Y, PARK S Y, PARK E H, et al. A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis[J]. Frontiers in Microbiology,2017,8(1167):1−12.
    [23]
    YAN P P, WU Y P, LI Y, et al. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose[J]. Biotechnology Letters,2018,40:393−398. doi: 10.1007/s10529-017-2481-4
    [24]
    张雪玉. 枯草芽胞杆菌基因组最小化的初步研究[D]. 天津:天津大学, 2013. [ZHANG X Y. Preliminary study on genome minimization of Bacillus subtilis[D]. Tianjin:Tianjin University, 2013.]

    ZHANG X Y. Preliminary study on genome minimization of Bacillus subtilis[D]. Tianjin: Tianjin University, 2013.
    [25]
    ZHANG F, HUO K Y, SONG X Y, et al. Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production[J]. Microbial Cell Factories,2020,19:223. doi: 10.1186/s12934-020-01485-z
    [26]
    XIANG M J, KANG Q, ZHANG D W. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell[J]. Synthetic and Systems Biotechnology,2020,5:245−251. doi: 10.1016/j.synbio.2020.07.005
    [27]
    MORIMOTO T, KADOYA R, ENDO K, et al. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis[J]. DNA Research,2008,15(2):73−81. doi: 10.1093/dnares/dsn002
    [28]
    李昕悦. 解淀粉芽胞杆菌基因组精简对碱性蛋白酶表达的影响[D]. 天津:天津科技大学, 2022. [LI X Y. The effect of genome simplification of Bacillus amyloliquefaciens on alkaline protease expression[D]. Tianjin:Tianjin University of Science and Technology, 2022.]

    LI X Y. The effect of genome simplification of Bacillus amyloliquefaciens on alkaline protease expression[D]. Tianjin: Tianjin University of Science and Technology, 2022.
    [29]
    SETYANI W, MURWANTI, SULAIMAN T N S, et al. Application of response surface methodology (RSM) for the optimization of ultrasound-assisted extraction (UAE) of Moringa oleifera:Extraction yield, content of bioactive compounds, and biological effects in vitro[J]. Plants,2023,12(13):2455. doi: 10.3390/plants12132455
    [30]
    AZARI S R, HOJJATOLESLAMY M, MOUSAVI Z E, et al. Production and optimization of conjugated linoleic and eicosapentaenoic acids by Bifidobacterium lactis in cold-pressed soybean cake[J]. Frontiers in Nutrition,2022,9:916728. doi: 10.3389/fnut.2022.916728
    [31]
    YEWANDE S, IDOWU A, TITILOLA S, et al. Optimization of protease production in indigenous Bacillus species isolated from soil samples in Lagos, Nigeria using response surface methodology[J]. Biocatalysis and Agricultural Biotechnology,2019,18:101011. doi: 10.1016/j.bcab.2019.01.049
    [32]
    FASIKU S A, BELLO M A, ODENIYI O A. Production of xylanase by Aspergillus niger GIO and Bacillus megaterium through solid-state fermentation[J]. Access Microbiology,2023,5(6):000506.
    [33]
    TULY J A, ZABED H M, NIZAMI A, et al. Bioconversion of agro-food industrial wastes into value-added peptides by a Bacillus sp. Mutant through solid-state fermentation[J]. Bioresource Technology,2021,346:126513.
    [34]
    SUI X, ZHANG T, JIANG L. Soy protein:Molecular structure revisited and recent advances in processing technologies[J]. Annual Review of Food Science and Technology,2021,12(1):119−147. doi: 10.1146/annurev-food-062220-104405
    [35]
    LU Z X, HE J F, ZHANG Y C, et al. Composition, physicochemical properties of pea protein and its application in functional foods[J]. Critical Reviews Food Science Nutrition,2019,60(15):1−13.
    [36]
    ALEXANDRA S C, ASWATHY S, KEITH R S. Peanut and peanut products:A food safety perspective[J]. Food Control,2013,32(1):296−303. doi: 10.1016/j.foodcont.2012.12.007
    [37]
    KADOWAKI M, KUBOTA M, WATANABE R. Physiological multifunctions of rice proteins of endosperm and bran[J]. Journal of Nutritional Science and Vitaminology,2019,65:42−47. doi: 10.3177/jnsv.65.S42
    [38]
    汪建斌, 邓勇. Alcalase碱性蛋白酶对大豆分离蛋白水解作用的研究[J]. 食品工业科技,2002(1):61−63. [WANG J B, DENG Y. Study on the hydrolysis effect of alcalase alkaline protease on soybean protein isolates[J]. Food Industry Science and Technology,2002(1):61−63.] doi: 10.3969/j.issn.1002-0306.2002.01.023

    WANG J B, DENG Y. Study on the hydrolysis effect of alcalase alkaline protease on soybean protein isolates[J]. Food Industry Science and Technology, 2002(1): 61−63. doi: 10.3969/j.issn.1002-0306.2002.01.023
    [39]
    AGUILAR J G S, CASTRO R J S, SATO H H. Production of antioxidant peptides from pea protein using protease from Bacillus licheniformis LBA 46[J]. International Journal of Peptide Research and Therapeutics,2020,26(1):435−443. doi: 10.1007/s10989-019-09849-9
    [40]
    ADEKOYA O A, SYLTE I. The thermolysin family (M4) of enzymes:Therapeutic and biotechnological potential[J]. Chemical Biology and Drug Design,2009,73(1):7−16. doi: 10.1111/j.1747-0285.2008.00757.x
    [41]
    SHOBAKO N, OGAWA Y, ISHIKADO A, et al. A novel antihypertensive peptide identified in thermolysin-digested rice bran[J]. Molecular Nutrition and Food Research,2018,62(4):1−7.
    [42]
    HARIHARAN S, PATTI A, ARORA A. Functional proteins from biovalorization of peanut meal:Advances in process technology and applications[J]. Plant Foods for Human Nutrition,2023,78(1):13−24. doi: 10.1007/s11130-022-01040-8
    [43]
    YANG X J, TANG D, WANG X M, et al. Enhancement of nutritional and antioxidant properties of peanut meal by bio-modification with Bacillus licheniformis[J]. Applied Biochemistry and Biotechnology,2016,180(6):1227−1242. doi: 10.1007/s12010-016-2163-z
    [44]
    SAMURAILATPAM S, AMIT K R, ALI M, et al. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation[J]. Journal of Functional Foods,2015,14:650−658. doi: 10.1016/j.jff.2015.02.033
    [45]
    HEJDYSZ M, KACZMAREK S A, KUBIŚ M, et al. The effect of protease and Bacillus licheniformis on nutritional value of pea, faba bean, yellow lupin and narrow-leaved lupin in broiler chicken diets[J]. British Poultry Science,2020,61(3):287−293. doi: 10.1080/00071668.2020.1716303
    [46]
    YAN Z F, YUAN S, QIN Q, et al. Enhancement of rice protein hydrolysate quality using a novel dual enzyme system[J]. LWT,2022,158:113110. doi: 10.1016/j.lwt.2022.113110
    [47]
    DING S L, MAO B J, LU X Y, et al. Efficient production and biochemical characterization of a thermostable carboxypeptidase from Bacillus megaterium and its application on flavor improvement of soy isolate protein hydrolysates[J]. European Food Research and Technology,2022,248(8):2135−2143. doi: 10.1007/s00217-022-04036-5
    [48]
    ELGADIR M A, MARIOD A A. Gelatin and chitosan as meat by-products and their recent applications[J]. Foods,2022,12(1):60. doi: 10.3390/foods12010060
    [49]
    KVIATKOVSKY S A, HICKNER R C, ORMSBEE M J. Collagen peptide supplementation for pain and function:Is it effective and if so, why[J]. Current Opinion in Clinical Nutrition and Metabolic Care,2022,25(6):401−406. doi: 10.1097/MCO.0000000000000870
    [50]
    SONG Y H, FU Y S, HUANG S Y, et al. Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus[J]. Food Chemistry,2021,349:129143. doi: 10.1016/j.foodchem.2021.129143
    [51]
    KESHAPAGA U R, JATHOTH K, SINGH S S, et al. Characterization of high-yield Bacillus subtilis cysteine protease for diverse industrial applications[J]. Braz Journal of Microbiology,2023,54(2):739−752. doi: 10.1007/s42770-023-00992-6
    [52]
    刘书亮, 詹莉, 吴琦, 等. 枯草芽孢杆菌弹性蛋白酶对蛋白质水解及肉类嫩化的效果[J]. 食品科技,2010,35(6):162−165,174. [LIU S L, ZHAN L, WU Q, et al. Effect of Bacillus subtilis elastase on protein hydrolysis and meat tenderization[J]. Food Technology,2010,35(6):162−165,174.]

    LIU S L, ZHAN L, WU Q, et al. Effect of Bacillus subtilis elastase on protein hydrolysis and meat tenderization[J]. Food Technology, 2010, 35(6): 162−165,174.
    [53]
    韩建春, 邢明伟. 枯草芽孢杆菌产弹性蛋白酶对肉嫩化的工艺研究[J]. 食品工业科技,2011,32(2):166−168,263. [HAN J C, XING M W. Study on the technology of elastase produced by Bacillus subtilis for meat tenderization[J]. Food Industry Technology,2011,32(2):166−168,263.]

    HAN J C, XING M W. Study on the technology of elastase produced by Bacillus subtilis for meat tenderization[J]. Food Industry Technology, 2011, 32(2): 166−168,263.
    [54]
    SORAPUKDEE S, SUMPAVAPOL P, BENJAKUL S, et al. Collagenolytic proteases from Bacillus subtilis B13 and Bacillus siamensis S6 and their specificity toward collagen with low hydrolysis of myofibrils[J]. LWT,2020,126:109307. doi: 10.1016/j.lwt.2020.109307
    [55]
    ZHAO G Y, ZHOU M Y, ZHAO H L, et al. Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism[J]. Food Chemistry,2012,134(4):1738−1744. doi: 10.1016/j.foodchem.2012.03.118
    [56]
    MAGESWARI A, SUBRAMANIAN P, CHANDRASEKARAN S, et al. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp[J]. Food Chemistry,2017,217:18−27. doi: 10.1016/j.foodchem.2016.08.064
    [57]
    BUREROS K J C, DIZON E I, ISRAEL K A C, et al. Physicochemical and sensory properties of carabeef treated with Bacillus subtilis (Ehrenberg) Cohn protease as meat tenderizer[J]. Journal of Food Science Technology,2020,57(1):310−318. doi: 10.1007/s13197-019-04062-4
    [58]
    CHEN Q H, HE G Q, JIAO Y C, et al. Effects of elastase from a Bacillus strain on the tenderization of beef meat[J]. Food Chemistry,2005,98(4):624−629.
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. 王如月,虎海防,罗莎莎,甄紫怡,徐业勇,胡晓静. 杏李不同采收成熟度果实品质分析. 中国农业科技导报(中英文). 2025(02): 158-169 .
    2. 孙建城,王登亮,马创举,刘丽丽,陈骏,刘春荣,吴群. 不同采收期对华柑4号柑橘果实品质的影响. 中国果树. 2024(07): 67-73 .
    3. 宋欣悦,吕靖芳,戴芬,朱作艺. 不同采收成熟度菲油果营养品质评价. 农产品质量与安全. 2024(05): 20-24+72 .
    4. 方玉凤,温宝阳,王英东. 黑龙江省野生山刺玫优良种源选择利用研究. 林业科技. 2024(06): 1-6 .
    5. 赵妍,祝文雪,李先宽,高鑫,付鲲,张坚. 酸枣种质资源表型多样性及营养成分分析. 种子. 2024(11): 120-126 .
    6. 吴斌,苏金生,邢文婷,宋顺,马伏宁,黄东梅. 不同品种百香果果实转色期糖酸品质性状评价. 果树学报. 2024(12): 2532-2542 .
    7. 李星星,周国富,骆官雨,陈思蓉,张金龙,陈国华,张晓明. 橘小实蝇对不同品种苹果的选择偏好及适应性. 中国农业科学. 2023(17): 3358-3371 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (300) PDF downloads (48) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return