Citation: | ZHANG Mingyi, SUN Qingjie, YANG Jie. Applications of Bacillus Proteases in the Food Industry: A Review[J]. Science and Technology of Food Industry, 2024, 45(13): 352−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070279. |
[1] |
BANERJEE G, RAY A K. Impact of microbial proteases on biotechnological industries[J]. Biotechnology and Genetic Engineering Reviews,2017,33(2):119−143. doi: 10.1080/02648725.2017.1408256
|
[2] |
MOHD A S, KUMAR P, SHARMA N, et al. Application of plant proteases in meat tenderization:Recent trends and future prospects[J]. Foods,2023,12(6):1206−1336. doi: 10.3390/foods12061206
|
[3] |
LIANG Q, YUAN M, XU L, et al. Application of enzymes as a feed additive in aquaculture[J]. Marine Life Science and Technology,2022,4(2):208−221. doi: 10.1007/s42995-022-00128-z
|
[4] |
KAMAL S, REHMAN S, IQBAL H. Biotechnological valorization of proteases:From hyper-production to industrial exploitation-A review[J]. Environmental Progress and Sustainable Energy,2016,36(2):511−522.
|
[5] |
GARG S, NURGALI K, MISHRA V K. Food proteins as source of opioid peptides-A review[J]. Current Medicinal Chemistry,2016,23(9):893−910. doi: 10.2174/0929867323666160219115226
|
[6] |
POLGÁR L. Common feature of the four types of protease mechanism[J]. Biological Chemistry Hoppe-Seyler,1990,371:327−331.
|
[7] |
于建荣, 毛开云, 陈大明. 工业酶制剂新产品开发和产业化情况分析[J]. 生物产业技术,2015(3):53−57. [YU J R, MAO K Y, CHEN D M. Analysis of product development and industrialization of industrial enzyme preparation[J]. Biotechnology and Business,2015(3):53−57.]
YU J R, MAO K Y, CHEN D M. Analysis of product development and industrialization of industrial enzyme preparation[J]. Biotechnology and Business, 2015(3): 53−57.
|
[8] |
艾雨晴, 陈松骏, 秦娟, 等. 微生物产蛋白酶的研究进展[J]. 食品工业科技,2021,42(19):451−458. [AI Y Q, CHEN S J, QIN J, et al. Advances in proteases produced by microorganisms[J]. Science and Technology of Food Industry,2021,42(19):451−458.]
AI Y Q, CHEN S J, QIN J, et al. Advances in proteases produced by microorganisms[J]. Science and Technology of Food Industry, 2021, 42(19): 451−458.
|
[9] |
乔羽, 于迪, 范振宇, 等. 山西老陈醋发酵过程中高产蛋白酶芽孢杆菌的筛选与鉴定[J]. 食品与发酵科技,2017,53(6):11−16,33. [QIAO Y, YU D, FAN Z Y, et al. Screening and identification of high protease producing Bacillus subtilis during the fermentation process of Shanxi aged vinegar[J]. Food and Fermentation Technology,2017,53(6):11−16,33.]
QIAO Y, YU D, FAN Z Y, et al. Screening and identification of high protease producing Bacillus subtilis during the fermentation process of Shanxi aged vinegar[J]. Food and Fermentation Technology, 2017, 53(6): 11−16,33.
|
[10] |
孙同毅, 邵伟光, 高志芹, 等. 一株产碱性蛋白酶的嗜碱芽孢杆菌的分离和鉴定[J]. 现代生物医学进展,2008(7):1256−1258. [SUN T Y, SHAO W G, GAO Z Q, et al. Isolation and identification of an alkaline protease producing Bacillus subtilis[J]. Progress in Modern Biomedical Sciences,2008(7):1256−1258.] doi: 10.3969/j.issn.1673-6273.2008.07.019
SUN T Y, SHAO W G, GAO Z Q, et al. Isolation and identification of an alkaline protease producing Bacillus subtilis[J]. Progress in Modern Biomedical Sciences, 2008(7): 1256−1258. doi: 10.3969/j.issn.1673-6273.2008.07.019
|
[11] |
朱檬, 刘国瑞, 张军, 等. 一株喜油嗜热芽孢杆菌G1201产高温蛋白酶的性质研究及异源表达初探[J]. 中国饲料,2022(9):30−37. [ZHU M, LIU G R, ZHANG J, et al. Study on the properties and heterologous expression of high-temperature protease produced by an Geobacillus thermoleovorans G1201[J]. China Feed,2022(9):30−37.]
ZHU M, LIU G R, ZHANG J, et al. Study on the properties and heterologous expression of high-temperature protease produced by an Geobacillus thermoleovorans G1201[J]. China Feed, 2022(9): 30−37.
|
[12] |
MUSHTAQ H, GANAI S A, JEHANGIR A, et al. Molecular and functional characterization of protease from psychrotrophic Bacillus sp. HM49 in North-western Himalaya[J]. PLoS One,2023,18(3):e0283677. doi: 10.1371/journal.pone.0283677
|
[13] |
WEN Y X, QIANG J Y, ZHOU G X, et al. Characterization of redox and salinity-tolerant alkaline protease from Bacillus halotolerans strain DS5[J]. Frontiers in Microbiology,2022,13:935072. doi: 10.3389/fmicb.2022.935072
|
[14] |
BALACHANDRAN C, VISHALI A, NAGENDRAN N A, et al. Optimization of protease production from Bacillus halodurans under solid state fermentation using agrowastes[J]. Saudi Journal of Biological Sciences,2021,28(8):4263−4269. doi: 10.1016/j.sjbs.2021.04.069
|
[15] |
ROSAZZA T, EIGENTLER L, EARL C, et al. Bacillus subtilis extracellular protease production incurs a context-dependent cost[J]. Molecular Microbiology,2023,120(2):105−121. doi: 10.1111/mmi.15110
|
[16] |
黄子凌, 莫港澳, 李文, 等. 高产中性蛋白酶菌株的诱变选育及益生特性[J]. 食品与发酵工业,2021,47(17):84−90. [HUANG Z L, MO G A, LI W, et al. Mutation breeding and probiotic characteristics of high yield neutral protease strains[J]. Food and Fermentation Industry,2021,47(17):84−90.]
HUANG Z L, MO G A, LI W, et al. Mutation breeding and probiotic characteristics of high yield neutral protease strains[J]. Food and Fermentation Industry, 2021, 47(17): 84−90.
|
[17] |
胡悦, 李汉文, 喻晨, 等. LiCl-ARTP复合诱变选育高产碱性蛋白酶菌株及其发酵条件优化[J]. 中国酿造,2021,40(2):59−65. [HU Y, LI H W, YU C, et al. Breeding of high yield alkaline protease strains by LiCl-ARTP composite mutation and optimization of fermentation conditions[J]. Chinese Brewing,2021,40(2):59−65.] doi: 10.11882/j.issn.0254-5071.2021.02.012
HU Y, LI H W, YU C, et al. Breeding of high yield alkaline protease strains by LiCl-ARTP composite mutation and optimization of fermentation conditions[J]. Chinese Brewing, 2021, 40(2): 59−65. doi: 10.11882/j.issn.0254-5071.2021.02.012
|
[18] |
李西波, 张旭, 杨柳, 等. 高产酸性蛋白酶菌株的选育及酶学性质研究[J]. 中国调味品,2018,43(3):28−33,40. [LI X B, ZHANG X, YANG L, et al. Breeding of high-yield acidic protease strains and study on their enzymatic properties[J]. Chinese Seasoning,2018,43(3):28−33,40.] doi: 10.3969/j.issn.1000-9973.2018.03.007
LI X B, ZHANG X, YANG L, et al. Breeding of high-yield acidic protease strains and study on their enzymatic properties[J]. Chinese Seasoning, 2018, 43(3): 28−33,40. doi: 10.3969/j.issn.1000-9973.2018.03.007
|
[19] |
刘丽莉, 杨陈柳, 尤晓颜, 等. 蜡样芽孢杆菌胶原蛋白酶基因的异源表达与活性分析[J]. 中国食品学报,2020,20(1):69−75. [LIU L L, YANG C L, YOU X Y, et al. Heterologous expression and activity analysis of Bacillus cereus collagenase gene[J]. Journal of China Foods Limited,2020,20(1):69−75.]
LIU L L, YANG C L, YOU X Y, et al. Heterologous expression and activity analysis of Bacillus cereus collagenase gene[J]. Journal of China Foods Limited, 2020, 20(1): 69−75.
|
[20] |
周冠宇, 李江华, 彭政, 等. 定点突变提高枯草芽孢杆菌角蛋白酶的低温催化活性[J]. 微生物学通报,2022,49(1):1−13. [ZHOU G Y, LI J H, PENG Z, et al. Site-directed mutagenesis enhances low-temperature catalytic activity of Bacillus subtilis keratinase[J]. Microbiology Bulletin,2022,49(1):1−13.]
ZHOU G Y, LI J H, PENG Z, et al. Site-directed mutagenesis enhances low-temperature catalytic activity of Bacillus subtilis keratinase[J]. Microbiology Bulletin, 2022, 49(1): 1−13.
|
[21] |
TAKENAKA S, TAKADA A, KIMURA Y, et al. Improvement of the halotolerance of a Bacillus serine protease by protein surface engineering[J]. Journal of Basic Microbiol,2021,62(2):174−184.
|
[22] |
SO Y, PARK S Y, PARK E H, et al. A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis[J]. Frontiers in Microbiology,2017,8(1167):1−12.
|
[23] |
YAN P P, WU Y P, LI Y, et al. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose[J]. Biotechnology Letters,2018,40:393−398. doi: 10.1007/s10529-017-2481-4
|
[24] |
张雪玉. 枯草芽胞杆菌基因组最小化的初步研究[D]. 天津:天津大学, 2013. [ZHANG X Y. Preliminary study on genome minimization of Bacillus subtilis[D]. Tianjin:Tianjin University, 2013.]
ZHANG X Y. Preliminary study on genome minimization of Bacillus subtilis[D]. Tianjin: Tianjin University, 2013.
|
[25] |
ZHANG F, HUO K Y, SONG X Y, et al. Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production[J]. Microbial Cell Factories,2020,19:223. doi: 10.1186/s12934-020-01485-z
|
[26] |
XIANG M J, KANG Q, ZHANG D W. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell[J]. Synthetic and Systems Biotechnology,2020,5:245−251. doi: 10.1016/j.synbio.2020.07.005
|
[27] |
MORIMOTO T, KADOYA R, ENDO K, et al. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis[J]. DNA Research,2008,15(2):73−81. doi: 10.1093/dnares/dsn002
|
[28] |
李昕悦. 解淀粉芽胞杆菌基因组精简对碱性蛋白酶表达的影响[D]. 天津:天津科技大学, 2022. [LI X Y. The effect of genome simplification of Bacillus amyloliquefaciens on alkaline protease expression[D]. Tianjin:Tianjin University of Science and Technology, 2022.]
LI X Y. The effect of genome simplification of Bacillus amyloliquefaciens on alkaline protease expression[D]. Tianjin: Tianjin University of Science and Technology, 2022.
|
[29] |
SETYANI W, MURWANTI, SULAIMAN T N S, et al. Application of response surface methodology (RSM) for the optimization of ultrasound-assisted extraction (UAE) of Moringa oleifera:Extraction yield, content of bioactive compounds, and biological effects in vitro[J]. Plants,2023,12(13):2455. doi: 10.3390/plants12132455
|
[30] |
AZARI S R, HOJJATOLESLAMY M, MOUSAVI Z E, et al. Production and optimization of conjugated linoleic and eicosapentaenoic acids by Bifidobacterium lactis in cold-pressed soybean cake[J]. Frontiers in Nutrition,2022,9:916728. doi: 10.3389/fnut.2022.916728
|
[31] |
YEWANDE S, IDOWU A, TITILOLA S, et al. Optimization of protease production in indigenous Bacillus species isolated from soil samples in Lagos, Nigeria using response surface methodology[J]. Biocatalysis and Agricultural Biotechnology,2019,18:101011. doi: 10.1016/j.bcab.2019.01.049
|
[32] |
FASIKU S A, BELLO M A, ODENIYI O A. Production of xylanase by Aspergillus niger GIO and Bacillus megaterium through solid-state fermentation[J]. Access Microbiology,2023,5(6):000506.
|
[33] |
TULY J A, ZABED H M, NIZAMI A, et al. Bioconversion of agro-food industrial wastes into value-added peptides by a Bacillus sp. Mutant through solid-state fermentation[J]. Bioresource Technology,2021,346:126513.
|
[34] |
SUI X, ZHANG T, JIANG L. Soy protein:Molecular structure revisited and recent advances in processing technologies[J]. Annual Review of Food Science and Technology,2021,12(1):119−147. doi: 10.1146/annurev-food-062220-104405
|
[35] |
LU Z X, HE J F, ZHANG Y C, et al. Composition, physicochemical properties of pea protein and its application in functional foods[J]. Critical Reviews Food Science Nutrition,2019,60(15):1−13.
|
[36] |
ALEXANDRA S C, ASWATHY S, KEITH R S. Peanut and peanut products:A food safety perspective[J]. Food Control,2013,32(1):296−303. doi: 10.1016/j.foodcont.2012.12.007
|
[37] |
KADOWAKI M, KUBOTA M, WATANABE R. Physiological multifunctions of rice proteins of endosperm and bran[J]. Journal of Nutritional Science and Vitaminology,2019,65:42−47. doi: 10.3177/jnsv.65.S42
|
[38] |
汪建斌, 邓勇. Alcalase碱性蛋白酶对大豆分离蛋白水解作用的研究[J]. 食品工业科技,2002(1):61−63. [WANG J B, DENG Y. Study on the hydrolysis effect of alcalase alkaline protease on soybean protein isolates[J]. Food Industry Science and Technology,2002(1):61−63.] doi: 10.3969/j.issn.1002-0306.2002.01.023
WANG J B, DENG Y. Study on the hydrolysis effect of alcalase alkaline protease on soybean protein isolates[J]. Food Industry Science and Technology, 2002(1): 61−63. doi: 10.3969/j.issn.1002-0306.2002.01.023
|
[39] |
AGUILAR J G S, CASTRO R J S, SATO H H. Production of antioxidant peptides from pea protein using protease from Bacillus licheniformis LBA 46[J]. International Journal of Peptide Research and Therapeutics,2020,26(1):435−443. doi: 10.1007/s10989-019-09849-9
|
[40] |
ADEKOYA O A, SYLTE I. The thermolysin family (M4) of enzymes:Therapeutic and biotechnological potential[J]. Chemical Biology and Drug Design,2009,73(1):7−16. doi: 10.1111/j.1747-0285.2008.00757.x
|
[41] |
SHOBAKO N, OGAWA Y, ISHIKADO A, et al. A novel antihypertensive peptide identified in thermolysin-digested rice bran[J]. Molecular Nutrition and Food Research,2018,62(4):1−7.
|
[42] |
HARIHARAN S, PATTI A, ARORA A. Functional proteins from biovalorization of peanut meal:Advances in process technology and applications[J]. Plant Foods for Human Nutrition,2023,78(1):13−24. doi: 10.1007/s11130-022-01040-8
|
[43] |
YANG X J, TANG D, WANG X M, et al. Enhancement of nutritional and antioxidant properties of peanut meal by bio-modification with Bacillus licheniformis[J]. Applied Biochemistry and Biotechnology,2016,180(6):1227−1242. doi: 10.1007/s12010-016-2163-z
|
[44] |
SAMURAILATPAM S, AMIT K R, ALI M, et al. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation[J]. Journal of Functional Foods,2015,14:650−658. doi: 10.1016/j.jff.2015.02.033
|
[45] |
HEJDYSZ M, KACZMAREK S A, KUBIŚ M, et al. The effect of protease and Bacillus licheniformis on nutritional value of pea, faba bean, yellow lupin and narrow-leaved lupin in broiler chicken diets[J]. British Poultry Science,2020,61(3):287−293. doi: 10.1080/00071668.2020.1716303
|
[46] |
YAN Z F, YUAN S, QIN Q, et al. Enhancement of rice protein hydrolysate quality using a novel dual enzyme system[J]. LWT,2022,158:113110. doi: 10.1016/j.lwt.2022.113110
|
[47] |
DING S L, MAO B J, LU X Y, et al. Efficient production and biochemical characterization of a thermostable carboxypeptidase from Bacillus megaterium and its application on flavor improvement of soy isolate protein hydrolysates[J]. European Food Research and Technology,2022,248(8):2135−2143. doi: 10.1007/s00217-022-04036-5
|
[48] |
ELGADIR M A, MARIOD A A. Gelatin and chitosan as meat by-products and their recent applications[J]. Foods,2022,12(1):60. doi: 10.3390/foods12010060
|
[49] |
KVIATKOVSKY S A, HICKNER R C, ORMSBEE M J. Collagen peptide supplementation for pain and function:Is it effective and if so, why[J]. Current Opinion in Clinical Nutrition and Metabolic Care,2022,25(6):401−406. doi: 10.1097/MCO.0000000000000870
|
[50] |
SONG Y H, FU Y S, HUANG S Y, et al. Identification and antioxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus[J]. Food Chemistry,2021,349:129143. doi: 10.1016/j.foodchem.2021.129143
|
[51] |
KESHAPAGA U R, JATHOTH K, SINGH S S, et al. Characterization of high-yield Bacillus subtilis cysteine protease for diverse industrial applications[J]. Braz Journal of Microbiology,2023,54(2):739−752. doi: 10.1007/s42770-023-00992-6
|
[52] |
刘书亮, 詹莉, 吴琦, 等. 枯草芽孢杆菌弹性蛋白酶对蛋白质水解及肉类嫩化的效果[J]. 食品科技,2010,35(6):162−165,174. [LIU S L, ZHAN L, WU Q, et al. Effect of Bacillus subtilis elastase on protein hydrolysis and meat tenderization[J]. Food Technology,2010,35(6):162−165,174.]
LIU S L, ZHAN L, WU Q, et al. Effect of Bacillus subtilis elastase on protein hydrolysis and meat tenderization[J]. Food Technology, 2010, 35(6): 162−165,174.
|
[53] |
韩建春, 邢明伟. 枯草芽孢杆菌产弹性蛋白酶对肉嫩化的工艺研究[J]. 食品工业科技,2011,32(2):166−168,263. [HAN J C, XING M W. Study on the technology of elastase produced by Bacillus subtilis for meat tenderization[J]. Food Industry Technology,2011,32(2):166−168,263.]
HAN J C, XING M W. Study on the technology of elastase produced by Bacillus subtilis for meat tenderization[J]. Food Industry Technology, 2011, 32(2): 166−168,263.
|
[54] |
SORAPUKDEE S, SUMPAVAPOL P, BENJAKUL S, et al. Collagenolytic proteases from Bacillus subtilis B13 and Bacillus siamensis S6 and their specificity toward collagen with low hydrolysis of myofibrils[J]. LWT,2020,126:109307. doi: 10.1016/j.lwt.2020.109307
|
[55] |
ZHAO G Y, ZHOU M Y, ZHAO H L, et al. Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism[J]. Food Chemistry,2012,134(4):1738−1744. doi: 10.1016/j.foodchem.2012.03.118
|
[56] |
MAGESWARI A, SUBRAMANIAN P, CHANDRASEKARAN S, et al. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp[J]. Food Chemistry,2017,217:18−27. doi: 10.1016/j.foodchem.2016.08.064
|
[57] |
BUREROS K J C, DIZON E I, ISRAEL K A C, et al. Physicochemical and sensory properties of carabeef treated with Bacillus subtilis (Ehrenberg) Cohn protease as meat tenderizer[J]. Journal of Food Science Technology,2020,57(1):310−318. doi: 10.1007/s13197-019-04062-4
|
[58] |
CHEN Q H, HE G Q, JIAO Y C, et al. Effects of elastase from a Bacillus strain on the tenderization of beef meat[J]. Food Chemistry,2005,98(4):624−629.
|