CHEN Zhiyun, LI Jie, FENG Yu, et al. Research Progress on Bioactivity and Mechanism of Tea Polyphenols[J]. Science and Technology of Food Industry, 2024, 45(13): 333−341. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070168.
Citation: CHEN Zhiyun, LI Jie, FENG Yu, et al. Research Progress on Bioactivity and Mechanism of Tea Polyphenols[J]. Science and Technology of Food Industry, 2024, 45(13): 333−341. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070168.

Research Progress on Bioactivity and Mechanism of Tea Polyphenols

More Information
  • Received Date: July 19, 2023
  • Available Online: May 04, 2024
  • Tea polyphenols are a class of polyphenolic mixtures with phenolic hydroxyl structure in tea plants, which are the main functional component of tea, and the content is relatively high in green tea. Tea polyphenol bioactivity research gains popularity, in the functional food, drug development, preservation and preservation of preservatives and other areas with broad application prospects. Tea polyphenols have a variety of biological activities such as antioxidant, anticancer, hypolipidemic, blood sugar regulation, antibacterial, anti-radiation and so on. Their mechanism of action mainly includes regulating protein kinase B (AKT), nuclear factor-kappa B (NF-κB), epithelial growth factor receptor (EGFR), adenylate activated protein kinase (AMPK) and other signalling pathways and related proteins. By analyzing the relevant research literature in recent years, we review the material properties, biological activities, mechanisms and applications of tea polyphenols, with a view to providing reference for the development of tea polyphenol-containing functional foods and natural medicines.
  • [1]
    潘蓉, 赵学尽, 杜建斌, 等. 2021年中国茶叶进出口贸易情况简析[J]. 中国茶叶,2022,44(3):25−30. [PAN Rong, ZHAO Xuejin, DU Jianbin, et al. A brief analysis on tea import and export trade in China during 2021[J]. China Tea,2022,44(3):25−30.]

    PAN Rong, ZHAO Xuejin, DU Jianbin, et al. A brief analysis on tea import and export trade in China during 2021[J]. China Tea, 2022, 44(3): 25−30.
    [2]
    潘蓉, 余玉庚, 刘兰, 等. 2022年中国茶叶进出口贸易结构简析[J]. 中国茶叶,2023,45(4):31−35. [PAN Rong, YU Yugeng, LIU Lan, et al. A brief analysis on tea Import and export trade in China during 2022[J]. China Tea,2023,45(4):31−35.]

    PAN Rong, YU Yugeng, LIU Lan, et al. A brief analysis on tea Import and export trade in China during 2022[J]. China Tea, 2023, 45(4): 31−35.
    [3]
    YAN Z M, ZHONG Y Z, DUAN Y H, et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits[J]. Animal Nutrition,2020,2(6):115−123.
    [4]
    HELIEH O S. Chronic inflammatory diseases and green tea polyphenols[J]. Nutrients,2017,6(9):561−574.
    [5]
    LUZ J R D, LÓPEZ J A, FERREIRA M P, et al. In vitro antithrombotic, antitumor and antiangiogenic activities of green tea polyphenols and its main constituent epigallocatechin-3-gallate[J]. Processes,2022,11(1):76−81. doi: 10.3390/pr11010076
    [6]
    WAN C P, OU Y J, LI M X, et al. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications:Recent advances[J]. Critical Reviews in Food Science and Nutrition,2022,19:21−29.
    [7]
    高婷, 袁芳艳, 刘泽文, 等. 茶多酚的抗菌抗病毒作用[J]. 动物医学进展,2022,43(4):107−111. [GAO Ting, YUAN Fangyan, LIU Zewen, et al. Antibacterial and antiviral effects of tea polyphenols[J]. Progress in Veterinary Medicine,2022,43(4):107−111.] doi: 10.3969/j.issn.1007-5038.2022.04.020

    GAO Ting, YUAN Fangyan, LIU Zewen, et al. Antibacterial and antiviral effects of tea polyphenols[J]. Progress in Veterinary Medicine, 2022, 43(4): 107−111. doi: 10.3969/j.issn.1007-5038.2022.04.020
    [8]
    张文娟, 刘雪娜, 李丽维, 等. 茶多酚生理机制及其保健食品研发进展[J]. 食品研究与开发,2023,44(5):217−224. [ZHANG Wenjuan, LIU Xuena, LI Liwei, et al. Physiological mechanism of tea polyphenols and development of their health food[J]. Food Research and Development,2023,44(5):217−224.]

    ZHANG Wenjuan, LIU Xuena, LI Liwei, et al. Physiological mechanism of tea polyphenols and development of their health food[J]. Food Research and Development, 2023, 44(5): 217−224.
    [9]
    郑艳超, 於天, 郑志刚, 等. 茶黄素生物活性与开发应用的研究进展[J]. 中草药,2020,51(23):6095−6101. [ZHENG Yanchao, YU Tian, ZHENG Zhigang, et al. Research progress on biological activity and application development of theaflavins[J]. Chinese Traditional and Herbal Drugs,2020,51(23):6095−6101.]

    ZHENG Yanchao, YU Tian, ZHENG Zhigang, et al. Research progress on biological activity and application development of theaflavins[J]. Chinese Traditional and Herbal Drugs, 2020, 51(23): 6095−6101.
    [10]
    宛晓春. 茶叶生物化学[M]. 第三版. 北京:中国农业出版社, 2003:8−20. [WAN Xiaochun. Tea biochemistry[M]. The third edition. Beijing:China Agriculture Press, 2003:8−20.]

    WAN Xiaochun. Tea biochemistry[M]. The third edition. Beijing: China Agriculture Press, 2003: 8−20.
    [11]
    XING L J, ZHANG H, QI R L, et al. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols[J]. Journal of Agricultural and Food Chemistry,2019,67(4):1029−1043. doi: 10.1021/acs.jafc.8b06146
    [12]
    游小妹, 韩奥迪, 李鑫磊, 等. 黄化茶树新品种‘茗冠’多茶类品质差异分析[J]. 食品工业科技,2023,44(23):287−297. [YOU Xiaomei, HAN Aodi, LI Xinlei, et al. Analysis of metabolites difference of the albino tea tree variety 'Mingguan'[J]. Science and Technology of Food Industry,2023,44(23):287−297.]

    YOU Xiaomei, HAN Aodi, LI Xinlei, et al. Analysis of metabolites difference of the albino tea tree variety 'Mingguan'[J]. Science and Technology of Food Industry, 2023, 44(23): 287−297.
    [13]
    朱婉, 吴颖, 黎晓湘, 等. 基于广泛靶向代谢组学结合高效液相色谱法分析‘紫娟’和‘迎霜’茶树花代谢产物差异[J]. 浙江大学学报(农业与生命科学版),2023,49(6):825−839. [ZHU Wan, WU Ying, LI Xiaoxiang, et al. Analysis of differential metabolites between 'Zijuan' and 'Yingshuang' tea flowers based on widely targeted metabolomics combined with high performance liquid chromatography[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2023,49(6):825−839.]

    ZHU Wan, WU Ying, LI Xiaoxiang, et al. Analysis of differential metabolites between 'Zijuan' and 'Yingshuang' tea flowers based on widely targeted metabolomics combined with high performance liquid chromatography[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 825−839.
    [14]
    龚雪蛟, 秦琳, 黄颖博, 等. 茶园施肥模式对茶叶黄酮类及糖苷类代谢物含量的影响[J]. 植物营养与肥料学报,2022,28(10):1867−1883. [GONG Xuejiao, QIN Lin, HUANG Yingbo, et al. Effects of fertilization patterns on flavonoids and glycoside metabolites in tea[J]. Journal of Plant Nutrition and Fertilizers,2022,28(10):1867−1883.]

    GONG Xuejiao, QIN Lin, HUANG Yingbo, et al. Effects of fertilization patterns on flavonoids and glycoside metabolites in tea[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1867−1883.
    [15]
    赵熙, 赵洋, 杨培迪, 等. 茶树种质资源汝城白毛茶的代谢物差异研究[J]. 热带作物学报,2023,44(1):83−91. [ZHAO Xi, ZHAO Yang, YANG Peidi, et al. Metabonomic analysis of metabolic differences in rucheng baimaocha tea germplasm[J]. Chinese Journal of Tropical Crops,2023,44(1):83−91.]

    ZHAO Xi, ZHAO Yang, YANG Peidi, et al. Metabonomic analysis of metabolic differences in rucheng baimaocha tea germplasm[J]. Chinese Journal of Tropical Crops, 2023, 44(1): 83−91.
    [16]
    ITO A, YANASE E. Study into the chemical changes of tea leaf polyphenols during Japanese black tea processing[J]. Food Research International (Ottawa, Ont.),2022,160:1−35.
    [17]
    WANG J P, JIA R, CELI P, et al. Green tea polyphenol epigallocatechin-3-gallate improves the antioxidant capacity of eggs[J]. Food & Function,2020,11(1):534−543.
    [18]
    JAGDEO J, KURTTI A, HERNANDEZ S, et al. Novel vitamin C and E and green tea polyphenols combination serum improves photoaged facial skin[J]. Journal of Drugs in Dermatology:JDD,2021,20(9):996−1003. doi: 10.36849/JDD.5818
    [19]
    YIN B, LIAN R, LI Z, et al. Tea polyphenols enhanced the antioxidant capacity and induced hsps to relieve heat stress injury[J]. Oxidative Medicine and Cellular Longevity,2021,2021:1−13.
    [20]
    YU J, LI W, XIAO X, et al. (−)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro[J]. Food & Function,2021,12(18):8715−8727.
    [21]
    XU R, ZHU M R, CAO J W, et al. Tea polyphenols protect the mammary gland of dairy cows by enhancing antioxidant capacity and regulating the TGF-β1/p38/JNK pathway[J]. Metabolites,2022,12(11):1−13.
    [22]
    HUANG X Y, CHU Y, REN H, et al. Antioxidation function of EGCG by activating Nrf2/HO-1 pathway in mice with coronary heart disease[J]. Contrast Media & Molecular Imaging,2022,2022:1−8.
    [23]
    李佳, 安苗青, 吕晨豪, 等. 重组人源胶原蛋白对D-半乳糖致衰老小鼠的抗衰老作用及机制研究[J]. 食品工业科技,2023,44(10):343−352. [LI Jia, AN Miaoqing, LÜ Chenhao, et al. Anti-aging effects and mechanisms of recombinant human-derived collagen on aging mouse induced by d-galactose[J]. Science and Technology of Food Industry,2023,44(10):343−352.]

    LI Jia, AN Miaoqing, LÜ Chenhao, et al. Anti-aging effects and mechanisms of recombinant human-derived collagen on aging mouse induced by d-galactose[J]. Science and Technology of Food Industry, 2023, 44(10): 343−352.
    [24]
    CHEN J M, LI Y F, ZHU Q Q, et al. Anti-skin-aging effect of epigallocatechin gallate by regulating epidermal growth factor receptor pathway on aging mouse model induced by D-galactose[J]. Mechanisms of Ageing and Development,2017,164:1−7. doi: 10.1016/j.mad.2017.03.007
    [25]
    LI S Z, WU H X, TOLLEFSBOL T O. Combined broccoli sprouts and green tea polyphenols contribute to the prevention of estrogen receptor-negative mammary cancer via cell cycle arrest and inducing apoptosis in HER2/neu mice[J]. The Journal of Nutrition,2021,151(1):73−84. doi: 10.1093/jn/nxaa315
    [26]
    ZHAO X, SHI X, LIU Q Q, et al. Tea polyphenols alleviates acetochlor-induced apoptosis and necroptosis via ROS/MAPK/NF-κB signaling in Ctenopharyngodon idellus kidney cells[J]. Aquatic Toxicology,2022,246:1−13.
    [27]
    PARANGI S, O'REILLY M, CHRISTOFORI G, et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth[J]. Proceedings of the National Academy of Sciences-PNAS,1996,93(5):2002−2007. doi: 10.1073/pnas.93.5.2002
    [28]
    TRISHA A T, SHAKIL M H, TALUKDAR S, et al. Tea polyphenols and their preventive measures against cancer:Current trends and directions[J]. Foods,2022,11(21):3349−3368. doi: 10.3390/foods11213349
    [29]
    INOUE M, ROBIEN K, WANG R, et al. Green tea intake, MTHFR/TYMS genotype and breast cancer risk:The Singapore Chinese health study[J]. Carcinogenesis,2008,29(10):1967−1972. doi: 10.1093/carcin/bgn177
    [30]
    FRITZ H, SEELY D, KENNEDY D A, et al. Green tea and lung cancer:A systematic review[J]. Integrative Cancer Therapies,2013,12(1):7−24. doi: 10.1177/1534735412442378
    [31]
    WOLF P, SCHOENIGER A, EDLICH F. Edlich, pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochimica et biophysica acta[J]. Molecular Cell Research,2022,21(11):1−20.
    [32]
    YIN Z F, LI J, KANG L, et al. Epigallocatechin-3-gallate induces autophagy-related apoptosis associated with LC3B II and Beclin expression of bladder cancer cells[J]. Journal of Food Biochemistry,2021,45(6):e13758−e13765.
    [33]
    KANG Q, ZHANG X, CAO N, et al. EGCG enhances cancer cells sensitivity under Coγ radiation based on miR-34a/Sirt1/p53[J]. Food and Chemical Toxicology,2019,133:1−9.
    [34]
    LA X, ZHANG L, LI Z, et al. (-)-Epigallocatechin gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway[J]. Journal of Agricultural and Food Chemistry,2019,67(9):2510−2518. doi: 10.1021/acs.jafc.8b06665
    [35]
    BAE J, KUMAZOE M, SU J, et al. The anti-cancer effect of epigallocatechin-3-O-gallate against multiple myeloma cells is potentiated by 5,7-dimethoxyflavone[J]. FEBS Open Bio,2023,13(11):2147−2156. doi: 10.1002/2211-5463.13708
    [36]
    NANDI S K, PRADHAN A, DAS B, et al. Kaempferol attenuates viability of ex-vivo cultured post-NACT breast tumor explants through downregulation of p53 induced stemness, inflammation and apoptosis evasion pathways[J]. Pathology-Research and Practice,2022,237:154029. doi: 10.1016/j.prp.2022.154029
    [37]
    CHEN L, GUO X, HU Y, et al. Epigallocatechin-3-gallate sensitises multidrug-resistant oral carcinoma xenografts to vincristine sulfate[J]. FEBS Open Bio,2020,10(7):1403−1413. doi: 10.1002/2211-5463.12905
    [38]
    WANG J, MAN G C W, CHAN T H, et al. A prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer[J]. Cancer Letters,2018,412:10−20. doi: 10.1016/j.canlet.2017.09.054
    [39]
    KJÆR I M, OLSEN D A, BRANDSLUND I, et al. Dysregulated EGFR pathway in serum in early-stage breast cancer patients:A case control stud[J]. Scientific Reports,2020,10(1):6714−6122. doi: 10.1038/s41598-020-63375-z
    [40]
    MINNELLI C, CIANFRUGLIA L, LAUDADIO E, et al. Effect of epigallocatechin-3-gallate on EGFR signaling and migration in non-small cell lung cancer[J]. International Journal of Molecular Sciences,2021,22(21):1−14.
    [41]
    WENG L X, WANG G H, YAO H, et al. Epigallocatechin gallate inhibits the growth of salivary adenoid cystic carcinoma cells via the EGFR/Erk signal transduction pathway and the mitochondria apoptosis pathway[J]. Neoplasma,2017,64(4):563−570. doi: 10.4149/neo_2017_410
    [42]
    XIE L, YI J, SONG Y J, et al. Suppression of GOLM1 by EGCG through HGF/HGFR/AKT/GSK-3β/β-catenin/c-Myc signaling pathway inhibits cell migration of MDA-MB-23[J]. Food and Chemical Toxicology,2021,157:1−10.
    [43]
    KAI F B, DRAIN A P, WEAVER V M. The extracellular matrix modulates the metastatic journey[J]. Developmental Cell,2019,49(3):332−345. doi: 10.1016/j.devcel.2019.03.026
    [44]
    LUO K W, WEI C, LUNG W Y, et al. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9[J]. The Journal of Nutritional Biochemistry,2017,41:56−64. doi: 10.1016/j.jnutbio.2016.12.004
    [45]
    BRETAUDEAU C, BAUD S, DUPONT-DESHORGUE A, et al. AG-9, an Elastin-derived peptide, increases in vitro oral tongue carcinoma cell invasion, through an increase in MMP-2 secretion and MT1-MMP expression, in a RPSA-dependent manner[J]. Biomolecules,2020,11(1):1−14. doi: 10.3390/biom11010001
    [46]
    吴铁良. 代谢综合症诊治进展[J]. 现代预防医学,2010,37(16):3200−3201. [WU Tieliang. Progress in diagnosis and treatment of metabolic syndrome[J]. Modern Preventive Medicine,2010,37(16):3200−3201.]

    WU Tieliang. Progress in diagnosis and treatment of metabolic syndrome[J]. Modern Preventive Medicine, 2010, 37(16): 3200−3201.
    [47]
    夏燕萍, 俞茂华, 陈蔚, 等. 茶多酚改善代谢综合症大鼠糖脂代谢的作用机制研究[J]. 中国现代医学杂志,2016,26(17):1−6. [XIA Yanping, YU Maohua, CHEN Wei, et al. Effect of tea polyphenols on improving insulin resistance of rats with metabolic syndrome[J]. China Journal of Modern Medicine,2016,26(17):1−6.] doi: 10.3969/j.issn.1005-8982.2016.17.001

    XIA Yanping, YU Maohua, CHEN Wei, et al. Effect of tea polyphenols on improving insulin resistance of rats with metabolic syndrome[J]. China Journal of Modern Medicine, 2016, 26(17): 1−6. doi: 10.3969/j.issn.1005-8982.2016.17.001
    [48]
    XU L L, LI W W, CHEN Z Q, et al. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells[J]. International Journal of Biological Macromolecules,2019,125:605−611. doi: 10.1016/j.ijbiomac.2018.12.064
    [49]
    杨宽, 钱卫东, 秦蓓. 茶多酚对高脂血症大鼠血脂代谢和肝组织MDA\T-SOD含量的影响[J]. 中国油脂,2019,44(1):70−73,96. [YANG Kuan, QIAN Weidong, QIN Bei. Effects of tea polyphenols on blood lipid metabolism and contents of MDA and T-SOD in liver tissue of hyperlipidemia rat[J]. China Oils and Fats,2019,44(1):70−73,96.] doi: 10.3969/j.issn.1003-7969.2019.01.016

    YANG Kuan, QIAN Weidong, QIN Bei. Effects of tea polyphenols on blood lipid metabolism and contents of MDA and T-SOD in liver tissue of hyperlipidemia rat[J]. China Oils and Fats, 2019, 44(1): 70−73,96. doi: 10.3969/j.issn.1003-7969.2019.01.016
    [50]
    CHEN R H, LAI X F, XIANG L M, et al. Aged green tea reduces high-fat diet-induced fat accumulation and inflammation via activating the AMP-activated protein kinase signaling pathway[J]. Food & Nutrition Research,2022,66:1−12.
    [51]
    MARIO D L F M, MARÍA D L F F, MARTA R C, et al. Supplementation with two new standardized tea extracts prevents the development of hypertension in mice with metabolic syndrome[J]. Antioxidants,2022,11(8):1573−1590. doi: 10.3390/antiox11081573
    [52]
    YANG C S, ZHANG J, ZHANG L, et al. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea[J]. Molecular Nutrition & Food Research,2016,60(1):160−174.
    [53]
    CHENG J, TAN Y, ZHOU J, et al. Green tea polyphenols ameliorate metabolic abnormalities and insulin resistance by enhancing insulin signalling in skeletal muscle of Zucker fatty rats[J]. Clinical Science (London, England:1979),2020,134(10):1167−1180. doi: 10.1042/CS20200107
    [54]
    KAN L, CAPUANO E, FOGLIANO V, et al. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell[J]. Food chemistry,2021,361:1−8.
    [55]
    王晓芹, 邓小燕, 于晓斌, 等. 茶多酚通过降脂/抗炎/抗氧化以及调控TGF-β/Smad信号通路缓解2型糖尿病[J]. 中药药理与临床,2018,34(3):46−50. [WANG Xiaoqin, DENG Xiaoyan, YU Xiaobin, et al. Green tea polyphenols ameliorates type 2 diabetes mellitus through lipid-lowering, anti-oxidation, anti-inflammation and regulating TGF-β/Smad signal pathway[J]. Pharmacology and Clinics of Chinese Materia,2018,34(3):46−50.]

    WANG Xiaoqin, DENG Xiaoyan, YU Xiaobin, et al. Green tea polyphenols ameliorates type 2 diabetes mellitus through lipid-lowering, anti-oxidation, anti-inflammation and regulating TGF-β/Smad signal pathway[J]. Pharmacology and Clinics of Chinese Materia, 2018, 34(3): 46−50.
    [56]
    ZHU T T, LI M H, ZHU M L, et al. Epigallocatechin-3-gallate alleviates type 2 diabetes mellitus via β-cell function improvement and insulin resistance reduction[J]. Iranian Journal of Basic Medical Sciences,2022,25(4):483−488.
    [57]
    WEN J J, LI M Z, CHEN C H, et al. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota[J]. Food Chemistry,2023,404:1−13.
    [58]
    LI A, WANG J, KOU R X, et al. Polyphenol-rich oolong tea alleviates obesity and modulates gut microbiota in high-fat diet-fed mice[J]. Frontiers in Nutrition,2022,9:1−14.
    [59]
    WU G H, CHENG H J, GUO H M, et al. Tea polyphenol EGCG ameliorates obesity-related complications by regulating lipidomic pathway in leptin receptor knockout rats[J]. The Journal of Nutritional Biochemistry,2023,118:1−18.
    [60]
    段宙位, 李鹏, 何艾, 等. 不同方法提取的鹧鸪茶多酚抗氧化及抑菌性比较[J]. 热带作物学报,2021,42(3):847−853. [DUAN Zhouwei, LI Peng, HE Ai, et al. Antioxidant and bacteriostasis activity of flavanoid from Mallotus oblongifolius by different extraction methods[J]. Chinese Journal of Tropical Crops,2021,42(3):847−853.] doi: 10.3969/j.issn.1000-2561.2021.03.033

    DUAN Zhouwei, LI Peng, HE Ai, et al. Antioxidant and bacteriostasis activity of flavanoid from Mallotus oblongifolius by different extraction methods[J]. Chinese Journal of Tropical Crops, 2021, 42(3): 847−853. doi: 10.3969/j.issn.1000-2561.2021.03.033
    [61]
    李峰, 邓江丽, 陈雯雯, 等. 儿茶素对野油菜黄单胞菌的抑菌作用[J]. 云南农业大学学报(自然科学),2021,36(2):215−222. [LI Feng, DENG Jiangli, CHEN Wenwen, et al. Inhibitory effect of catechin against Xanthomonas campestris[J]. Journal of Yunnan Agricultural University (Natural Science),2021,36(2):215−222.]

    LI Feng, DENG Jiangli, CHEN Wenwen, et al. Inhibitory effect of catechin against Xanthomonas campestris[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(2): 215−222.
    [62]
    陈琛, 徐尤美, 蔺蓓蓓, 等. 秦岭绿茶茶多酚抑菌活性及其机理研究[J]. 四川农业大学学报,2019,37(6):821−827. [CHEN Chen, XU Youmei, LIN Beibei, et al. Antibacterial activity and mechanism of green tea polyphenols from Qinling Mountains[J]. Journal of Sichuan Agricultural University,2019,37(6):821−827.]

    CHEN Chen, XU Youmei, LIN Beibei, et al. Antibacterial activity and mechanism of green tea polyphenols from Qinling Mountains[J]. Journal of Sichuan Agricultural University, 2019, 37(6): 821−827.
    [63]
    毕可, 刘月, 杨杰, 等. 茶多酚结合热处理对枯草杆菌芽孢细胞结构与能量代谢的影响[J]. 中国食品学报,2023,23(3):138−146. [BI Ke, LIU Yue, YANG Jie, et al. Effect of tea polyphenols combined with heat treatment on the cellular structure and energy metabolism of Bacillus subtilis[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(3):138−146.]

    BI Ke, LIU Yue, YANG Jie, et al. Effect of tea polyphenols combined with heat treatment on the cellular structure and energy metabolism of Bacillus subtilis[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(3): 138−146.
    [64]
    WANG W, CHEN Y F, WEI Z F, et al. Microemulsion of ginnamon essential oil formulated with tea polyphenols, gallic acid, and tween 80:Antimicrobial properties, stability and mechanism of action[J]. Microorganisms,2022,11(1):2−17. doi: 10.3390/microorganisms11010002
    [65]
    冉强三, 金纪玥, 冯萃敏, 等. EGCG-Cu对水中大肠杆菌的杀灭性能研究[J]. 应用化工,2021,50(5):1227−1230. [RAN Qiangsan, JIN Jiyue, FENG Cuimin, et al. Effect of tea polyphenols combined with heat treatment on the cellular structure and energy metabolism of Bacillus subtilis[J]. Applied Chemical Industry,2021,50(5):1227−1230.] doi: 10.3969/j.issn.1671-3206.2021.05.015

    RAN Qiangsan, JIN Jiyue, FENG Cuimin, et al. Effect of tea polyphenols combined with heat treatment on the cellular structure and energy metabolism of Bacillus subtilis[J]. Applied Chemical Industry, 2021, 50(5): 1227−1230. doi: 10.3969/j.issn.1671-3206.2021.05.015
    [66]
    ZHAO Y Q, JIA W B, LIAO S Y, et al. Dietary assessment of ochratoxin A in Chinese dark tea and inhibitory effects of tea polyphenols on ochratoxigenic Aspergillus niger[J]. Frontiers in Microbiology,2022,13:1−11.
    [67]
    GAO T, YE F, TAN Y Q, et al. Metabolomics and proteomics analyses revealed mechanistic insights on the antimicrobial activity of epigallocatechin gallate against Streptococcus suis[J]. Frontiers in Cellular and Infection Microbiology,2022,12:1358−1372.
    [68]
    钱丽红. 几种天然保鲜剂的抑菌机理[D]. 上海:上海海洋大学, 2010. [QIAN Lihong. Antimicrobial mechanisms of several natural preservatives[D]. Shanghai:Shanghai Ocean University, 2010.]

    QIAN Lihong. Antimicrobial mechanisms of several natural preservatives[D]. Shanghai: Shanghai Ocean University, 2010.
    [69]
    江福林, 卢云浩, 何强. 茶多酚对植物乳杆菌\金黄色葡萄球菌和大肠杆菌生长的双向调节作用[J]. 食品工业科技,2023,44(22):152−159. [JIANG Fulin, LU Yunhao, HE Qiang. Dual-directional regulation of tea polyphenols on the growth of Lactobacillus plantarum, Staphylococcus aureus, and Escherichia coli[J]. Science and Technology of Food Industry,2023,44(22):152−159.]

    JIANG Fulin, LU Yunhao, HE Qiang. Dual-directional regulation of tea polyphenols on the growth of Lactobacillus plantarum, Staphylococcus aureus, and Escherichia coli[J]. Science and Technology of Food Industry, 2023, 44(22): 152−159.
    [70]
    JIA Y Y, MAO Q Y, YANG J Y, et al. (-)-Epigallocatechin-3-gallate protects human skin fibroblasts from ultraviolet a induced photoaging[J]. Clin Cosmet Investig Dermatol,2023,16:149−159. doi: 10.2147/CCID.S398547
    [71]
    陈彩云, 纪雨含, 李宁, 等. 紫薯花青素调节p53-p21Waf1/Cip1信号通路对辐射致造血干/祖细胞衰老的保护[J/OL]. 食品科学:1−10 [2023-08-25]. http://kns.cnki.net/kcms/detail/11.2206.ts.20221208.0801.001.html. [CHEN Caiyun, JI Yuhan, LI Ning, et al. Protective effect of solanum tuberdsm anthocyanin against radiation-induced hematopoietic stem/progenitor cell senescence via p53-p21Waf1/Cip1 signaling pathway[J/OL]. Food Science: 1−10 [2023-08-25]. http://kns.cnki.net/kcms/detail/11.2206.ts.20221208.0801.001.html.]

    CHEN Caiyun, JI Yuhan, LI Ning, et al. Protective effect of solanum tuberdsm anthocyanin against radiation-induced hematopoietic stem/progenitor cell senescence via p53-p21Waf1/Cip1 signaling pathway[J/OL]. Food Science: 1−10 [2023-08-25]. http://kns.cnki.net/kcms/detail/11.2206.ts.20221208.0801.001.html.
    [72]
    李彤, 卢浩, 陈际名, 等. 表没食子儿茶素没食子酸酯对紫外线损伤小鼠皮肤的保护作用[J]. 中国皮肤性病学杂志,2016,30(11):1107−1111. [LI Tong, LU Hao, CHEN Jiming, et al. Effect of EGCG on protection of mice skin injury induced by ultraviolet A and ultraviolet B[J]. The Chinese Journal of Dermatovenereology,2016,30(11):1107−1111.]

    LI Tong, LU Hao, CHEN Jiming, et al. Effect of EGCG on protection of mice skin injury induced by ultraviolet A and ultraviolet B[J]. The Chinese Journal of Dermatovenereology, 2016, 30(11): 1107−1111.
    [73]
    董丽红, 罗牡康, 张名位, 等. 荔枝果壳原花青素对中波紫外线诱导HaCaT细胞氧化损伤的保护作用[J]. 食品科学,2022,43(21):233−240. [DONG Lihong, LUO Mukang, ZHANG Mingwei, et al. Protective effect of procyanidins from litchi pericarp on ultraviolet B-induced oxidative damage in HaCaT cells[J]. Food Science,2022,43(21):233−240.]

    DONG Lihong, LUO Mukang, ZHANG Mingwei, et al. Protective effect of procyanidins from litchi pericarp on ultraviolet B-induced oxidative damage in HaCaT cells[J]. Food Science, 2022, 43(21): 233−240.
    [74]
    陈晨. 电离辐射诱发miRNA表达谱改变及EGCG辐射防护分子机制的初步研究[D]. 郑州:郑州大学, 2017. [CHEN Chen. Ionizing radiation induced changes of miRNA expression profile and the preliminary study on antiradiation effect of epigallocatechin gallate[D]. Zhengzhou:Zhengzhou University, 2017.]

    CHEN Chen. Ionizing radiation induced changes of miRNA expression profile and the preliminary study on antiradiation effect of epigallocatechin gallate[D]. Zhengzhou: Zhengzhou University, 2017.
    [75]
    XIE L W, CAI S, ZHAO T S, et al. Green tea derivative (−)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo[J]. Free Radical Biology and Medicine,2020,161:175−186. doi: 10.1016/j.freeradbiomed.2020.10.012
    [76]
    HAN X D, ZHANG J L, XUE X L, et al. Theaflavin ameliorates ionizing radiation-induced hematopoietic injury via the NRF2 pathway[J]. Free Radical Biology and Medicine,2017,113:59−70. doi: 10.1016/j.freeradbiomed.2017.09.014
    [77]
    KIM M, KIM S Y, LEE H W, et al. Inhibition of influenza virus internalization by (−)-epigallocatechin-3-gallate[J]. Antiviral Research,2013,100(2):460−472. doi: 10.1016/j.antiviral.2013.08.002
    [78]
    MULLER P, DOWNARD K M. Catechin inhibition of influenza neuraminidase and its molecular basis with mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2015,111:222−230. doi: 10.1016/j.jpba.2015.03.014
    [79]
    HE M J, CHU T H, WANG Z T, et al. Inhibition of macrophages inflammasome activation via autophagic degradation of HMGB1 by EGCG ameliorates HBV-induced liver injury and fibrosis[J]. Frontiers in Immunology,2023,14:1−16.
    [80]
    JIA Q, YANG R, MEHMOOD S, et al. Epigallocatechin-3-gallate attenuates myocardial fibrosis in diabetic rats by activating autophagy[J]. Experimental Biology and Medicine (Maywood, N.J.),2022,247(17):1591−1600. doi: 10.1177/15353702221110646
    [81]
    GUI L M, WANG F X, HU X K, et al. Epigallocatechin gallate protects diabetes mellitus rats complicated with cardiomyopathy through TGF-β1/JNK signaling pathway[J]. Current Pharmaceutical Design,2022,28(33):2758−2770. doi: 10.2174/1381612828666220902115437
    [82]
    MENG J, CHEN Y, WANG J, et al. EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway[J]. Annals of Translational Medicine,2020,8(5):200−211. doi: 10.21037/atm.2020.01.92
    [83]
    XU F, WU H, XIE L H, et al. Epigallocatechin-3-gallate alleviates gestational stress-induced postpartum anxiety and depression-like behaviors in mice by downregulating semaphorin3A and promoting GSK3β phosphorylation in the hippocampus[J]. Frontiers in Molecular Neuroscience,2023,15:1−12.
    [84]
    NAN S J, WANG P, ZHANG Y Z, et al. Epigallocatechin-3-gallate provides protection against Alzheimers disease induced learning and memory impairments in rats[J]. Molecular Nutrition & Food Research,2021,15:2013−2024.
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1496) PDF downloads (120) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return