Citation: | CHEN Zhiyun, LI Jie, FENG Yu, et al. Research Progress on Bioactivity and Mechanism of Tea Polyphenols[J]. Science and Technology of Food Industry, 2024, 45(13): 333−341. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070168. |
[1] |
潘蓉, 赵学尽, 杜建斌, 等. 2021年中国茶叶进出口贸易情况简析[J]. 中国茶叶,2022,44(3):25−30. [PAN Rong, ZHAO Xuejin, DU Jianbin, et al. A brief analysis on tea import and export trade in China during 2021[J]. China Tea,2022,44(3):25−30.]
PAN Rong, ZHAO Xuejin, DU Jianbin, et al. A brief analysis on tea import and export trade in China during 2021[J]. China Tea, 2022, 44(3): 25−30.
|
[2] |
潘蓉, 余玉庚, 刘兰, 等. 2022年中国茶叶进出口贸易结构简析[J]. 中国茶叶,2023,45(4):31−35. [PAN Rong, YU Yugeng, LIU Lan, et al. A brief analysis on tea Import and export trade in China during 2022[J]. China Tea,2023,45(4):31−35.]
PAN Rong, YU Yugeng, LIU Lan, et al. A brief analysis on tea Import and export trade in China during 2022[J]. China Tea, 2023, 45(4): 31−35.
|
[3] |
YAN Z M, ZHONG Y Z, DUAN Y H, et al. Antioxidant mechanism of tea polyphenols and its impact on health benefits[J]. Animal Nutrition,2020,2(6):115−123.
|
[4] |
HELIEH O S. Chronic inflammatory diseases and green tea polyphenols[J]. Nutrients,2017,6(9):561−574.
|
[5] |
LUZ J R D, LÓPEZ J A, FERREIRA M P, et al. In vitro antithrombotic, antitumor and antiangiogenic activities of green tea polyphenols and its main constituent epigallocatechin-3-gallate[J]. Processes,2022,11(1):76−81. doi: 10.3390/pr11010076
|
[6] |
WAN C P, OU Y J, LI M X, et al. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications:Recent advances[J]. Critical Reviews in Food Science and Nutrition,2022,19:21−29.
|
[7] |
高婷, 袁芳艳, 刘泽文, 等. 茶多酚的抗菌抗病毒作用[J]. 动物医学进展,2022,43(4):107−111. [GAO Ting, YUAN Fangyan, LIU Zewen, et al. Antibacterial and antiviral effects of tea polyphenols[J]. Progress in Veterinary Medicine,2022,43(4):107−111.] doi: 10.3969/j.issn.1007-5038.2022.04.020
GAO Ting, YUAN Fangyan, LIU Zewen, et al. Antibacterial and antiviral effects of tea polyphenols[J]. Progress in Veterinary Medicine, 2022, 43(4): 107−111. doi: 10.3969/j.issn.1007-5038.2022.04.020
|
[8] |
张文娟, 刘雪娜, 李丽维, 等. 茶多酚生理机制及其保健食品研发进展[J]. 食品研究与开发,2023,44(5):217−224. [ZHANG Wenjuan, LIU Xuena, LI Liwei, et al. Physiological mechanism of tea polyphenols and development of their health food[J]. Food Research and Development,2023,44(5):217−224.]
ZHANG Wenjuan, LIU Xuena, LI Liwei, et al. Physiological mechanism of tea polyphenols and development of their health food[J]. Food Research and Development, 2023, 44(5): 217−224.
|
[9] |
郑艳超, 於天, 郑志刚, 等. 茶黄素生物活性与开发应用的研究进展[J]. 中草药,2020,51(23):6095−6101. [ZHENG Yanchao, YU Tian, ZHENG Zhigang, et al. Research progress on biological activity and application development of theaflavins[J]. Chinese Traditional and Herbal Drugs,2020,51(23):6095−6101.]
ZHENG Yanchao, YU Tian, ZHENG Zhigang, et al. Research progress on biological activity and application development of theaflavins[J]. Chinese Traditional and Herbal Drugs, 2020, 51(23): 6095−6101.
|
[10] |
宛晓春. 茶叶生物化学[M]. 第三版. 北京:中国农业出版社, 2003:8−20. [WAN Xiaochun. Tea biochemistry[M]. The third edition. Beijing:China Agriculture Press, 2003:8−20.]
WAN Xiaochun. Tea biochemistry[M]. The third edition. Beijing: China Agriculture Press, 2003: 8−20.
|
[11] |
XING L J, ZHANG H, QI R L, et al. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols[J]. Journal of Agricultural and Food Chemistry,2019,67(4):1029−1043. doi: 10.1021/acs.jafc.8b06146
|
[12] |
游小妹, 韩奥迪, 李鑫磊, 等. 黄化茶树新品种‘茗冠’多茶类品质差异分析[J]. 食品工业科技,2023,44(23):287−297. [YOU Xiaomei, HAN Aodi, LI Xinlei, et al. Analysis of metabolites difference of the albino tea tree variety 'Mingguan'[J]. Science and Technology of Food Industry,2023,44(23):287−297.]
YOU Xiaomei, HAN Aodi, LI Xinlei, et al. Analysis of metabolites difference of the albino tea tree variety 'Mingguan'[J]. Science and Technology of Food Industry, 2023, 44(23): 287−297.
|
[13] |
朱婉, 吴颖, 黎晓湘, 等. 基于广泛靶向代谢组学结合高效液相色谱法分析‘紫娟’和‘迎霜’茶树花代谢产物差异[J]. 浙江大学学报(农业与生命科学版),2023,49(6):825−839. [ZHU Wan, WU Ying, LI Xiaoxiang, et al. Analysis of differential metabolites between 'Zijuan' and 'Yingshuang' tea flowers based on widely targeted metabolomics combined with high performance liquid chromatography[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2023,49(6):825−839.]
ZHU Wan, WU Ying, LI Xiaoxiang, et al. Analysis of differential metabolites between 'Zijuan' and 'Yingshuang' tea flowers based on widely targeted metabolomics combined with high performance liquid chromatography[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 825−839.
|
[14] |
龚雪蛟, 秦琳, 黄颖博, 等. 茶园施肥模式对茶叶黄酮类及糖苷类代谢物含量的影响[J]. 植物营养与肥料学报,2022,28(10):1867−1883. [GONG Xuejiao, QIN Lin, HUANG Yingbo, et al. Effects of fertilization patterns on flavonoids and glycoside metabolites in tea[J]. Journal of Plant Nutrition and Fertilizers,2022,28(10):1867−1883.]
GONG Xuejiao, QIN Lin, HUANG Yingbo, et al. Effects of fertilization patterns on flavonoids and glycoside metabolites in tea[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1867−1883.
|
[15] |
赵熙, 赵洋, 杨培迪, 等. 茶树种质资源汝城白毛茶的代谢物差异研究[J]. 热带作物学报,2023,44(1):83−91. [ZHAO Xi, ZHAO Yang, YANG Peidi, et al. Metabonomic analysis of metabolic differences in rucheng baimaocha tea germplasm[J]. Chinese Journal of Tropical Crops,2023,44(1):83−91.]
ZHAO Xi, ZHAO Yang, YANG Peidi, et al. Metabonomic analysis of metabolic differences in rucheng baimaocha tea germplasm[J]. Chinese Journal of Tropical Crops, 2023, 44(1): 83−91.
|
[16] |
ITO A, YANASE E. Study into the chemical changes of tea leaf polyphenols during Japanese black tea processing[J]. Food Research International (Ottawa, Ont.),2022,160:1−35.
|
[17] |
WANG J P, JIA R, CELI P, et al. Green tea polyphenol epigallocatechin-3-gallate improves the antioxidant capacity of eggs[J]. Food & Function,2020,11(1):534−543.
|
[18] |
JAGDEO J, KURTTI A, HERNANDEZ S, et al. Novel vitamin C and E and green tea polyphenols combination serum improves photoaged facial skin[J]. Journal of Drugs in Dermatology:JDD,2021,20(9):996−1003. doi: 10.36849/JDD.5818
|
[19] |
YIN B, LIAN R, LI Z, et al. Tea polyphenols enhanced the antioxidant capacity and induced hsps to relieve heat stress injury[J]. Oxidative Medicine and Cellular Longevity,2021,2021:1−13.
|
[20] |
YU J, LI W, XIAO X, et al. (−)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro[J]. Food & Function,2021,12(18):8715−8727.
|
[21] |
XU R, ZHU M R, CAO J W, et al. Tea polyphenols protect the mammary gland of dairy cows by enhancing antioxidant capacity and regulating the TGF-β1/p38/JNK pathway[J]. Metabolites,2022,12(11):1−13.
|
[22] |
HUANG X Y, CHU Y, REN H, et al. Antioxidation function of EGCG by activating Nrf2/HO-1 pathway in mice with coronary heart disease[J]. Contrast Media & Molecular Imaging,2022,2022:1−8.
|
[23] |
李佳, 安苗青, 吕晨豪, 等. 重组人源胶原蛋白对D-半乳糖致衰老小鼠的抗衰老作用及机制研究[J]. 食品工业科技,2023,44(10):343−352. [LI Jia, AN Miaoqing, LÜ Chenhao, et al. Anti-aging effects and mechanisms of recombinant human-derived collagen on aging mouse induced by d-galactose[J]. Science and Technology of Food Industry,2023,44(10):343−352.]
LI Jia, AN Miaoqing, LÜ Chenhao, et al. Anti-aging effects and mechanisms of recombinant human-derived collagen on aging mouse induced by d-galactose[J]. Science and Technology of Food Industry, 2023, 44(10): 343−352.
|
[24] |
CHEN J M, LI Y F, ZHU Q Q, et al. Anti-skin-aging effect of epigallocatechin gallate by regulating epidermal growth factor receptor pathway on aging mouse model induced by D-galactose[J]. Mechanisms of Ageing and Development,2017,164:1−7. doi: 10.1016/j.mad.2017.03.007
|
[25] |
LI S Z, WU H X, TOLLEFSBOL T O. Combined broccoli sprouts and green tea polyphenols contribute to the prevention of estrogen receptor-negative mammary cancer via cell cycle arrest and inducing apoptosis in HER2/neu mice[J]. The Journal of Nutrition,2021,151(1):73−84. doi: 10.1093/jn/nxaa315
|
[26] |
ZHAO X, SHI X, LIU Q Q, et al. Tea polyphenols alleviates acetochlor-induced apoptosis and necroptosis via ROS/MAPK/NF-κB signaling in Ctenopharyngodon idellus kidney cells[J]. Aquatic Toxicology,2022,246:1−13.
|
[27] |
PARANGI S, O'REILLY M, CHRISTOFORI G, et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth[J]. Proceedings of the National Academy of Sciences-PNAS,1996,93(5):2002−2007. doi: 10.1073/pnas.93.5.2002
|
[28] |
TRISHA A T, SHAKIL M H, TALUKDAR S, et al. Tea polyphenols and their preventive measures against cancer:Current trends and directions[J]. Foods,2022,11(21):3349−3368. doi: 10.3390/foods11213349
|
[29] |
INOUE M, ROBIEN K, WANG R, et al. Green tea intake, MTHFR/TYMS genotype and breast cancer risk:The Singapore Chinese health study[J]. Carcinogenesis,2008,29(10):1967−1972. doi: 10.1093/carcin/bgn177
|
[30] |
FRITZ H, SEELY D, KENNEDY D A, et al. Green tea and lung cancer:A systematic review[J]. Integrative Cancer Therapies,2013,12(1):7−24. doi: 10.1177/1534735412442378
|
[31] |
WOLF P, SCHOENIGER A, EDLICH F. Edlich, pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochimica et biophysica acta[J]. Molecular Cell Research,2022,21(11):1−20.
|
[32] |
YIN Z F, LI J, KANG L, et al. Epigallocatechin-3-gallate induces autophagy-related apoptosis associated with LC3B II and Beclin expression of bladder cancer cells[J]. Journal of Food Biochemistry,2021,45(6):e13758−e13765.
|
[33] |
KANG Q, ZHANG X, CAO N, et al. EGCG enhances cancer cells sensitivity under Coγ radiation based on miR-34a/Sirt1/p53[J]. Food and Chemical Toxicology,2019,133:1−9.
|
[34] |
LA X, ZHANG L, LI Z, et al. (-)-Epigallocatechin gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 pathway[J]. Journal of Agricultural and Food Chemistry,2019,67(9):2510−2518. doi: 10.1021/acs.jafc.8b06665
|
[35] |
BAE J, KUMAZOE M, SU J, et al. The anti-cancer effect of epigallocatechin-3-O-gallate against multiple myeloma cells is potentiated by 5,7-dimethoxyflavone[J]. FEBS Open Bio,2023,13(11):2147−2156. doi: 10.1002/2211-5463.13708
|
[36] |
NANDI S K, PRADHAN A, DAS B, et al. Kaempferol attenuates viability of ex-vivo cultured post-NACT breast tumor explants through downregulation of p53 induced stemness, inflammation and apoptosis evasion pathways[J]. Pathology-Research and Practice,2022,237:154029. doi: 10.1016/j.prp.2022.154029
|
[37] |
CHEN L, GUO X, HU Y, et al. Epigallocatechin-3-gallate sensitises multidrug-resistant oral carcinoma xenografts to vincristine sulfate[J]. FEBS Open Bio,2020,10(7):1403−1413. doi: 10.1002/2211-5463.12905
|
[38] |
WANG J, MAN G C W, CHAN T H, et al. A prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer[J]. Cancer Letters,2018,412:10−20. doi: 10.1016/j.canlet.2017.09.054
|
[39] |
KJÆR I M, OLSEN D A, BRANDSLUND I, et al. Dysregulated EGFR pathway in serum in early-stage breast cancer patients:A case control stud[J]. Scientific Reports,2020,10(1):6714−6122. doi: 10.1038/s41598-020-63375-z
|
[40] |
MINNELLI C, CIANFRUGLIA L, LAUDADIO E, et al. Effect of epigallocatechin-3-gallate on EGFR signaling and migration in non-small cell lung cancer[J]. International Journal of Molecular Sciences,2021,22(21):1−14.
|
[41] |
WENG L X, WANG G H, YAO H, et al. Epigallocatechin gallate inhibits the growth of salivary adenoid cystic carcinoma cells via the EGFR/Erk signal transduction pathway and the mitochondria apoptosis pathway[J]. Neoplasma,2017,64(4):563−570. doi: 10.4149/neo_2017_410
|
[42] |
XIE L, YI J, SONG Y J, et al. Suppression of GOLM1 by EGCG through HGF/HGFR/AKT/GSK-3β/β-catenin/c-Myc signaling pathway inhibits cell migration of MDA-MB-23[J]. Food and Chemical Toxicology,2021,157:1−10.
|
[43] |
KAI F B, DRAIN A P, WEAVER V M. The extracellular matrix modulates the metastatic journey[J]. Developmental Cell,2019,49(3):332−345. doi: 10.1016/j.devcel.2019.03.026
|
[44] |
LUO K W, WEI C, LUNG W Y, et al. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9[J]. The Journal of Nutritional Biochemistry,2017,41:56−64. doi: 10.1016/j.jnutbio.2016.12.004
|
[45] |
BRETAUDEAU C, BAUD S, DUPONT-DESHORGUE A, et al. AG-9, an Elastin-derived peptide, increases in vitro oral tongue carcinoma cell invasion, through an increase in MMP-2 secretion and MT1-MMP expression, in a RPSA-dependent manner[J]. Biomolecules,2020,11(1):1−14. doi: 10.3390/biom11010001
|
[46] |
吴铁良. 代谢综合症诊治进展[J]. 现代预防医学,2010,37(16):3200−3201. [WU Tieliang. Progress in diagnosis and treatment of metabolic syndrome[J]. Modern Preventive Medicine,2010,37(16):3200−3201.]
WU Tieliang. Progress in diagnosis and treatment of metabolic syndrome[J]. Modern Preventive Medicine, 2010, 37(16): 3200−3201.
|
[47] |
夏燕萍, 俞茂华, 陈蔚, 等. 茶多酚改善代谢综合症大鼠糖脂代谢的作用机制研究[J]. 中国现代医学杂志,2016,26(17):1−6. [XIA Yanping, YU Maohua, CHEN Wei, et al. Effect of tea polyphenols on improving insulin resistance of rats with metabolic syndrome[J]. China Journal of Modern Medicine,2016,26(17):1−6.] doi: 10.3969/j.issn.1005-8982.2016.17.001
XIA Yanping, YU Maohua, CHEN Wei, et al. Effect of tea polyphenols on improving insulin resistance of rats with metabolic syndrome[J]. China Journal of Modern Medicine, 2016, 26(17): 1−6. doi: 10.3969/j.issn.1005-8982.2016.17.001
|
[48] |
XU L L, LI W W, CHEN Z Q, et al. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells[J]. International Journal of Biological Macromolecules,2019,125:605−611. doi: 10.1016/j.ijbiomac.2018.12.064
|
[49] |
杨宽, 钱卫东, 秦蓓. 茶多酚对高脂血症大鼠血脂代谢和肝组织MDA\T-SOD含量的影响[J]. 中国油脂,2019,44(1):70−73,96. [YANG Kuan, QIAN Weidong, QIN Bei. Effects of tea polyphenols on blood lipid metabolism and contents of MDA and T-SOD in liver tissue of hyperlipidemia rat[J]. China Oils and Fats,2019,44(1):70−73,96.] doi: 10.3969/j.issn.1003-7969.2019.01.016
YANG Kuan, QIAN Weidong, QIN Bei. Effects of tea polyphenols on blood lipid metabolism and contents of MDA and T-SOD in liver tissue of hyperlipidemia rat[J]. China Oils and Fats, 2019, 44(1): 70−73,96. doi: 10.3969/j.issn.1003-7969.2019.01.016
|
[50] |
CHEN R H, LAI X F, XIANG L M, et al. Aged green tea reduces high-fat diet-induced fat accumulation and inflammation via activating the AMP-activated protein kinase signaling pathway[J]. Food & Nutrition Research,2022,66:1−12.
|
[51] |
MARIO D L F M, MARÍA D L F F, MARTA R C, et al. Supplementation with two new standardized tea extracts prevents the development of hypertension in mice with metabolic syndrome[J]. Antioxidants,2022,11(8):1573−1590. doi: 10.3390/antiox11081573
|
[52] |
YANG C S, ZHANG J, ZHANG L, et al. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea[J]. Molecular Nutrition & Food Research,2016,60(1):160−174.
|
[53] |
CHENG J, TAN Y, ZHOU J, et al. Green tea polyphenols ameliorate metabolic abnormalities and insulin resistance by enhancing insulin signalling in skeletal muscle of Zucker fatty rats[J]. Clinical Science (London, England:1979),2020,134(10):1167−1180. doi: 10.1042/CS20200107
|
[54] |
KAN L, CAPUANO E, FOGLIANO V, et al. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell[J]. Food chemistry,2021,361:1−8.
|
[55] |
王晓芹, 邓小燕, 于晓斌, 等. 茶多酚通过降脂/抗炎/抗氧化以及调控TGF-β/Smad信号通路缓解2型糖尿病[J]. 中药药理与临床,2018,34(3):46−50. [WANG Xiaoqin, DENG Xiaoyan, YU Xiaobin, et al. Green tea polyphenols ameliorates type 2 diabetes mellitus through lipid-lowering, anti-oxidation, anti-inflammation and regulating TGF-β/Smad signal pathway[J]. Pharmacology and Clinics of Chinese Materia,2018,34(3):46−50.]
WANG Xiaoqin, DENG Xiaoyan, YU Xiaobin, et al. Green tea polyphenols ameliorates type 2 diabetes mellitus through lipid-lowering, anti-oxidation, anti-inflammation and regulating TGF-β/Smad signal pathway[J]. Pharmacology and Clinics of Chinese Materia, 2018, 34(3): 46−50.
|
[56] |
ZHU T T, LI M H, ZHU M L, et al. Epigallocatechin-3-gallate alleviates type 2 diabetes mellitus via β-cell function improvement and insulin resistance reduction[J]. Iranian Journal of Basic Medical Sciences,2022,25(4):483−488.
|
[57] |
WEN J J, LI M Z, CHEN C H, et al. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota[J]. Food Chemistry,2023,404:1−13.
|
[58] |
LI A, WANG J, KOU R X, et al. Polyphenol-rich oolong tea alleviates obesity and modulates gut microbiota in high-fat diet-fed mice[J]. Frontiers in Nutrition,2022,9:1−14.
|
[59] |
WU G H, CHENG H J, GUO H M, et al. Tea polyphenol EGCG ameliorates obesity-related complications by regulating lipidomic pathway in leptin receptor knockout rats[J]. The Journal of Nutritional Biochemistry,2023,118:1−18.
|
[60] |
段宙位, 李鹏, 何艾, 等. 不同方法提取的鹧鸪茶多酚抗氧化及抑菌性比较[J]. 热带作物学报,2021,42(3):847−853. [DUAN Zhouwei, LI Peng, HE Ai, et al. Antioxidant and bacteriostasis activity of flavanoid from Mallotus oblongifolius by different extraction methods[J]. Chinese Journal of Tropical Crops,2021,42(3):847−853.] doi: 10.3969/j.issn.1000-2561.2021.03.033
DUAN Zhouwei, LI Peng, HE Ai, et al. Antioxidant and bacteriostasis activity of flavanoid from Mallotus oblongifolius by different extraction methods[J]. Chinese Journal of Tropical Crops, 2021, 42(3): 847−853. doi: 10.3969/j.issn.1000-2561.2021.03.033
|
[61] |
李峰, 邓江丽, 陈雯雯, 等. 儿茶素对野油菜黄单胞菌的抑菌作用[J]. 云南农业大学学报(自然科学),2021,36(2):215−222. [LI Feng, DENG Jiangli, CHEN Wenwen, et al. Inhibitory effect of catechin against Xanthomonas campestris[J]. Journal of Yunnan Agricultural University (Natural Science),2021,36(2):215−222.]
LI Feng, DENG Jiangli, CHEN Wenwen, et al. Inhibitory effect of catechin against Xanthomonas campestris[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(2): 215−222.
|
[62] |
陈琛, 徐尤美, 蔺蓓蓓, 等. 秦岭绿茶茶多酚抑菌活性及其机理研究[J]. 四川农业大学学报,2019,37(6):821−827. [CHEN Chen, XU Youmei, LIN Beibei, et al. Antibacterial activity and mechanism of green tea polyphenols from Qinling Mountains[J]. Journal of Sichuan Agricultural University,2019,37(6):821−827.]
CHEN Chen, XU Youmei, LIN Beibei, et al. Antibacterial activity and mechanism of green tea polyphenols from Qinling Mountains[J]. Journal of Sichuan Agricultural University, 2019, 37(6): 821−827.
|
[63] |
毕可, 刘月, 杨杰, 等. 茶多酚结合热处理对枯草杆菌芽孢细胞结构与能量代谢的影响[J]. 中国食品学报,2023,23(3):138−146. [BI Ke, LIU Yue, YANG Jie, et al. Effect of tea polyphenols combined with heat treatment on the cellular structure and energy metabolism of Bacillus subtilis[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(3):138−146.]
BI Ke, LIU Yue, YANG Jie, et al. Effect of tea polyphenols combined with heat treatment on the cellular structure and energy metabolism of Bacillus subtilis[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(3): 138−146.
|
[64] |
WANG W, CHEN Y F, WEI Z F, et al. Microemulsion of ginnamon essential oil formulated with tea polyphenols, gallic acid, and tween 80:Antimicrobial properties, stability and mechanism of action[J]. Microorganisms,2022,11(1):2−17. doi: 10.3390/microorganisms11010002
|
[65] |
冉强三, 金纪玥, 冯萃敏, 等. EGCG-Cu对水中大肠杆菌的杀灭性能研究[J]. 应用化工,2021,50(5):1227−1230. [RAN Qiangsan, JIN Jiyue, FENG Cuimin, et al. Effect of tea polyphenols combined with heat treatment on the cellular structure and energy metabolism of Bacillus subtilis[J]. Applied Chemical Industry,2021,50(5):1227−1230.] doi: 10.3969/j.issn.1671-3206.2021.05.015
RAN Qiangsan, JIN Jiyue, FENG Cuimin, et al. Effect of tea polyphenols combined with heat treatment on the cellular structure and energy metabolism of Bacillus subtilis[J]. Applied Chemical Industry, 2021, 50(5): 1227−1230. doi: 10.3969/j.issn.1671-3206.2021.05.015
|
[66] |
ZHAO Y Q, JIA W B, LIAO S Y, et al. Dietary assessment of ochratoxin A in Chinese dark tea and inhibitory effects of tea polyphenols on ochratoxigenic Aspergillus niger[J]. Frontiers in Microbiology,2022,13:1−11.
|
[67] |
GAO T, YE F, TAN Y Q, et al. Metabolomics and proteomics analyses revealed mechanistic insights on the antimicrobial activity of epigallocatechin gallate against Streptococcus suis[J]. Frontiers in Cellular and Infection Microbiology,2022,12:1358−1372.
|
[68] |
钱丽红. 几种天然保鲜剂的抑菌机理[D]. 上海:上海海洋大学, 2010. [QIAN Lihong. Antimicrobial mechanisms of several natural preservatives[D]. Shanghai:Shanghai Ocean University, 2010.]
QIAN Lihong. Antimicrobial mechanisms of several natural preservatives[D]. Shanghai: Shanghai Ocean University, 2010.
|
[69] |
江福林, 卢云浩, 何强. 茶多酚对植物乳杆菌\金黄色葡萄球菌和大肠杆菌生长的双向调节作用[J]. 食品工业科技,2023,44(22):152−159. [JIANG Fulin, LU Yunhao, HE Qiang. Dual-directional regulation of tea polyphenols on the growth of Lactobacillus plantarum, Staphylococcus aureus, and Escherichia coli[J]. Science and Technology of Food Industry,2023,44(22):152−159.]
JIANG Fulin, LU Yunhao, HE Qiang. Dual-directional regulation of tea polyphenols on the growth of Lactobacillus plantarum, Staphylococcus aureus, and Escherichia coli[J]. Science and Technology of Food Industry, 2023, 44(22): 152−159.
|
[70] |
JIA Y Y, MAO Q Y, YANG J Y, et al. (-)-Epigallocatechin-3-gallate protects human skin fibroblasts from ultraviolet a induced photoaging[J]. Clin Cosmet Investig Dermatol,2023,16:149−159. doi: 10.2147/CCID.S398547
|
[71] |
陈彩云, 纪雨含, 李宁, 等. 紫薯花青素调节p53-p21Waf1/Cip1信号通路对辐射致造血干/祖细胞衰老的保护[J/OL]. 食品科学:1−10 [2023-08-25]. http://kns.cnki.net/kcms/detail/11.2206.ts.20221208.0801.001.html. [CHEN Caiyun, JI Yuhan, LI Ning, et al. Protective effect of solanum tuberdsm anthocyanin against radiation-induced hematopoietic stem/progenitor cell senescence via p53-p21Waf1/Cip1 signaling pathway[J/OL]. Food Science: 1−10 [2023-08-25]. http://kns.cnki.net/kcms/detail/11.2206.ts.20221208.0801.001.html.]
CHEN Caiyun, JI Yuhan, LI Ning, et al. Protective effect of solanum tuberdsm anthocyanin against radiation-induced hematopoietic stem/progenitor cell senescence via p53-p21Waf1/Cip1 signaling pathway[J/OL]. Food Science: 1−10 [2023-08-25]. http://kns.cnki.net/kcms/detail/11.2206.ts.20221208.0801.001.html.
|
[72] |
李彤, 卢浩, 陈际名, 等. 表没食子儿茶素没食子酸酯对紫外线损伤小鼠皮肤的保护作用[J]. 中国皮肤性病学杂志,2016,30(11):1107−1111. [LI Tong, LU Hao, CHEN Jiming, et al. Effect of EGCG on protection of mice skin injury induced by ultraviolet A and ultraviolet B[J]. The Chinese Journal of Dermatovenereology,2016,30(11):1107−1111.]
LI Tong, LU Hao, CHEN Jiming, et al. Effect of EGCG on protection of mice skin injury induced by ultraviolet A and ultraviolet B[J]. The Chinese Journal of Dermatovenereology, 2016, 30(11): 1107−1111.
|
[73] |
董丽红, 罗牡康, 张名位, 等. 荔枝果壳原花青素对中波紫外线诱导HaCaT细胞氧化损伤的保护作用[J]. 食品科学,2022,43(21):233−240. [DONG Lihong, LUO Mukang, ZHANG Mingwei, et al. Protective effect of procyanidins from litchi pericarp on ultraviolet B-induced oxidative damage in HaCaT cells[J]. Food Science,2022,43(21):233−240.]
DONG Lihong, LUO Mukang, ZHANG Mingwei, et al. Protective effect of procyanidins from litchi pericarp on ultraviolet B-induced oxidative damage in HaCaT cells[J]. Food Science, 2022, 43(21): 233−240.
|
[74] |
陈晨. 电离辐射诱发miRNA表达谱改变及EGCG辐射防护分子机制的初步研究[D]. 郑州:郑州大学, 2017. [CHEN Chen. Ionizing radiation induced changes of miRNA expression profile and the preliminary study on antiradiation effect of epigallocatechin gallate[D]. Zhengzhou:Zhengzhou University, 2017.]
CHEN Chen. Ionizing radiation induced changes of miRNA expression profile and the preliminary study on antiradiation effect of epigallocatechin gallate[D]. Zhengzhou: Zhengzhou University, 2017.
|
[75] |
XIE L W, CAI S, ZHAO T S, et al. Green tea derivative (−)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo[J]. Free Radical Biology and Medicine,2020,161:175−186. doi: 10.1016/j.freeradbiomed.2020.10.012
|
[76] |
HAN X D, ZHANG J L, XUE X L, et al. Theaflavin ameliorates ionizing radiation-induced hematopoietic injury via the NRF2 pathway[J]. Free Radical Biology and Medicine,2017,113:59−70. doi: 10.1016/j.freeradbiomed.2017.09.014
|
[77] |
KIM M, KIM S Y, LEE H W, et al. Inhibition of influenza virus internalization by (−)-epigallocatechin-3-gallate[J]. Antiviral Research,2013,100(2):460−472. doi: 10.1016/j.antiviral.2013.08.002
|
[78] |
MULLER P, DOWNARD K M. Catechin inhibition of influenza neuraminidase and its molecular basis with mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2015,111:222−230. doi: 10.1016/j.jpba.2015.03.014
|
[79] |
HE M J, CHU T H, WANG Z T, et al. Inhibition of macrophages inflammasome activation via autophagic degradation of HMGB1 by EGCG ameliorates HBV-induced liver injury and fibrosis[J]. Frontiers in Immunology,2023,14:1−16.
|
[80] |
JIA Q, YANG R, MEHMOOD S, et al. Epigallocatechin-3-gallate attenuates myocardial fibrosis in diabetic rats by activating autophagy[J]. Experimental Biology and Medicine (Maywood, N.J.),2022,247(17):1591−1600. doi: 10.1177/15353702221110646
|
[81] |
GUI L M, WANG F X, HU X K, et al. Epigallocatechin gallate protects diabetes mellitus rats complicated with cardiomyopathy through TGF-β1/JNK signaling pathway[J]. Current Pharmaceutical Design,2022,28(33):2758−2770. doi: 10.2174/1381612828666220902115437
|
[82] |
MENG J, CHEN Y, WANG J, et al. EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway[J]. Annals of Translational Medicine,2020,8(5):200−211. doi: 10.21037/atm.2020.01.92
|
[83] |
XU F, WU H, XIE L H, et al. Epigallocatechin-3-gallate alleviates gestational stress-induced postpartum anxiety and depression-like behaviors in mice by downregulating semaphorin3A and promoting GSK3β phosphorylation in the hippocampus[J]. Frontiers in Molecular Neuroscience,2023,15:1−12.
|
[84] |
NAN S J, WANG P, ZHANG Y Z, et al. Epigallocatechin-3-gallate provides protection against Alzheimers disease induced learning and memory impairments in rats[J]. Molecular Nutrition & Food Research,2021,15:2013−2024.
|