Citation: | GU Shaohan, SUN Binghua, MA Sen, et al. Research Progress on the Mechanism of Grain Dietary Fiber Slowing Down Starch Digestibility[J]. Science and Technology of Food Industry, 2024, 45(13): 326−332. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070160. |
[1] |
TAYLOR J R N, EMMAMBUX M N, KRUGER J. Developments in modulating glycaemic response in starchy cereal foods[J]. Starch-Starke,2015,67(1-2):79−89. doi: 10.1002/star.201400192
|
[2] |
KOROMPOKIS K, VERBEKE K, DELCOUR J A. Structural factors governing starch digestion and glycemic responses and how they can be modified by enzymatic approaches:A review and a guide[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):5965−5991. doi: 10.1111/1541-4337.12847
|
[3] |
YE J, HU X, LUO S, et al. Effect of endogenous proteins and lipids on starch digestibility in rice flour[J]. Food Research International,2018,106:404−409. doi: 10.1016/j.foodres.2018.01.008
|
[4] |
邓楠, 杨正香, 刘成梅, 等. 大米淀粉-多酚复合物的制备与消化特性研究[J]. 食品与生物技术学报,2022,41(11):57−63. [DENG N, YANG Z X, LIU C M, et al. Preparation and digestibility of rice starch-polyphenol complex[J]. Journal of Food Science and Biotechnology,2022,41(11):57−63.]
DENG N, YANG Z X, LIU C M, et al. Preparation and digestibility of rice starch-polyphenol complex[J]. Journal of Food Science and Biotechnology, 2022, 41(11): 57−63.
|
[5] |
LIN S, JIN X, GAO J, et al. Impact of wheat bran micronization on dough properties and bread quality:Part II-quality, antioxidant and nutritional properties of bread[J]. Food Chemistry,2022,396:133631. doi: 10.1016/j.foodchem.2022.133631
|
[6] |
张卓琼, 郭军. 低血糖生成指数食品研究与开发应用现状[J]. 食品与发酵工业,2023,49(1):313−320. [ZHANG Z Q, GUO J. Research development and application status of low glycemic index foods[J]. Food and Fermentation Industries,2023,49(1):313−320.]
ZHANG Z Q, GUO J. Research development and application status of low glycemic index foods[J]. Food and Fermentation Industries, 2023, 49(1): 313−320.
|
[7] |
田心怡, 吴娜娜, 杨积鹏, 等. 谷物膳食纤维改性方法及其在食品中的应用研究进展[J]. 中国粮油学报,2023,38(1):194−202. [TIAN X Y, WU N N, YANG J P, et al. Research progress on modification methods of cereal dietary fiber and their application in food industry[J]. Journal of the Chinese Cereals and Oils Association,2023,38(1):194−202.] doi: 10.3969/j.issn.1003-0174.2023.01.026
TIAN X Y, WU N N, YANG J P, et al. Research progress on modification methods of cereal dietary fiber and their application in food industry[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(1): 194−202. doi: 10.3969/j.issn.1003-0174.2023.01.026
|
[8] |
尚珊, 臧梁, 傅宝尚, 等. 全谷物原料的营养特性及食品开发研究进展[J]. 食品工业科技,2022,43(8):443−452. [SHANG S, ZANG L, FU B S, et al. Nutritional characteristics of whole grain and product development progress[J]. Science and Technology of Food Industry,2022,43(8):443−452.]
SHANG S, ZANG L, FU B S, et al. Nutritional characteristics of whole grain and product development progress[J]. Science and Technology of Food Industry, 2022, 43(8): 443−452.
|
[9] |
杨统帅, 黄继红, 张文占, 等. 麦麸膳食纤维的制备及应用现状—在蒸煮面制品中的研究进展[J]. 粮食加工,2021,46(1):15−21. [YANG T S, HUANG J H, ZHANG W Z, et al. Preparation and application of wheat bran dietary fiber—flour products application of wheat bran dietary fiber[J]. Grain Processing,2021,46(1):15−21.]
YANG T S, HUANG J H, ZHANG W Z, et al. Preparation and application of wheat bran dietary fiber—flour products application of wheat bran dietary fiber[J]. Grain Processing, 2021, 46(1): 15−21.
|
[10] |
李琦, 曾凡坤, 华蓉, 等. 麦麸膳食纤维理化特性、制备方法及应用研究进展[J]. 食品工业科技,2020,41(17):352−357,367. [LI Q, ZENG F K, HUA R, et al. Research progress on the physicochemical properties, preparation methods and application of wheat bran dietary fiber[J]. Science and Technology of Food Industry,2020,41(17):352−357,367.]
LI Q, ZENG F K, HUA R, et al. Research progress on the physicochemical properties, preparation methods and application of wheat bran dietary fiber[J]. Science and Technology of Food Industry, 2020, 41(17): 352−357,367.
|
[11] |
PYCARELLE S C, WINNEN K L J, BOSMANS G M, et al. Wheat (Triticum aestivum L.) flour free lipid fractions negatively impact the quality of sponge cake[J]. Food Chemistry,2019,271:401−409. doi: 10.1016/j.foodchem.2018.07.181
|
[12] |
李建科, 孟永宏, 刘柳, 等. 我国食品工业副产物资源化利用现状[J]. 食品科学技术学报,2021,39(6):1−13. [LI J K, MENG Y H, LIU L, et al. Utilization of food industry by-products in China[J]. Journal of Food Science and Technology,2021,39(6):1−13.]
LI J K, MENG Y H, LIU L, et al. Utilization of food industry by-products in China[J]. Journal of Food Science and Technology, 2021, 39(6): 1−13.
|
[13] |
HAN W, MA S, LI L, et al. Application and development prospects of dietary fibers in flour products[J]. Journal of Chemistry,2017,2017:2163218.
|
[14] |
王崇崇. 膳食纤维和阿魏酸对馒头品质及淀粉消化性的影响机理研究[D]. 无锡:江南大学, 2022. [WANG C C. Effect mechanism of dietary fiber and ferulic acid on steamed bread quality and starch digestion[D]. Wuxi:Jiangnan University, 2022.]
WANG C C. Effect mechanism of dietary fiber and ferulic acid on steamed bread quality and starch digestion[D]. Wuxi: Jiangnan University, 2022.
|
[15] |
HE T, ZHANG X, ZHAO L, et al. Insoluble dietary fiber from wheat bran retards starch digestion by reducing the activity of alpha-amylase[J]. Food Chemistry,2023,426:136624. doi: 10.1016/j.foodchem.2023.136624
|
[16] |
PRADEEP P M, JAYADEEP A, GUHA M, et al. Hydrothermal and biotechnological treatments on nutraceutical content and antioxidant activity of rice bran[J]. Journal of Cereal Science,2014,60(1):187−192. doi: 10.1016/j.jcs.2014.01.025
|
[17] |
QIAO C C, ZENG F K, WU N N, et al. Functional, physicochemical and structural properties of soluble dietary fiber from rice bran with extrusion cooking treatment[J]. Food Hydrocolloids,2021,121:107057. doi: 10.1016/j.foodhyd.2021.107057
|
[18] |
LIU T, WANG K, XUE W, et al. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber[J]. LWT-Food Science and Technology,2021,142:111008. doi: 10.1016/j.lwt.2021.111008
|
[19] |
BAI J, LI Y, LI T, et al. Comparison of different soluble dietary fibers during the in vitro fermentation process[J]. Journal of Agricultural and Food Chemistry,2021,69(26):7446−7457. doi: 10.1021/acs.jafc.1c00237
|
[20] |
DAOU C, ZHANG H. Oat beta-glucan:Its role in health promotion and prevention of diseases[J]. Comprehensive Reviews in Food Science and Food Safety,2012,11(4):355−365. doi: 10.1111/j.1541-4337.2012.00189.x
|
[21] |
ZHANG H, LI Z, TIAN Y, et al. Interaction between barley beta-glucan and corn starch and its effects on the in vitro digestion of starch[J]. International Journal of Biological Macromolecules,2019,141:240−246. doi: 10.1016/j.ijbiomac.2019.08.268
|
[22] |
NGUYEN T T L, FLANAGAN B M, TAO K, et al. Effect of processing on the solubility and molecular size of oat beta-glucan and consequences for starch digestibility of oat-fortified noodles[J]. Food Chemistry,2022,372:131291. doi: 10.1016/j.foodchem.2021.131291
|
[23] |
REGAND A, CHOWDHURY Z, TOSH S M, et al. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility[J]. Food Chemistry,2011,129(2):297−304. doi: 10.1016/j.foodchem.2011.04.053
|
[24] |
邓婧, 马小涵, 赵天天, 等. 青稞β-葡聚糖对淀粉体外消化性的影响[J]. 食品科学,2018,39(10):106−111. [DENG J, MA X H, ZHAO T T, et al. Effect of highland barley β-glucan on starch digestibility in vitro[J]. Food Science,2018,39(10):106−111.] doi: 10.7506/spkx1002-6630-201810017
DENG J, MA X H, ZHAO T T, et al. Effect of highland barley β-glucan on starch digestibility in vitro[J]. Food Science, 2018, 39(10): 106−111. doi: 10.7506/spkx1002-6630-201810017
|
[25] |
李智, 艾连中, 丁文宇, 等. 可溶性膳食纤维对玉米淀粉体外消化的抑制作用[J]. 食品工业科技,2019,40(19):1−6,12. [LI Z, AI L Z, DING W Y, et al. Inhibitory effects of soluble dietary fibers on the in vitro digestion of corn starch[J]. Science and Technology of Food Industry,2019,40(19):1−6,12.]
LI Z, AI L Z, DING W Y, et al. Inhibitory effects of soluble dietary fibers on the in vitro digestion of corn starch[J]. Science and Technology of Food Industry, 2019, 40(19): 1−6,12.
|
[26] |
张嘉茜, 刘思源, 王鹏杰, 等. 两种分子质量水溶性半纤维素的制备及其对淀粉消化抑制作用研究[J]. 食品与发酵工业,2023,49(9):150−157. [ZHANG J Q, LIU S Y, WANG P J, et al. Preparation of two molecular weight water-soluble hemicelluloses and its inhibition on starch digestion[J]. Food and Fermentation Industries,2023,49(9):150−157.]
ZHANG J Q, LIU S Y, WANG P J, et al. Preparation of two molecular weight water-soluble hemicelluloses and its inhibition on starch digestion[J]. Food and Fermentation Industries, 2023, 49(9): 150−157.
|
[27] |
JIA M, YU Q, CHEN J, et al. Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran[J]. Food Hydrocolloids,2020,99:105349. doi: 10.1016/j.foodhyd.2019.105349
|
[28] |
GULARTE M A, ROSELL C M. Physicochemical properties and enzymatic hydrolysis of different starches in the presence of hydrocolloids[J]. Carbohydrate Polymers,2011,85(1):237−244. doi: 10.1016/j.carbpol.2011.02.025
|
[29] |
CHUNG H J, LIU Q, LIM S T. Texture and in vitro digestibility of white rice cooked with hydrocolloids[J]. Cereal Chemistry,2007,84(3):246−249. doi: 10.1094/CCHEM-84-3-0246
|
[30] |
ZHANG H, LI Z, ZHANG L, et al. Effects of soluble dietary fibers on the viscosity property and digestion kinetics of corn starch digesta[J]. Food Chemistry,2021,338:127825. doi: 10.1016/j.foodchem.2020.127825
|
[31] |
ZHENG J, HUANG S, ZHAO R, et al. Effect of four viscous soluble dietary fibers on the physicochemical, structural properties, and in vitro digestibility of rice starch:A comparison study[J]. Food Chemistry,2021,362:130181. doi: 10.1016/j.foodchem.2021.130181
|
[32] |
HUANG Z, WANG J J, CHEN Y, et al. Effect of water-soluble dietary fiber resistant dextrin on flour and bread qualities[J]. Food Chemistry,2020,317:126452. doi: 10.1016/j.foodchem.2020.126452
|
[33] |
LI Y, LIANG W, HUANG W, et al. Complexation between burdock holocellulose nanocrystals and corn starch:Gelatinization properties, microstructure, and digestibility in vitro[J]. Food & Function,2022,13(2):548−560.
|
[34] |
GOFF H D, REPIN N, FABEK H, et al. Dietary fibre for glycaemia control:Towards a mechanistic understanding[J]. Bioactive Carbohydrates and Dietary Fibre,2018,14:39−53. doi: 10.1016/j.bcdf.2017.07.005
|
[35] |
QI X, AL-GHAZZEWI F H, TESTER R F. Dietary fiber, gastric emptying, and carbohydrate digestion:A mini-review[J]. Starch-Stärke,2018,70(9-10):1700346.
|
[36] |
ZHANG H, SUN S, AI L. Physical barrier effects of dietary fibers on lowering starch digestibility[J]. Current Opinion in Food Science,2022,48:100940. doi: 10.1016/j.cofs.2022.100940
|
[37] |
DIKEMAN C L, FAHEY G C. Viscosity as related to dietary fiber:A review[J]. Critical Reviews in Food Science and Nutrition,2006,46(8):649−663. doi: 10.1080/10408390500511862
|
[38] |
KRISTENSEN M, JENSEN M G. Dietary fibres in the regulation of appetite and food intake. Importance of viscosity[J]. Appetite,2011,56(1):65−70. doi: 10.1016/j.appet.2010.11.147
|
[39] |
REPIN N, CUI S W, GOFF H D. Impact of dietary fibre on in vitro digestibility of modified tapioca starch:Viscosity effect[J]. Bioactive Carbohydrates and Dietary Fibre,2018,15:2−11. doi: 10.1016/j.bcdf.2016.11.002
|
[40] |
CHEN M, GUO L, NSOR-ATINDANA J, et al. The effect of viscous soluble dietary fiber on nutrient digestion and metabolic responses Ⅰ:In vitro digestion process[J]. Food Hydrocolloids,2020,107:105791.
|
[41] |
BLUNDELL J E, HALFORD J C. Regulation of nutrient supply:The brain and appetite control[J]. The Proceedings of the Nutrition Society,1994,53(2):407−418. doi: 10.1079/PNS19940046
|
[42] |
THONDRE P S, SHAFAT A, CLEGG M E. Molecular weight of barley beta-glucan influences energy expenditure, gastric emptying and glycaemic response in human subjects[J]. British Journal of Nutrition,2013,110(12):2173−2179. doi: 10.1017/S0007114513001682
|
[43] |
LI C, YU W, WU P, et al. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract[J]. Trends in Food Science & Technology,2020,96:114−126.
|
[44] |
BANCHATHANAKIJ R, SUPHANTHARIKA M. Effect of different β-glucans on the gelatinisation and retrogradation of rice starch[J]. Food Chemistry,2009,114(1):5−14. doi: 10.1016/j.foodchem.2008.09.016
|
[45] |
LIU C, WANG S, COPELAND L, et al. Physicochemical properties and in vitro digestibility of starches from field peas grown in China[J]. LWT-Food Science and Technology,2015,64(2):829−836. doi: 10.1016/j.lwt.2015.06.060
|
[46] |
ZHENG M, YOU Q, LIN Y, et al. Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch[J]. Food Chemistry,2019,272:286−291. doi: 10.1016/j.foodchem.2018.08.029
|
[47] |
NING Y, CUI B, YUAN C, et al. Effects of konjac glucomannan on the rheological, microstructure and digestibility properties of debranched corn starch[J]. Food Hydrocolloids,2020,100:105342. doi: 10.1016/j.foodhyd.2019.105342
|
[48] |
杨月月. 内源性非淀粉组分对青稞中淀粉消化性的影响机制研究及应用[D]. 无锡:江南大学, 2022. [YANG Y Y. Research on the mechanism and application of endogenous non-starch constituents on digestibility of starch in highland barley[D]. Wuxi:Jiangnan University, 2022.]
YANG Y Y. Research on the mechanism and application of endogenous non-starch constituents on digestibility of starch in highland barley[D]. Wuxi: Jiangnan University, 2022.
|
[49] |
LIU X, LE BOURVELLEC C, RENARD C. Interactions between cell wall polysaccharides and polyphenols:Effect of molecular internal structure[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3574−3617. doi: 10.1111/1541-4337.12632
|
[50] |
DOBLADO-MALDONADO A F, PIKE O A, SWELEY J C, et al. Key issues and challenges in whole wheat flour milling and storage[J]. Journal of Cereal Science,2012,56(2):119−126. doi: 10.1016/j.jcs.2012.02.015
|
[51] |
BHATTARAI R R, DHITAL S, WU P, et al. Digestion of isolated legume cells in a stomach-duodenum model:Three mechanisms limit starch and protein hydrolysis[J]. Food & Function,2017,8(7):2573−2582.
|
[52] |
JUNEJO S A, DING L, FU X, et al. Pea cell wall integrity controls the starch and protein digestion properties in the INFOGEST in vitro simulation[J]. International Journal of Biological Macromolecules,2021,182:1200−1207. doi: 10.1016/j.ijbiomac.2021.05.014
|
[53] |
BHATTARAI R R, DHITAL S, MENSE A, et al. Intact cellular structure in cereal endosperm limits starch digestion in vitro[J]. Food Hydrocolloids,2018,81:139−148. doi: 10.1016/j.foodhyd.2018.02.027
|
[54] |
MONDAL D, AWANA M, AGGARWAL S, et al. Microstructure, matrix interactions, and molecular structure are the key determinants of inherent glycemic potential in pearl millet (Pennisetum glaucum)[J]. Food Hydrocolloids,2022,127:107481. doi: 10.1016/j.foodhyd.2022.107481
|
[55] |
CHEN X, ZHANG H, ZHU L, et al. Effects of structural barriers on digestive properties of highland barley as compared with unpolished rice and oats[J]. Food Bioscience,2022,50:102089. doi: 10.1016/j.fbio.2022.102089
|