Citation: | WANG Xin, ZHOU Zhuo, YU Shiyou, et al. Study on Synthesis, Characterization and in Vitro Activity of Sweet Corncob Polysaccharide Nano-Silver[J]. Science and Technology of Food Industry, 2024, 45(13): 58−66. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070111. |
[1] |
王鑫, 王峙力, 谢静南, 等. 甜玉米芯多糖对α-淀粉酶抑制作用研究[J]. 食品工业科技,2021,42(10):48−54. [WANG X, WANG Z L, XIE J N, et al. Study on the inhibitory effect of sweet corn cob polysaccharide on α-amylase[J]. Science and Technology of Food Industry,2021,42(10):48−54.]
WANG X, WANG Z L, XIE J N, et al. Study on the inhibitory effect of sweet corn cob polysaccharide on α-amylase[J]. Science and Technology of Food Industry, 2021, 42(10): 48−54.
|
[2] |
马永强, 张凯, 王鑫, 等. 甜玉米芯多糖对糖尿病大鼠的降血糖作用[J]. 食品科学,2020,41(13):169−173. [MA Y Q, ZHANG K, WANG X, et al. Hypoglycemic effect of sweet corncob polysaccharide on diabetic rats[J]. Food Science,2020,41(13):169−173.] doi: 10.7506/spkx1002-6630-20190702-030
MA Y Q, ZHANG K, WANG X, et al. Hypoglycemic effect of sweet corncob polysaccharide on diabetic rats[J]. Food Science, 2020, 41(13): 169−173. doi: 10.7506/spkx1002-6630-20190702-030
|
[3] |
王峙力, 王鑫, 韩烨, 等. 甜玉米芯硒多糖的制备及其对淀粉酶抑制作用[J]. 包装工程,2021,42(21):33−41. [WANG Z L, WANG X, HAN Y, at al. Preparation of selenium polysaccharide from sweet corncob and its inhibitory effect on amylase[J]. Package Engineering,2021,42(21):33−41.]
WANG Z L, WANG X, HAN Y, at al. Preparation of selenium polysaccharide from sweet corncob and its inhibitory effect on amylase[J]. Package Engineering, 2021, 42(21): 33−41.
|
[4] |
XIN W, WEI X, YE H, et al. Structural characterization of a novel polysaccharide from sweet corncob that inhibits glycosylase in STZ-induced diabetic rats:Structural characterization of a novel polysaccharide[J]. Glycoconjugate Journal,2022,39(3):413−427. doi: 10.1007/s10719-022-10059-7
|
[5] |
WANG X, WANG J, XIU W, et al. Selenium nanoparticles stabilized by sweet corncob polysaccharide inhibit hypoglycemia in vitro and alleviate symptoms in type 2 diabetes mice[J]. Journal of Functional Foods,2024,112:105920. doi: 10.1016/j.jff.2023.105920
|
[6] |
MO F, ZHOU Q, HE Y Q, et al. Nano-Ag:Environmental applications and perspectives[J]. Science of the Total Environment,2022,829:154644. doi: 10.1016/j.scitotenv.2022.154644
|
[7] |
NIE P, ZHAO Y, XU H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles:A review[J]. Ecotoxicology and Environmental Safety,2023,253:114636. doi: 10.1016/j.ecoenv.2023.114636
|
[8] |
BAR H, BHUI D K, SAHOO G P, et al. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2009,348(1-3):212−216.
|
[9] |
SKIBA M, VOROBYOVA V, PIVOVAROV A, et al. Green synthesis of silver nanoparticles in the presence of polysaccharide:Optimization and characterization[J]. Journal of Nanomaterials,2020,2020(2):1−10.
|
[10] |
MAHMOUDI F, MAHMOUDI F, GOLLO K H, et al. Biosynthesis of novel silver nanoparticles using Eryngium thyrsoideum Boiss extract and comparison of their antidiabetic activity with chemical synthesized silver nanoparticles in diabetic rats[J]. Biological Trace Element Research ,2020,199(5):1967−1978.
|
[11] |
JIAN W, MA Y, WU H, et al. Fabrication of highly stable silver nanoparticles using polysaccharide-protein complexes from abalone viscera and antibacterial activity evaluation[J]. International Journal of Biological Macromolecules,2019,128:839−847. doi: 10.1016/j.ijbiomac.2019.01.197
|
[12] |
GANESH D S, RIJUTA G S, SI-KYUNG C, et al. Investigation of photocatalytic degradation of reactive textile dyes by Portulaca oleracea-functionalized silver nanocomposites and exploration of their antibacterial and antidiabetic potentials[J]. Journal of Alloys and Compounds:An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2020,833:155083.
|
[13] |
马永强, 王鑫, 高爽, 等. 甜玉米芯多糖提取及抗凝血活性初探[J]. 食品工业科技,2016,37(21):114−118,188. [MA Y Q, WANG X, GAO S, et al. Preliminary study on extraction and anticoagulant activity of sweet corncob polysaccharide[J]. Science and Technology of Food Industry,2016,37(21):114−118,188.]
MA Y Q, WANG X, GAO S, et al. Preliminary study on extraction and anticoagulant activity of sweet corncob polysaccharide[J]. Science and Technology of Food Industry, 2016, 37(21): 114−118,188.
|
[14] |
马永强, 周恪驰, 王鑫, 等. 甜玉米芯多糖脱色工艺研究[J]. 哈尔滨商业大学学报(自然科学版),2015,31(4):432−434,452. [MA Y Q, ZHOU K C, WANG X, et al. Study on decolorization technology of sweet corncob polysaccharide[J]. Journal of Harbin University of Commerce (Natural Science Edition),2015,31(4):432−434,452.] doi: 10.3969/j.issn.1672-0946.2015.04.012
MA Y Q, ZHOU K C, WANG X, et al. Study on decolorization technology of sweet corncob polysaccharide[J]. Journal of Harbin University of Commerce (Natural Science Edition), 2015, 31(4): 432−434,452. doi: 10.3969/j.issn.1672-0946.2015.04.012
|
[15] |
曹建华. 款冬花多糖银纳米颗粒对HT29细胞的抑制作用及机制研究[D]. 太原:山西大学, 2021. [CAO J H. Study on inhibitory effect of silver nanoparticles from polysaccharide of Farfarae Flos on HT29 cells and its mechanism[D]. Taiyuan:Shanxi University, 2021.]
CAO J H. Study on inhibitory effect of silver nanoparticles from polysaccharide of Farfarae Flos on HT29 cells and its mechanism[D]. Taiyuan: Shanxi University, 2021.
|
[16] |
AHMAD B, SHIREEN F, RAUF A, et al. Phyto-fabrication, purification, characterization, optimization and biological competence of nano-silver[J]. IET Nanobiotechnology,2020,15(1):1−18.
|
[17] |
CHENG S, HE F, FU L, et al. Polysaccharide from rubescens:Extraction, optimization, characterization and antioxidant activities[J]. RSC Advances,2021,11(31):18974−18983. doi: 10.1039/D1RA01365C
|
[18] |
王威振, 杨盼盼, 遆永瑞, 等. 龙牙百合多糖的超声辅助提取及其抗氧化、降血脂活性分析[J]. 食品工业科技,2023,44(18):251−257. [WANG W Z, YANG P P, DI Y R, et al. Ultrasonic-assisted extraction of polysaccharide from Lilium brownii and its antioxidant and hypolipidemic activity analysis[J]. Science and Technology of Food Industry,2023,44(18):251−257.]
WANG W Z, YANG P P, DI Y R, et al. Ultrasonic-assisted extraction of polysaccharide from Lilium brownii and its antioxidant and hypolipidemic activity analysis[J]. Science and Technology of Food Industry, 2023, 44(18): 251−257.
|
[19] |
ZHOU S, HUANG G, HUANG H. Extraction, derivatization and antioxidant activities of onion polysaccharide[J]. Food Chemistry,2022,388:133000. doi: 10.1016/j.foodchem.2022.133000
|
[20] |
朱文卿, 朱姗姗, 何秋霞, 等. 牛蒡多糖与绿原酸对斑马鱼氧化损伤的协同抗氧化作用[J]. 中国食品学报,2022,22(4):95−103. [ZHU W Q, ZHU S S, HE Q X, et al. Synergistic antioxidant effect of burdock polysaccharide and chlorogenic acid on oxidative damage in zebrafish[J]. Chinese Journal of Food Science,2022,22(4):95−103.]
ZHU W Q, ZHU S S, HE Q X, et al. Synergistic antioxidant effect of burdock polysaccharide and chlorogenic acid on oxidative damage in zebrafish[J]. Chinese Journal of Food Science, 2022, 22(4): 95−103.
|
[21] |
YANG H R, CHEEN L H, ZHENG Y J. Structure, antioxidant activity and in vitro hypoglycemic activity of a polysaccharide purified from Tricholoma matsutake[J]. Foods,2021,10(9):2184. doi: 10.3390/foods10092184
|
[22] |
CHEN X, CHEN C, FU X. Hypoglycemic activity in vitro and vivo of a water-soluble polysaccharide from Astragalus membranaceus[J]. Food Function,2022,13(21):11210−11222. doi: 10.1039/D2FO02298B
|
[23] |
ARAGO A P D, TMD OLIVEIRA, QUELEMES P V, et al. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity[J]. Arabian Journal of Chemistry,2019,12(8):4182−4188. doi: 10.1016/j.arabjc.2016.04.014
|
[24] |
GAJERA H P, HIRPARA D G, BHADANI R V, et al. Green synthesis and characterization of nano silver derived from extracellular metabolites of potent Bacillus subtilis for antifungal and eco-friendly action against phytopathogen[J]. Biometals,2022,35(3):479−497.
|
[25] |
IBRAHIM H M M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms[J]. Journal of Radiation Research & Applied Sciences,2015,8(3):265−275.
|
[26] |
TANASE C, BERTA L, COMAN N A, et al. Antibacterial and antioxidant potential of silver nanoparticles biosynthesized using the spruce bark extract[J]. Nano Materials (Basel),2019,9(11):1541.
|
[27] |
MOHANTA Y K, PANDA S K, RASU J, et al. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.)[J]. Frontiers in Molecular Biosciences,2017,4:14.
|
[28] |
DAS D, HAYDAR M S, MANDAL P. Impact of physical attributes on proficient phytosynthesis of silver nanoparticles using extract of fresh mulberry leaves:Characterization, stability and bioactivity assessment[J]. Journal of Inorganic and Organometallic Polymers and Materials,2021,31:1527−1548.
|
[29] |
JOSE E, KHARISSOVA O V, AGUIRRE-ARZOLA V E, et al. Evaluation of the conditions for the synthesis of silver nanoparticles from orange peels and its antibacterial effect[J]. Recent Patents on Nanotechnology,2020,14(3):250−258. doi: 10.2174/1872210514666200414101014
|
[30] |
KALPANA D, HAN J H, PARK W S, et al. Green biosynthesis of silver nanoparticles using Torreya nucifera and their antibacterial activity[J]. Arabian Journal of Chemistry,2019,12(7):1722−1732. doi: 10.1016/j.arabjc.2014.08.016
|
[31] |
MANI M, HARIKRISHNAN R, PURUSHOTHAMAN P, et al. Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity[J]. Environmental Research,2021,202:111627. doi: 10.1016/j.envres.2021.111627
|
[32] |
VASEGHI Z, NEMATOLLAHZADEH A, TAVAKOLI O. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents:A review[J]. Reviews in Chemical Engineering,2018,34(4):529−559. doi: 10.1515/revce-2017-0005
|
[33] |
DANAEI M, DEHGHANKHOLD M, ATAEI S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems[J]. Pharmaceutics,2018,10(2):57. doi: 10.3390/pharmaceutics10020057
|
[34] |
MA Z, JIANG X, JIN Y, et al. Preparation of nano-silver nanoparticles for conductive ink and the correlations with its conductivity[J]. Applied Nanoscience,2022,12(5):1657−1665. doi: 10.1007/s13204-022-02340-w
|
[35] |
WANG L, LU F, LIU Y, et al. Photocatalytic degradation of organic dyes and antimicrobial activity of silver nanoparticles fast synthesized by flavonoids fraction of Psidium guajava L. leaves[J]. Journal of Molecular Liquids,2018,263:187−192. doi: 10.1016/j.molliq.2018.04.151
|
[36] |
YARIBEYGI H, SATHYAPALAN T, ATKIN S L, et al. Molecular mechanisms linking oxidative stress and diabetes mellitus[J]. Oxidative Medicine and Cellular Longevity,2020,2020:8609213.
|
[37] |
FREDRICK N E, NWABOR O F. Valorization of Pichia spent medium via one-pot synthesis of biocompatible silver nanoparticles with potent antioxidant, antimicrobial, tyrosinase inhibitory and reusable catalytic activities[J]. Materials Science and Engineering:C,2020,115:111104.
|
[38] |
KUP F O, COSKUNCAY S, DUMAN F. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut):Evaluation of their antibacterial, antioxidant and drug release system activities[J]. Materials Science & Engineering,2020,107(Feb.):110207.1−110207.11.
|
[39] |
WENG L, CHEN T H, ZHENG Q, et al. Syringaldehyde promoting intestinal motility with suppressing α-amylase hinders starch digestion in diabetic mice[J]. Biomedicine & Pharmacotherapy ,2021,141(2):111865.
|
[40] |
TAN K, TESAR C, WILTON R, et al. Interaction of antidiabetic α-glucosidase inhibitors and gut bacteria α-glucosidase[J]. Protein Science,2018,27(8):1498−1508. doi: 10.1002/pro.3444
|
1. |
潘玲,冮洁,薛晨光,杨新鹏. 东北少数民族特色发酵食品研究进展. 大连民族大学学报. 2022(01): 8-11+17 .
![]() |