ZHONG Qiufan, LI Wei, SUN Weihong, et al. Preparation and Stability Analysis of Spirulina Polyphenol Composite Nanocapsules[J]. Science and Technology of Food Industry, 2024, 45(10): 198−206. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070075.
Citation: ZHONG Qiufan, LI Wei, SUN Weihong, et al. Preparation and Stability Analysis of Spirulina Polyphenol Composite Nanocapsules[J]. Science and Technology of Food Industry, 2024, 45(10): 198−206. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070075.

Preparation and Stability Analysis of Spirulina Polyphenol Composite Nanocapsules

More Information
  • Received Date: July 10, 2023
  • Available Online: March 19, 2024
  • To improve the stability of Spirulina polyphenols through microencapsulation. Two types of microcapsules, Phe-PS and Phe-PS-Zein were prepared by embedding zein and porous starch (PS) in spirulina polyphenols (Phe). The microstructure, stability, antioxidant activity, and in vitro simulated digestion properties of Phe, Phe-PS, and Phe-PS-Zein were compared. The results showed that under the conditions of core to wall ratio of 1:10, temperature of 80 ℃, and magnetic stirring time of 120 minutes, the embedding rate of Phe-PS microcapsules was 60.29%. The encapsulation efficiency of Phe-PS-Zein microcapsules was the highest at core to wall ratio of 1:10, wall to material ratio of 1:1, stirring time of 90 minutes, temperature of 60 ℃, and pH of 7, reached 86.93%. The XRD and XPS spectra indicated that the diffraction peak intensity of the crystal decreased after the addition of zein, which was mainly related to the amorphous structure of zein. DSC analysis showed that the addition of protein as wall material improved the thermal stability of microcapsules. Compared with free Phe and Phe-PS, Phe-PS-Zein showed an increased ability to scavenge DPPH radicals and reduce Fe3+ by measuring its antioxidant activity, stability, and in vitro sustained-release effect. In summary, the Phe-PS-Zein particles could serve as an effective delivery carrier for Spirulina polyphenols. The results of this study would be expected to provide a theoretical and experimental basis for the high-value utilization of Phe.
  • [1]
    王文博, 高俊萍, 孙建光, 等. 螺旋藻的营养保健价值及其在预防医学中的应用[J]. 中国食物与营养,2009(1):48−51. [WANG Wenbo, GAO Junping, SUN Jianguang, et al. Nutrition and health care value of spirulina and its application in preventive medicine[J]. Food and Nutrition in China,2009(1):48−51.]

    WANG Wenbo, GAO Junping, SUN Jianguang, et al. Nutrition and health care value of spirulina and its application in preventive medicine[J]. Food and Nutrition in China, 2009(1): 48−51.
    [2]
    LAFARGA T, FERNÁNDZ-SEVILLA M, GONZÁLEZ-LÓPEZ C, et al. Spirulina for the food and functional food industries[J]. Food Research International,2020,137(prepublish):109356.
    [3]
    马君义, 马绍城, 刘嘉欣, 等. 茶多酚、螺旋藻及其复配物的抗氧化性能研究[J]. 食品研究与开发,2014,35(16):22−26. [MA Junyi, MA Shaocheng, LIU Jiaxin, et al. Antioxidant activity of tea polyphenols, Spirulina and their complexes[J]. Food Research and Development,2014,35(16):22−26.] doi: 10.3969/j.issn.1005-6521.2014.16.006

    MA Junyi, MA Shaocheng, LIU Jiaxin, et al. Antioxidant activity of tea polyphenols, Spirulina and their complexes[J]. Food Research and Development, 2014, 35(16): 22−26. doi: 10.3969/j.issn.1005-6521.2014.16.006
    [4]
    申迎宾. 四种谷物多酚抗氧化、降血脂作用评价研究[D]. 无锡:江南大学, 2016. [SHEN Yingbin. Evaluation of antioxidation and hypolipidemic effects of four kinds of cereal polyphenols[D]. Wuxi:Jiangnan University, 2016.]

    SHEN Yingbin. Evaluation of antioxidation and hypolipidemic effects of four kinds of cereal polyphenols[D]. Wuxi: Jiangnan University, 2016.
    [5]
    NAWAL K Z A, NAWFAL A, AMMAR A, et al. Trends and technological advancements in the possible food applications of spirulina and their health benefits: A review[J]. Molecules,2022,27(17):5584−5584.
    [6]
    CRISTIANO J D A. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; An overview[J]. MedCrave Online, 2018(1): 1-14.
    [7]
    GUNATHILAKE K D P P, RANAWEERA K K D S, RUPASINGHE H P V. Effect of different cooking methods on polyphenols, carotenoids and antioxidant activities of selected edible leaves[J]. Antioxidants, 2018, 7(9):117.
    [8]
    SILVA R F M, POGAČNIK L. Polyphenols from food and natural products: Neuroprotection and safety[J]. Antioxidants,2020,9(1):61. doi: 10.3390/antiox7090117
    [9]
    ZHANG L, LIAO W Y, TONG Z, et al. Modulating physicochemical properties of β-carotene in the microcapsules by polyphenols co-milling[J]. Journal of Food Engineering,2023,359:111691.
    [10]
    HUI C, OZNUR S, AYSE K, et al. Available technologies on improving the stability of polyphenols in food processing[J]. [J]. Food Frontiers,2021,2(2):109−139. doi: 10.1002/fft2.65
    [11]
    何善生, 王力, 李健, 等. 螺旋藻中香豆酸的提取及其生物活性研究[J]. 食品工业, 2018,39(8):1−5. [HE Shansheng, WANG Li, LI Jian, et al. Study on extraction and biological activity of coumalic acid from Spirulina platensi[J]. Food Industry,2018,39(8):1−5.]

    HE Shansheng, WANG Li, LI Jian, et al. Study on extraction and biological activity of coumalic acid from Spirulina platensi[J]. Food Industry, 2018, 39(8): 1−5.
    [12]
    张超. 玉米多孔淀粉的酶法制备及其作为吸附剂的应用研究[D]. 无锡:江南大学, 2012. [ZHAO Chao. Enzymatic preparation of porous corn starch and its application as adsorbent[D]. Wuxi:Jiangnan University, 2012.]

    ZHAO Chao. Enzymatic preparation of porous corn starch and its application as adsorbent[D]. Wuxi: Jiangnan University, 2012.
    [13]
    AHMAD M, MUDGIL P, GANI A, et al. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion[J]. Food Chemistry,2019,270:95−104.
    [14]
    MENG Ran, WU Zhengzong, XIE Qiutao, et al. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties[J]. Food Chemistry,2021,340:127893−127893.
    [15]
    都鹏程, 王辉, 胡月明, 等. 基于鱼明胶分散体系SeNPs制备及其抗氧化性研究[J]. 食品与机械,2020,36(4):45−50. [DU Pengcheng, WANG hui, HU Mingyue, et al. Preparation of selenium nanoparticles based on fish gelatin dispersion system and investigation of their anti-oxidant activities[J]. Food and Machinery,2020,36(4):45−50.] doi: 10.1021/acs.jafc.0c07337

    DU Pengcheng, WANG hui, HU Mingyue, et al. Preparation of selenium nanoparticles based on fish gelatin dispersion system and investigation of their anti-oxidant activities[J]. Food and Machinery, 2020, 36(4): 45−50. doi: 10.1021/acs.jafc.0c07337
    [16]
    刘夫国. 蛋白质—多酚—碳水化合物共价复合物制备及其对功能因子稳态作用[D]. 北京:中国农业大学, 2017. [LIU Fuguo. Fabrication of protein-polyphenol-carbohydrate conjugates and their stabiliza village on effect on functional components[D]. Beijing:China Agricultural University, 2017]

    LIU Fuguo. Fabrication of protein-polyphenol-carbohydrate conjugates and their stabiliza village on effect on functional components[D]. Beijing: China Agricultural University, 2017
    [17]
    RAWEL H M, ROHN S, KRUSE H P, et al. Structural changes induced in bovine serum albumin by covalent attachment of chlorogenic acid[J]. Food Chemistry, 2002, 78(4):443−455.
    [18]
    安小琦. ‘蓓蕾’蓝靛果花色苷组成鉴定及其单体微胶囊稳定性的研究[D]. 沈阳:沈阳农业大学, 2017. [AN Xiaoqi. Identification of anthocyanins from 'Bud' Lonicera edulis and stability of its monomer microcapsules[D]. Shenyang: Shenyang Agricultural University, 2017.]

    AN Xiaoqi. Identification of anthocyanins from 'Bud' Lonicera edulis and stability of its monomer microcapsules[D]. Shenyang: Shenyang Agricultural University, 2017.
    [19]
    侯顺超. 水芹多酚生物活性及其微胶囊制备[D]. 扬州: 扬州大学, 2017. [HOU Shunchao. Bioactivity of polyphenols from Oenanthe javanica and preparation of microcapsules[D]. Yangzhou: Yangzhou University, 2017.]

    HOU Shunchao. Bioactivity of polyphenols from Oenanthe javanica and preparation of microcapsules[D]. Yangzhou: Yangzhou University, 2017.
    [20]
    AHMAD M, QURESHI S, MAQSOOD S, et al. Micro-encapsulation of folic acid using horse chestnut starch and β-cyclodextrin:Microcapsule characterization, release behavior & antioxidant potential during GI tract conditions[J]. Food Hydrocolloids,2017,66:154−160. doi: 10.1016/j.foodhyd.2016.11.012
    [21]
    杨少辉, 宋英今, 王洁华, 等. 雪莲果体外抗氧化和自由基清除能力[J]. 食品科学,2010,31(17):166−169. [YANG Shaohui,SONG Yingjin,WANG Jiehua, et al. In vitro antioxidant and free radical scavenging activities of Yacon (Smallanthus sonchifolius) tubers[J]. Food Science,2010,31(17):166−169.]

    YANG Shaohui, SONG Yingjin, WANG Jiehua, et al. In vitro antioxidant and free radical scavenging activities of Yacon (Smallanthus sonchifolius) tubers[J]. Food Science, 2010, 31(17): 166−169.
    [22]
    MINEKUS M, ALMINGER M, ALVITO P, et al. A standardised static in vitro digestion method suitable for food-an international consensus[J]. Food & Function,2014,5(6):1113−1124.
    [23]
    KARAKASHOV B, GRIGORAKIS S, LOUPASSAKI S, et al. Optimisation of polyphenol extraction from Hypericum perforatum (St. John's Wort) using aqueous glycerol and response surface methodology[J]. Journal of Applied Research on Medicinal and Aromatic Plants,2015,2(1):1−8. doi: 10.1016/j.jarmap.2014.11.002
    [24]
    苏春儒. 玉米醇溶蛋白/多糖复合凝聚型包埋体系的构建及其应用研究[D]. 广州:广州大学, 2022. [SU Chunru. Construction and application of Zein/polysaccharide composite coacervation encapsulation system[D]. Guangzhou:Guangzhou University, 2022]

    SU Chunru. Construction and application of Zein/polysaccharide composite coacervation encapsulation system[D]. Guangzhou: Guangzhou University, 2022
    [25]
    李登龙. 微胶囊化桑椹多酚调控猪肉蛋白氧化研究[D]. 喀什:喀什大学,2020. [LI Denglong. Study on regulation of pork protein oxidation by microencapsulated mulberry polyphenols[D]. Kashgar:Kashgar University,2020.]

    LI Denglong. Study on regulation of pork protein oxidation by microencapsulated mulberry polyphenols[D]. Kashgar: Kashgar University, 2020.
    [26]
    俞力月, 李海燕, 马云翔, 等. 多孔淀粉对姜黄素的吸附[J]. 食品与发酵工业,2020,46(5):224−230. [YU L Y, LI H Y, MA Y X, et al. Study on adsorption of curcumin by porous starch[J]. Food and Fermentation Industries,2020,46(5):224−230.]

    YU L Y, LI H Y, MA Y X, et al. Study on adsorption of curcumin by porous starch[J]. Food and Fermentation Industries, 2020, 46(5): 224−230.
    [27]
    王华瑜, 沈朝璐, 袁玥, 等. 负载姜黄素的玉米多孔淀粉微球的优化制备、理化性质及释放研究[J]. 食品与发酵工业,2023,49(3):182−188. [WANG Huayu, SHEN Chaolu, YUAN Yue, et al. Optimization of preparation, physicochemical properties and release of curcumin loaded porous corn starch microspheres[J]. Food and Fermentation Industry,2023,49(3):182−188.]

    WANG Huayu, SHEN Chaolu, YUAN Yue, et al. Optimization of preparation, physicochemical properties and release of curcumin loaded porous corn starch microspheres[J]. Food and Fermentation Industry, 2023, 49(3): 182−188.
    [28]
    ZENG Tao, ZHANG Xiaole, GUO Yuanyuan, et al. Enhanced catalytic application of Au@polyphenol-metal nanocomposites synthesized by a facile and green method[J]. Journal of Materials Chemistry A, 2014.
    [29]
    何善生. 螺旋藻中活性物质的提取, 性能及应用[D]. 厦门:集美大学, 2018. [HE Shansheng. Extraction, properties and application of active substances from Spirulina[D]. Xiamen:Jimei University, 2018.]

    HE Shansheng. Extraction, properties and application of active substances from Spirulina[D]. Xiamen: Jimei University, 2018.
    [30]
    方溶熙. 虾青素包埋递送体系的构建与调控[D]. 武汉:华中农业大学, 2023. [FANG Rongxi. Construction and regulation of astaxanthin entrapment delivery system[D]. Wuhan:Huazhong Agricultural University, 2023.]

    FANG Rongxi. Construction and regulation of astaxanthin entrapment delivery system[D]. Wuhan: Huazhong Agricultural University, 2023.
    [31]
    梁宏闪. 多功能性玉米醇溶蛋白基递送系统的构建及生物学评价[D]. 武汉:华中农业大学, 2017. [LIANG Hongshan. Construction and biological evaluation of a multifunctional zein-based delivery system[D]. Wuhan:Huazhong Agricultural University, 2017.]

    LIANG Hongshan. Construction and biological evaluation of a multifunctional zein-based delivery system[D]. Wuhan: Huazhong Agricultural University, 2017.
    [32]
    ACEITUNO-MEDINA M, MENDOZA S, LAGARON J M, et al. Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends[J]. Food Research International,2013,54(1):667−674. doi: 10.1016/j.foodres.2013.07.055
    [33]
    LIU H, CHAUDHARY D, YUSA S, et al. Glycerol/starch/Na+-montmorillonite nanocomposites:A XRD, FTIR, DSC and 1H NMR study[J]. Carbohydrate Polymers,2011,83(4):1591−1597. doi: 10.1016/j.carbpol.2010.10.018
    [34]
    DAVIDOV-PARDO G, JOYE I J, MCCLEMENTS D J. Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1:Preparation and characterization[J]. Food Hydrocolloids,2015,45:309−316. doi: 10.1016/j.foodhyd.2014.11.023
    [35]
    安小琦. ‘蓓蕾’蓝靛果花色苷组成鉴定及其单体微胶囊稳定性的研究[D]. 沈阳:沈阳农业大学, 2017. [AN Xiaoqi. ldentification of anthocyanins in Lonicera caerulea berry extracts and study on monomer microcapsule's stability[D]. Shenyang:Shenyang Agricultural University, 2017.]

    AN Xiaoqi. ldentification of anthocyanins in Lonicera caerulea berry extracts and study on monomer microcapsule's stability[D]. Shenyang: Shenyang Agricultural University, 2017.
    [36]
    CHANG Chao, WANG Taoran, HU Qiaobin, et al. Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin[J]. Food Hydrocolloids,2017,70:143−151. doi: 10.1016/j.foodhyd.2017.03.033
    [37]
    RU Qiaomei, YU Hailong, HUANG Qingrong. Encapsulation of epigallocatechin-3-gallate (EGCG) using oil-in-water (O/W) submicrometer emulsions stabilized by ι-carrageenan and β-lactoglobulin[J]. Journal of Agricultural and Food Chemistry,2010,58(19):10373−10381. doi: 10.1021/jf101798m
    [38]
    ERIKSEN J N, LUU A Y, DRAGSTED L O, et al. Adaption of an in vitro digestion method to screen carotenoid liberation and in vitro accessibility from differently processed spinach preparations[J]. [J]. Food Chemistry,2017,224:407−413. doi: 10.1016/j.foodchem.2016.11.146
    [39]
    CHEN S, LI Q K, MCCLEMENTS D J, et al. Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles:Formation, structure, stability and in vitro gastrointestinal digestion[J]. Food Hydrocolloids,2020,99: 105334.
    [40]
    LUO Yangchao, PAN Kang, ZHONG Qixin. Casein/pectin nanocomplexes as potential oral delivery vehicles[J]. International Journal of Pharmaceutics,2015,486(1-2):59−68. doi: 10.1016/j.ijpharm.2015.03.043
    [41]
    DADWAL V, BHATT S, JOSHI R, et al. Development and characterization of controlled released polyphenol rich micro-encapsulate of Murraya koenigii bark extract[J]. Journal of Food Processing and Preservation,2020,44(5):414−438.
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. 陈雪花,陈建平,罗宝浈,李佳睿,李瑞,刘晓菲,宋兵兵,钟赛意. 硫酸软骨素纳米硒的结构表征及其对Hela细胞迁移和侵袭的影响. 食品与发酵工业. 2024(03): 73-79 .
    2. 赵猛,丁子康,李欣悦,王晓梅,胡祖广,张忠山. 低分子量坛紫菜多糖纳米硒的制备、表征及其体外抗氧化活性. 食品工业科技. 2024(23): 170-178 . 本站查看
    3. 向东,朱玉昌,周大寨,李爽. 含硒活性物质研发技术进展. 山东化工. 2023(05): 66-69+77 .
    4. 王鑫,周卓,王峙力,修伟业,罗钰,马永强. 硒化甜玉米芯多糖对非酶糖基化的抑制作用. 食品工业科技. 2023(19): 17-23 . 本站查看
    5. 徐孝楠,马浩迪,续炎,李璇,覃智,权春善,张丽影. 耐硒海洋菌株的筛选、鉴定及其产纳米硒的抗菌活性. 食品工业科技. 2023(24): 152-158 . 本站查看
    6. 陈博文,陈建平,黄文浩,钟赛意,李瑞,宋兵兵,刘晓菲,汪卓. 岩藻多糖纳米硒的制备及其抑制肿瘤细胞增殖的研究. 天然产物研究与开发. 2023(12): 2117-2126 .
    7. 向文杰,殷彩桥,黄慧,陈婷. 硒及硒化合物对食管癌作用机制研究进展. 社区医学杂志. 2022(22): 1295-1300 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (116) PDF downloads (19) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return