LI Bingxin, GONG Shuying, XU Danning, et al. Polysaccharide of Atractylodes macrocephala Koidz Alleviate Kidney Injury Induced by Cyclophosphamide in Mice through Arachidonic Acid Metabolic Pathway[J]. Science and Technology of Food Industry, 2024, 45(10): 325−334. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070030.
Citation: LI Bingxin, GONG Shuying, XU Danning, et al. Polysaccharide of Atractylodes macrocephala Koidz Alleviate Kidney Injury Induced by Cyclophosphamide in Mice through Arachidonic Acid Metabolic Pathway[J]. Science and Technology of Food Industry, 2024, 45(10): 325−334. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070030.

Polysaccharide of Atractylodes macrocephala Koidz Alleviate Kidney Injury Induced by Cyclophosphamide in Mice through Arachidonic Acid Metabolic Pathway

More Information
  • Received Date: July 05, 2023
  • Available Online: March 20, 2024
  • This study aimed to investigate the effects of the polysaccharide of Atractylodes macrocephala Koidz (PAMK) on cyclophosphamide (CTX)-induced renal injury in mice and its potential underlying mechanisms. One hundred male C57BL/6 mice, aged 42~43 days, were randomly divided into four groups, with five repetitions in each group and five mice in each repetition. The PAMK group and PAMK+CTX group were orally administered 200 mg/kg PAMK once daily, while the control group and CTX group were given an equivalent amount of saline. From days 25~27 of the experiment, the CTX group and PAMK+CTX group were intraperitoneally injected with 100 mg/kg CTX once daily, while the control group and PAMK group were injected with an equivalent amount of saline. On day 35 of the experiment, the kidneys were collected for histological observation, oxidative stress detection, and transcriptome sequencing. The results showed that compared with the CTX group, the renal injury in the PAMK+CTX group was alleviated. The content of malondialdehyde (MDA) in the kidneys was significantly decreased (P<0.05), while the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) were significantly increased (P<0.05). To further explore the regulatory mechanisms of PAMK in alleviating CTX-induced renal injury, transcriptome sequencing of the kidneys was performed. The results showed that compared with the control group, 493 differentially expressed genes (DEGs) were identified in the CTX group vs control group comparison, and 333 DEGs were identified in the CTX group vs PAMK+CTX group comparison. Functional enrichment analysis of the DEGs in both groups revealed significant enrichment in signaling pathways related to arachidonic acid metabolism. The expression levels of arachidonic acid pathway-related genes were examined, and it was found that compared with the control group, the mRNA expression levels of Cyp2b9, PTGS1, NF-κB and Mfsd2a were significantly increased in the CTX group (P<0.05). On the other hand, in the PAMK+CTX group, the expression levels of Cyp2c65 and BCL6 were significantly increased (P<0.05), while the expression levels of Cyp2b9, PTGS1and Mfsd2a were significantly decreased (P<0.05). In conclusion, PAMK may alleviate oxidative stress in the kidneys of mice and reduce CTX-induced renal injury through the arachidonic acid metabolism pathway.
  • [1]
    XU D N, TIAN Y B. Selenium and polysaccharides of Atractylodes macrocephala Koidz play different roles in improving the immune response induced by heat stress in chickens[J]. Biological Trace Element Research,2015,168(1):235−241. doi: 10.1007/s12011-015-0351-2
    [2]
    XU D N, LI W Y, HUANG Y M, et al. The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on immune response in chicken spleen under heat stress[J]. Biological Trace Element Research,2014,160(2):232−237. doi: 10.1007/s12011-014-0056-y
    [3]
    XU D N, LI B X, CAO N, et al. The protective effects of polysaccharide of Atractylodes macrocephala Koidz (PAMK) on the chicken spleen under heat stress via antagonizing apoptosis and restoring the immune function[J]. Oncotarget,2017,8(41):70394−70405. doi: 10.18632/oncotarget.19709
    [4]
    MIAO Y F, GAO X N, XU D N, et al. Protective effect of the new prepared Atractylodes macrocephala Koidz polysaccharide on fatty liver hemorrhagic syndrome in laying hens[J]. Poultry Science,2020,100(2):938−948.
    [5]
    GUO S X, LI W Y, CHEN F Y, et al. Polysaccharide of Atractylodes macrocephala Koidz regulates LPS-mediated mouse hepatitis through the TLR4-MyD88-NFκB signaling pathway[J]. International Immunopharmacology,2021,98:107692. doi: 10.1016/j.intimp.2021.107692
    [6]
    相雪莲, 许丹宁, 曹楠, 等. 白术多糖对环磷酰胺诱导的免疫抑制小鼠白细胞数量及功能的修复作用[J]. 中国兽医杂志, 2020, 56(7):36−41, 2. [XIANG X L, XU D N, CAO N, et al. Restorative effects of atractylodes polysaccharide on leukocyte count and function in cyclophosphamide-induced immunocompromised mice[J]. Chinese Journal of Veterinary Medicine, 2015, 56 (7):36−41, 2.]

    XIANG X L, XU D N, CAO N, et al. Restorative effects of atractylodes polysaccharide on leukocyte count and function in cyclophosphamide-induced immunocompromised mice[J]. Chinese Journal of Veterinary Medicine, 2015, 56 (7): 36−41, 2.
    [7]
    SAKTHIVEL K M, GURUVAYOORAPPAN C. Acacia ferruginea inhibits cyclophosphamide-induced immunosuppression and urotoxicity by modulating cytokines in mice[J]. Journal of Immunotoxicology,2015,12(2):154−163. doi: 10.3109/1547691X.2014.914988
    [8]
    OLAYINKA E T, ORE A, OLA O S, et al. Ameliorative effect of gallic acid on cyclophosphamide-induced oxidative injury and hepatic dysfunction in rats[J]. Medical Sciences,2015,3(3):78−92. doi: 10.3390/medsci3030078
    [9]
    OHNO Y, ORMSTAD K. Formation, toxicity and inactivation of acrolein during biotransformation of cyclophosphamide as studied in freshly isolated cells from rat liver and kidney[J]. Archives of Toxicology,1985,57(2):99−103. doi: 10.1007/BF00343118
    [10]
    HALDAR S, DRU C, BHOWMICK N A. Mechanisms of hemorrhagic cystitis[J]. American Journal of Clinical and Experimental Urology,2014,2(3):199−208.
    [11]
    KAWANISHI M, MATSUDA T, NAKAYAMA A, et al. Molecular analysis of mutations induced by acrolein in human fibroblast cells using supF shuttle vector plasmids[J]. Mutation Research,1998,417(2-3):65−73. doi: 10.1016/S1383-5718(98)00093-X
    [12]
    MYTHILI Y, SUDHARSAN P T, SELVAKUMAR E, et al. Protective effect of DL-alpha-lipoic acid on cyclophosphamide induced oxidative cardiac injury[J]. Chemico-Biological Interactions,2004,151(1):13−19. doi: 10.1016/j.cbi.2004.10.004
    [13]
    LIU Q, LIN X M, LI H, et al. Paeoniflorin ameliorates renal function in cyclophosphamide-induced mice via AMPK suppressed inflammation and apoptosis[J]. Biomedicine & Pharmacotherapy,2016,84:1899−1905.
    [14]
    GUNES S, AYHANCI A, SAHINTURK V, et al. Carvacrol attenuates cyclophosphamide-induced oxidative stress in rat kidney[J]. Canadian Journal of Physiology and Pharmacology,2017,95(7):844−849. doi: 10.1139/cjpp-2016-0450
    [15]
    GORIN Y. The kidney:An organ in the front line of oxidative stress-associated pathologies[J]. Antioxidants & Redox Signaling,2016,25(12):639−641.
    [16]
    潘航, 俞佳, 史悦, 等. 口服人参茎叶皂苷减缓环磷酰胺诱导的氧化应激作用研究[J]. 中兽医医药杂志,2015,34(1):45−47. [PAN H, YU J, SHI Y, et al. Study on the protective effect of oral ginsenoside on cyclophosphamide-induced oxidative stress[J]. Chinese Journal of Veterinary Medicine,2015,34(1):45−47.]

    PAN H, YU J, SHI Y, et al. Study on the protective effect of oral ginsenoside on cyclophosphamide-induced oxidative stress[J]. Chinese Journal of Veterinary Medicine, 2015, 34(1): 45−47.
    [17]
    YU Y, WU B, JIANG L M, et al. Comparative analysis of toxicity reduction of wastewater in twelve industrial park wastewater treatment plants based on battery of toxicity assays[J]. Scientific Reports,2019,9(1):3751. doi: 10.1038/s41598-019-40154-z
    [18]
    SAKR S A, El-MESSADY F A. Cyclophosphamide induced histological and immunohistochemical alterations in kidney of albino rats:The ameliorative effect of fennel oil[J]. International Journal of Sciences,2017,3(8):78−87. doi: 10.18483/ijSci.1383
    [19]
    陈浩祥, 杨舒展, 陆智儿, 等. 白术多糖缓解环磷酰胺诱导的岭南黄鸡氧化应激和肝脏细胞凋亡[J]. 动物营养学报,2023,35(3):1976−1984. [CHEN H X, YANG S Z, LU Z E, et al. Protective effects of Atractylodes polysaccharide on oxidative stress and hepatocyte apoptosis induced by cyclophosphamide in lingnan yellow chickens[J]. Journal of Animal Nutrition,2023,35(3):1976−1984.]

    CHEN H X, YANG S Z, LU Z E, et al. Protective effects of Atractylodes polysaccharide on oxidative stress and hepatocyte apoptosis induced by cyclophosphamide in lingnan yellow chickens[J]. Journal of Animal Nutrition, 2023, 35(3): 1976−1984.
    [20]
    CHEN D, XIONG X Q, ZANG Y H, et al. BCL6 attenuates renal inflammation via negative regulation of NLRP3 transcription[J]. Cell Death & Disease,2017,8(10):e3156.
    [21]
    BEN-ZVI A, LACOSTE B, KUR E, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier[J]. Nature,2014,509(7501):507−511. doi: 10.1038/nature13324
    [22]
    WANG T Q, FU X J, CHEN Q F, et al. Arachidonic acid metabolism and kidney inflammation[J]. International Journal of Molecular Sciences,2019,20(15):3683. doi: 10.3390/ijms20153683
    [23]
    VAN DORP D A. Essential fatty acid metabolism[J]. The Proceedings of the Nutrition Society,1975,34(3):279−286. doi: 10.1079/PNS19750050
    [24]
    SPERLING R I, BENINCASO A I, KNOELL C T, et al. Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils[J]. The Journal of Clinical Investigation,1993,91(2):651−660. doi: 10.1172/JCI116245
    [25]
    DE JONGE H W, DEKKERS D H, LAMERS J M. Polyunsaturated fatty acids and signalling via phospholipase C-beta and A2 in myocardium[J]. Molecular and Cellular Biochemistry,1996,157(1−2):199−210. doi: 10.1007/BF00227899
    [26]
    RADMARK O, WERZ O, STEINHILBER D, et al. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids,2015,1851(4):331−339. doi: 10.1016/j.bbalip.2014.08.012
    [27]
    PERRONE M G, SCILIMATI A, SIMONE L, et al. Selective COX-1 inhibition:A therapeutic target to be reconsidered[J]. Current Medicinal Chemistry,2010,17(32):3769−3805. doi: 10.2174/092986710793205408
    [28]
    袁思宇. 丹红注射液对缺血再灌注所致急性肾损伤大鼠的保护及机制研究[D]. 广州:广东药科大学, 2020. [YUAN S Y. Protective effects and mechanism of danhong injection on acute renal injury in rats induced by ischemia-reperfusion[D]. Guangzhou:Guangdong Pharmaceutical University. 2020.]

    YUAN S Y. Protective effects and mechanism of danhong injection on acute renal injury in rats induced by ischemia-reperfusion[D]. Guangzhou: Guangdong Pharmaceutical University. 2020.
    [29]
    CALDER P C. Marine omega-3 fatty acids and inflammatory processes:Effects, mechanisms and clinical relevance[J]. Biochimica et Biophysica Acta,2015,1851(4):469−484. doi: 10.1016/j.bbalip.2014.08.010
    [30]
    YATES C M, CALDER P C, ED R G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease[J]. Pharmacology & Therapeutics,2014,141(3):272−282.
    [31]
    RAND A A, BARNYCH B, MORISSEAU C, et al. Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(17):4370−4375.
    [32]
    IIDA M, ANNA C H, HARTIS J, et al. Changes in global gene and protein expression during early mouse liver carcinogenesis induced by non-genotoxic model carcinogens oxazepam and Wyeth-14, 643[J]. Carcinogenesis,2003,24(4):757−770. doi: 10.1093/carcin/bgg011
    [33]
    LU Y F, SHAO M M, XIANG H J, et al. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis[J]. Food & Function,2020,11(11):10058−10069.
    [34]
    GRAVES J P, BRADBURY J A, GRUZDEV A, et al. Expression of Cyp2c/Cyp2j subfamily members and oxylipin levels during LPS-induced inflammation and resolution in mice[J]. Federation of American Societies for Experimental Biology,2019,33(12):14784−14797. doi: 10.1096/fj.201901872R
    [35]
    CAMPBELL W B, HARDER D R. Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone[J]. Circulation Research,1999,84(4):484−488. doi: 10.1161/01.RES.84.4.484
    [36]
    FISSLTHALER B, POPP R, KISS L, et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries[J]. Nature,1999,401(6752):493−497. doi: 10.1038/46816
    [37]
    ZOU A P, DRUMMOND H A, ROMAN R J. Role of 20-HETE in elevating loop chloride reabsorption in Dahl SS/Jr rats[J]. Hypertension, 1996, 27 (3Pt2):631-635.
    [38]
    NODE K, RUAN X L, DAI J, et al. Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids[J]. The Journal of Biological Chemistry,2001,276(19):15983−15989. doi: 10.1074/jbc.M100439200
    [39]
    FALCK J R, MANNA S, MOLTZ J, et al. Epoxyeicosatrienoic acids stimulate glucagon and insulin release from isolated rat pancreatic islets[J]. Biochemical and Biophysical Research Communications,1983,114(2):743−749. doi: 10.1016/0006-291X(83)90843-4
    [40]
    MA J, QU W, SCARBOROUGH P E, et al. Molecular cloning, enzymatic characterization, developmental expression, and cellular localization of a mouse cytochrome P450 highly expressed in kidney[J]. The Journal of Biological Chemistry,1999,274(25):17777−17788. doi: 10.1074/jbc.274.25.17777
    [41]
    QU W, BRADBURY J A, TSAO C C, et al. Cytochrome P450 CYP2J9, a new mouse arachidonic acid omega-1 hydroxylase predominantly expressed in brain[J]. The Journal of Biological Chemistry,2001,276(27):25467−25479. doi: 10.1074/jbc.M100545200
    [42]
    LUO G, ZELDIN D C, BLAISDELL J A, et al. Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid[J]. Archives of Biochemistry and Biophysics,1998,357(1):45−57. doi: 10.1006/abbi.1998.0806
    [43]
    WANG H, ZHAO Y, BRADBURY J A, et al. Cloning, expression, and characterization of three new mouse cytochrome p450 enzymes and partial characterization of their fatty acid oxidation activities[J]. Molecular Pharmacology,2004,65(5):1148−1158. doi: 10.1124/mol.65.5.1148
    [44]
    钱隆, 刘洋, 李冰心, 等. 白术多糖可能通过Toll样受体4信号通路缓解环磷酰胺诱导的雏鹅肝脏损伤[J]. 动物营养学报,2019,31(2):764−774. [QIAN L, LIU Y, LI B X, et al. Atractylodes polysaccharide may alleviate cyclophosphamide-induced liver injury in goslings via toll-like receptor 4 signaling pathway[J]. Journal of Animal Nutrition,2019,31(2):764−774.]

    QIAN L, LIU Y, LI B X, et al. Atractylodes polysaccharide may alleviate cyclophosphamide-induced liver injury in goslings via toll-like receptor 4 signaling pathway[J]. Journal of Animal Nutrition, 2019, 31(2): 764−774.
    [45]
    VAN OPDENBOSCH N, LAMKANFI M. Caspases in cell death, inflammation, and disease[J]. Immunity,2019,50(6):1352−1364. doi: 10.1016/j.immuni.2019.05.020
  • Other Related Supplements

  • Cited by

    Periodical cited type(19)

    1. 安勤,鲍肃都,陈宏宇,安会敏,陈圆,张欣仪,刘洋,刘仲华,黄建安. 基于GC×GC-QTOF-MS分析不同品种汝城白毛茶白茶的香气特征. 食品科学. 2025(04): 163-171 .
    2. 刘学艳,杨文光,徐婷,罗正飞,王绍梅,龚正礼. 并堆工艺对云南白茶品质影响的研究. 中国茶叶. 2025(03): 25-33 .
    3. 熊梦钒,鲁倩,陈泽文,李利亭,任玲,董蕊,周红杰,李亚莉. HS-SPME-GC-MS技术结合ROAV分析五指山茶区三种红茶的关键香气物质. 现代食品科技. 2025(01): 251-261 .
    4. 马晨阳,高畅,田迪,周小慧,任玲,李沅达,李亚莉,周红杰. 不同季节云抗10号厌氧加工白茶的品质差异探究. 食品工业科技. 2024(03): 107-113 . 本站查看
    5. 孔亚帅,卫艺炜,万亚欣,王晶晶,姚慧敏,尹鹏,王子浩,郭桂义. 基于非靶向代谢组学技术的不同季节信阳白茶品质分析. 食品科技. 2024(05): 50-56 .
    6. 黄艳,张有东,孙威江. 白茶加工技术与装备应用现状. 中国茶叶. 2024(08): 14-22 .
    7. 武珊珊,杨雪梅,舒娜,郭雯飞,潘朦,张绪尖,苏建美,马占霞. 基于HS-SPME-GC-MS的云南白茶关键香气组分及特征分析. 食品研究与开发. 2024(16): 170-180 .
    8. 谢晨昕,赵锋,林雨,蔡良绥,林智,郭丽. 日晒茶风味化学特征研究进展. 茶叶科学. 2024(04): 554-564 .
    9. 叶秋萍,余雯,谢基雄,曾新萍,应梦云. 不同干燥方式对茉莉花茶挥发性成分的影响. 食品工业科技. 2024(18): 210-218 . 本站查看
    10. 李为兰,徐柠檬,杨晶晶,资璐熙,郭磊. 基于GC-IMS指纹图谱分析云南不同产地美味牛肝菌的挥发性成分. 中国食品学报. 2024(08): 341-356 .
    11. 刘金鑫,李晓洁,李建华,谈亚丽,杜维力,李啸. 高茶黄素速溶红茶的酶促氧化工艺优化及品质分析. 食品工业科技. 2023(05): 185-194 . 本站查看
    12. 李沅达,吴婷,黄刚骅,任玲,马晨阳,周小慧,李亚莉,周红杰. SPME-GC-MS技术结合rOAV分析不同加工工艺紫娟白茶的关键香气物质. 食品工业科技. 2023(09): 324-332 . 本站查看
    13. 武珊珊,尤名南,潘朦,王玮,郭巧,丁其欢,周雪芳. 白茶香气成分及影响因素研究进展. 食品安全质量检测学报. 2023(12): 1-14 .
    14. 翁唐宾. 白茶加工工艺关键技术分析. 福建茶叶. 2023(08): 29-31 .
    15. 张晓元,陈雄,蔡伟贤,吴晖. 草珊瑚茶加工工艺及质量评价. 现代食品科技. 2023(08): 199-205 .
    16. 周一鸣,蔡望秋,朱思怡,魏佳南,崔琳琳,周小理. 福建白茶的风味物质与特征香气分析研究进展. 农产品加工. 2023(19): 84-89+95 .
    17. 陈林,陈键,宋振硕,王丽丽,张应根,项丽慧,林清霞. 白茶风味品质形成与调控技术研究进展. 中国茶叶加工. 2023(04): 22-35 .
    18. 王金华,叶晓仪,母艳,马立志,钱勇,葛永辉. 贵州3种代表性猕猴桃种间特征香气成分比较分析. 食品安全质量检测学报. 2022(19): 6190-6197 .
    19. 张灵枝,戴浩民,黄艳,林振传,邵克平,孙威江. 福鼎白茶品质特征与质量评判研究进展. 海峡科学. 2022(11): 68-72+76 .

    Other cited types(13)

Catalog

    Article Metrics

    Article views (94) PDF downloads (13) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return