LIU Zhiyuan, ZENG Jinzi, ZHENG Tongyu, et al. Molecular Mechanisms of Cucurbitacin B-induced Ferroptosis in Human Colorectal Cancer Cells[J]. Science and Technology of Food Industry, 2024, 45(8): 325−335. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060234.
Citation: LIU Zhiyuan, ZENG Jinzi, ZHENG Tongyu, et al. Molecular Mechanisms of Cucurbitacin B-induced Ferroptosis in Human Colorectal Cancer Cells[J]. Science and Technology of Food Industry, 2024, 45(8): 325−335. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060234.

Molecular Mechanisms of Cucurbitacin B-induced Ferroptosis in Human Colorectal Cancer Cells

More Information
  • Received Date: June 24, 2023
  • Available Online: February 25, 2024
  • In order to investigate the anti-colon cancer activity of cucurbitacin B (CuB) and clarify the key role and molecular mechanism of ferroptosis in the anticancer effect of CuB. This study used human colon cancer cells HCT-116 as the model to evaluate the anti-colon cancer activity of CuB, detected ferroptosis-related indicators, and investigated the mechanism of CuB in inhibiting colon cancer through network pharmacology analysis, metabolomics analysis, molecular docking, and molecular dynamics simulation. The results showed that CuB significantly (P<0.05) inhibited the proliferation of HCT-116 cells with an IC50 of 64.48 nmol/L. Additionally, CuB decreased the intracellular content of glutathione (GSH), promoted the accumulation of total iron ions, and enhanced the release of lactate dehydrogenase (LDH), all of which could be reversed by the ferroptosis inhibitor Fer-1. Results from network pharmacology and metabolomics analysed suggest that the mechanism of CuB's inhibition of colon cancer was linked to the GSH metabolic pathway closely related to ferroptosis. Furthermore, molecular docking revealed that CuB could bind to key proteins in the GSH metabolic pathway, SLC7A11 and GPX4, with scores of −4.819 and −3.833, respectively. Molecular dynamics simulations demonstrated that CuB had good structural stability, fluctuation, and energy stability when bound to SLC7A11. Consequently, this study uncovered that CuB exerted its anti-cancer effect by inducing ferroptosis in HCT-116 cells.
  • [1]
    LABIANCA R, BERETTA G D, KILDANI B, et al. Colon cancer[J]. Critical Reviews in Oncology/Hematology,2010,74(2):106−133. doi: 10.1016/j.critrevonc.2010.01.010
    [2]
    宫辰, 杨冰, 周钰通, 等. 葫芦素抗肿瘤作用及其机制研究进展[J]. 药物评价研究,2023,46(2):452−461. [GONG Chen, YANG Bing, ZHOU Yutong, et al. Research progress on the pharmacological effects and mechanisms of cucurbitacin against tumors[J]. Drug Evaluation Research,2023,46(2):452−461.]

    GONG Chen, YANG Bing, ZHOU Yutong, et al. Research progress on the pharmacological effects and mechanisms of cucurbitacin against tumors[J]. Drug Evaluation Research, 2023, 462): 452461.
    [3]
    GARG S, KAUL S C, WADHWA R. Cucurbitacin B and cancer intervention:Chemistry, biology and mechanisms (Review)[J]. International Journal of Oncology,2018,52(1):19−37.
    [4]
    DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis:An iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5):1060−1072. doi: 10.1016/j.cell.2012.03.042
    [5]
    MOU Y H, WANG J, WU J C, et al. Ferroptosis, a new form of cell death:Opportunities and challenges in cancer[J]. Journal of Hematology & Oncology,2019,12(1):34.
    [6]
    LI J, CAO F, YIN H L, et al. Ferroptosis:Past, present and future[J]. Cell Death & Disease,2020,11(2):88.
    [7]
    GASCHLER M M, ANDIA A A, LIU H, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation[J]. Nature Chemical Biology,2018,14(5):507−515. doi: 10.1038/s41589-018-0031-6
    [8]
    LIANG C, ZHANG X L, YANG M S, et al. Recent progress in ferroptosis inducers for cancer therapy[J]. Advanced Materials,2019,31(51):e1904197. doi: 10.1002/adma.201904197
    [9]
    PARK T J, PARK J H, LEE G S, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes[J]. Cell Death & Disease,2019,10(11):835.
    [10]
    STOCKWELL B R, JIANG X, GU W. Emerging mechanisms and disease relevance of ferroptosis[J]. Trends in Cell Biology,2020,30:478−490. doi: 10.1016/j.tcb.2020.02.009
    [11]
    HUANG S, CAO B H, ZHANG J L, et al. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B:Molecular mechanism and therapeutic potential[J]. Cell Death & Disease,2021,12(3):237.
    [12]
    MAO D, LIU A H, WANG Z P, et al. Cucurbitacin B inhibits cell proliferation and induces cell apoptosis in colorectal cancer by modulating methylation status of BTG3[J]. Neoplasma,2019,66(4):593−602. doi: 10.4149/neo_2018_180929N729
    [13]
    ZHANG H Y, ZHAO B, WEI H Z, et al. Cucurbitacin b controls M2 macrophage polarization to suppresses metastasis via targeting Jak-2/Stat3 signalling pathway in colorectal cancer[J]. Journal of Ethnopharmacology,2022,287:114915. doi: 10.1016/j.jep.2021.114915
    [14]
    DANDAWATE P, SUBRAMANIAM D, PANOVICH P, et al. Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway[J]. Scientific Reports,2020,10(1):1290. doi: 10.1038/s41598-020-57940-9
    [15]
    WISHART D S, FEUNANG Y D, GUO A C, et al. Drug Bank 5.0:A major update to the Drug Bank database for 2018[J]. Nucleic Acids Res,2018,46(D1):1074−1082. doi: 10.1093/nar/gkx1037
    [16]
    AMBERGER J S, BOCCHINI C A, SCHIETTECATTE F, et al. OMIM. org:Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Research, 2015, 43(Database issue):789-798.
    [17]
    STELZER G, ROSEN N, PLASCHKES I, et al. The gene cards suite:from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics,2016,54:1−33.
    [18]
    BARBARINO J M, WHIRL-CARRILLO M, ALTMAN R B, et al. Pharm GKB:A worldwide resource for pharmacogenomic information[J]. Wiley Interdisciplinary Reviews systems Biology And Medicine,2014,10(4):289−306.
    [19]
    CHEN X, JI Z L, CHEN Y Z. TTD:Therapeutic target database[J]. Nucleic Acids Research,2002,30(1):412−415. doi: 10.1093/nar/30.1.412
    [20]
    KIM S, CHEN J, CHENG T J, et al. PubChem in 2021:New data content and improved web interfaces[J]. Nucleic Acids Research,2021,49:1388−1395. doi: 10.1093/nar/gkaa971
    [21]
    BIASINI M, BIENERT S, WATERHOUSE A, et al. SWISS-MODEL:Modelling protein tertiary and quaternary structure using evolutionary information[J]. Nucleic Acids Research,2014,42:252−258. doi: 10.1093/nar/gku340
    [22]
    LIU Z Y, GUO F F, WANG Y, et al. BATMAN-TCM:A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine[J]. Scientific Reports,2016,6:21146. doi: 10.1038/srep21146
    [23]
    RU J L, LI P, WANG J N, et al. TCMSP:A database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics,2014,6:13. doi: 10.1186/1758-2946-6-13
    [24]
    ZHANG J T, FAN F Y, LIU A F, et al. Icariin:A potential molecule for treatment of knee osteoarthritis[J]. Frontiers in Pharmacology,2022,13:811808. doi: 10.3389/fphar.2022.811808
    [25]
    YANG X, LI Y H, LÜ R L, et al. Study on the multitarget mechanism and key active ingredients of herba siegesbeckiae and volatile oil against rheumatoid arthritis based on network pharmacology[J]. Evidence-based Complementary and Alternative Medicine,2019,2019:8957245.
    [26]
    GUO H H, GUO H X, ZHANG L, et al. Metabolome and transcriptome association analysis reveals dynamic regulation of purine metabolism and flavonoid synthesis in transdifferentiation during somatic embryogenesis in cotton[J]. International Journal of Molecular Sciences,2019,20(9):2070. doi: 10.3390/ijms20092070
    [27]
    ALONSO H, BLIZNYUK A A, GREADY J E. Combining docking and molecular dynamic simulations in drug design[J]. Medicinal Research Reviews,2006,26(5):531−568. doi: 10.1002/med.20067
    [28]
    IMAN M, KABOUTARAKI H B, JAFARI R, et al. Molecular dynamics simulation and docking studies of selenocyanate derivatives as anti-leishmanial agents[J]. Combinatorial Chemistry & High Throughput Screening,2016,19(10):847−854.
    [29]
    张博文, 董君丽, 曹兵, 等. 铁死亡的表观遗传调控机制[J]. 生命的化学,2023,43(2):227−233. [ZHANG Bowen, DONG Junli, CAO Bing, et al. The epigenetic regulatory mechanisms of ferroptosis[J]. Chemistry of Life,2023,43(2):227−233.]

    ZHANG Bowen, DONG Junli, CAO Bing, et al. The epigenetic regulatory mechanisms of ferroptosis[J]. Chemistry of Life, 2023, 432): 227233.
    [30]
    WANG Y Q, CHANG S Y, WU Q, et al. The protective role of mitochondrial ferritin on erastin-induced ferroptosis[J]. Frontiers in Aging Neuroscience,2016,8:308.
    [31]
    李雅琪, 徐弘庭, 赵维坚, 等. 肝细胞癌中的铁死亡与氧化应激[J]. 生物医学,2023,13(3):293−302. [LI Yaqi, XU Hongting, ZHAO Weijian, et al. Ferroptosis and oxidative stress in hepatic cellular carcinoma[J]. Hans Journal of Biomedicine,2023,13(3):293−302.] doi: 10.12677/HJBM.2023.133034

    LI Yaqi, XU Hongting, ZHAO Weijian, et al. Ferroptosis and oxidative stress in hepatic cellular carcinoma[J]. Hans Journal of Biomedicine, 2023, 133): 293302. doi: 10.12677/HJBM.2023.133034
    [32]
    高绪聪, 柴振海, 张宗鹏. 药物性肝损伤的生物标志物及其评价的研究进展[J]. 中国药理学与毒理学杂志, 2012, 5(26):692−696. [GAO Xucong, CHAI Zhenhai, ZHANG Zongpeng. Progress in biomarkers and evaluation of drug-induced liver injury[J]. Chinese Journal of Pharmacology and Toxicology, 2012, 5(26):692−696.]

    GAO Xucong, CHAI Zhenhai, ZHANG Zongpeng. Progress in biomarkers and evaluation of drug-induced liver injury[J]. Chinese Journal of Pharmacology and Toxicology, 2012, 5(26): 692−696.
    [33]
    ERSAHIN T, TUNCBAG N, CETIN-ATALAY R. The PI3K/AKT/mTOR interactive pathway[J]. Molecular Biosystems,2015,11(7):1946−1954. doi: 10.1039/C5MB00101C
    [34]
    ZHU Y H, XIAN X M, WANG Z Z, et al. Research progress on the relationship between atherosclerosis and inflammation[J]. Biomolecules,2018,8(3):80. doi: 10.3390/biom8030080
    [35]
    FANG J Y, RICHARDSON B C. The MAPK signalling pathways and colorectal cancer[J]. The Lancet Oncology,2005,6(5):322−327. doi: 10.1016/S1470-2045(05)70168-6
    [36]
    BOULESTEIX A L, STRIMMER K. Partial least squares:A versatile tool for the analysis of high-dimensional genomic data[J]. Briefings in Bioinformatics,2007,8(1):32−44.
    [37]
    WANG B, LIU G L, FEI Q, et al. Orthogonal projection to latent structures combined with artificial neural networks in non-destructive analysis of Ampicillin powder[J]. Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy,2009,71(5):1695−1700. doi: 10.1016/j.saa.2008.06.021
    [38]
    YUAN R, ZHAO W, WANG Q Q, et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis[J]. Pharmacological Research,2021,170:105748. doi: 10.1016/j.phrs.2021.105748
    [39]
    CHAI Y T, XIANG K, WU Y Z, et al. Retracted:Cucurbitacin B inhibits the Hippo-YAP signaling pathway and exerts anticancer activity in colorectal cancer cells[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research,2022,28:e938690.
    [40]
    ALAFNAN A, KHALIFA N E, HUSSAIN T, et al. Cucurbitacin-B instigates intrinsic apoptosis and modulates notch signaling in androgen-dependent prostate cancer LNCaP cells[J]. Frontiers in Pharmacology,2023,14:1206981. doi: 10.3389/fphar.2023.1206981
    [41]
    SINHA S, KHAN S, SHUKLA S, et al. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis[J]. The International Journal of Biochemistry & Cell Biology,2016,77:41−56.
    [42]
    KOPPULA P, ZHUANG L, GAN B. Cystine transporter SLC7A11/xCT in cancer:Ferroptosis, nutrient dependency, and cancer therapy[J]. Protein & Cell,2021,12(8):599−620.
  • Related Articles

    [1]CHU Shaoxuan, WANG Xiao, TANG Zheng, ZHANG Zhiyi, DONG Hongjing, GONG Jianquan, ZHENG Zhenjia. Action Mechanism of Nelumbo nucifera Leaf Alkaloids in the Treatment of Hyperuricemia Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2024, 45(17): 10-20. DOI: 10.13386/j.issn1002-0306.2023110189
    [2]GUO Yan, GUO Yilin, LIU Boping, XU Jianguo. Mechanism of Baicalein Inhibiting the PD-1/PD-L1 Interaction Based on Molecular Dynamics Simulation and Experiment Research[J]. Science and Technology of Food Industry, 2024, 45(2): 40-47. DOI: 10.13386/j.issn1002-0306.2023090095
    [3]LI Wen, CHEN Wanchao, MA Haile, WU Di, ZHANG Zhong, YANG Yan. Exploring the Taste Characteristics and ACE-inhibitory Active Mechanism of Stropharia rugosoannulata Decapeptides Based on Virtual Screening, Molecular Docking, and Molecular Interactions[J]. Science and Technology of Food Industry, 2023, 44(20): 11-17. DOI: 10.13386/j.issn1002-0306.2022120208
    [4]WANG Guizhen, LIU Hongtao, YANG Xiubai, JIANG Yuqing, YANG Lili, QIU Jiazhang. Inhibition of Myristic Acid on Suilysin and the Molecular Mechanism[J]. Science and Technology of Food Industry, 2023, 44(15): 62-68. DOI: 10.13386/j.issn1002-0306.2022080344
    [5]LI Tingting, GUAN Ya, HONG Zishan, XIE Jing, TIAN Yang. Study on the Anti-obesity Mechanism of Action of Moringa oleifera Lam. Leaves by Network-Based Pharmacology and Molecular Docking Techniques[J]. Science and Technology of Food Industry, 2023, 44(15): 34-45. DOI: 10.13386/j.issn1002-0306.2022090318
    [6]YANG Juan, DOU Jiahong, SUN Yuelong, WANG Xiaoying, ZHOU Weiwei, ZHANG Guobin, LIU Hongxin, YANG Peilong, LI Xiumei. Molecular Mechanism of Phedimus aizoon (Linnaeus)'t Hart. on Anti-inflammatory Effect Based on Network Pharmacology and Molecular Docking and Experiment Research[J]. Science and Technology of Food Industry, 2023, 44(4): 12-21. DOI: 10.13386/j.issn1002-0306.2022050178
    [7]ZHANG Yuxin, LIU Weiwei, YANG Juan, ZHOU Weiwei, DAI Xiaofeng, LI Xiumei, ZHENG Wei. Molecular Mechanism of Common Phenolic Acids on Enhancing Immunity Based on Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2023, 44(2): 29-40. DOI: 10.13386/j.issn1002-0306.2022030227
    [8]SU Yao, WANG Lan, CHANG Xiangna, GONG Pin, YANG Wenjuan, CUI Dandan. Mechanism of Gynostemma pentaphyllum on Prevention and Treatment of Obesity Based on Network Pharmacology and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2022, 43(4): 12-23. DOI: 10.13386/j.issn1002-0306.2021070083
    [9]Yazhi WANG, Jianyong ZHANG, Cancan DUAN. Mechanism of Relieving Alcohol and Protecting Liver of Yigancao Herbal Tea Based on Network Pharmacology and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2021, 42(8): 8-18. DOI: 10.13386/j.issn1002-0306.2020070092
    [10]JI Huizhuo, CHEN Jiayu, LI Xin, MA Ruping, YU Zhipeng, ZHAO Wenzhu, LI Jianrong. Screening,in Vitro Activity and Molecular Mechanism of ACE Inhibitory Tirpeptides from Larimichthys crocea Protein[J]. Science and Technology of Food Industry, 2021, 42(6): 125-129,143. DOI: 10.13386/j.issn1002-0306.2020060287
  • Other Related Supplements

  • Cited by

    Periodical cited type(2)

    1. 周秀珍,刘滔,张毅,王扬,赵敏洁,王旭堂,黄菊,冯凤琴. 混合益生菌对大口黑鲈生长性能、肉品质及肠道健康的影响. 动物营养学报. 2024(07): 4588-4609 .
    2. 陈斯艺,陈恢祥,汤曜名,郭衍彪. 植物乳杆菌MH079448对日本鳗鲡肌肉品质的影响. 饲料研究. 2023(02): 75-78 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (133) PDF downloads (21) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return