Citation: | LI Dengbin, WEI Chao, ZHANG Yuan, et al. Research Progress in Metabolic Engineering Strategies for Microbial Synthesis of 2′-Fucosyllactose and 3-Fucosyllactose[J]. Science and Technology of Food Industry, 2024, 45(10): 376−385. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060216. |
[1] |
ZHU Y Y, WAN L, LI W, et al. Recent advances on 2′-fucosyllactose:Physiological properties, applications, and production approaches[J]. Critical Reviews in Food Science and Nutrition,2022,62(8):2083−2092. doi: 10.1080/10408398.2020.1850413
|
[2] |
LI W S, WANG J X, LIN Y Y, et al. How far is it from infant formula to human milk? A look at the human milk oligosaccharides[J]. Trends in Food Science & Technology,2021,118:374−387.
|
[3] |
SINGH R P, NIHARIKA J, KONDEPUDI K K, et al. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system[J]. Food Research International,2022,151:110884. doi: 10.1016/j.foodres.2021.110884
|
[4] |
THUM C, WALL C R, WEISS G A, et al. Changes in HMO concentrations throughout lactation:Influencing factors, health effects and opportunities[J]. Nutrients,2021,13(7):2272. doi: 10.3390/nu13072272
|
[5] |
PLAZA-DIAZ J, FONTANA L, GIL A. Human milk oligosaccharides and immune system development[J]. Nutrients,2018,10(8):1038. doi: 10.3390/nu10081038
|
[6] |
ZHU Y Y, CAO H Z, WANG H, et al. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches:Current advances and challenges[J]. Current Opinion in Biotechnology,2022,78:102841. doi: 10.1016/j.copbio.2022.102841
|
[7] |
NOLL A J, GOURDINE J P, YU Y, et al. Galectins are human milk glycan receptors[J]. Glycobiology,2016,26(6):655−669. doi: 10.1093/glycob/cww002
|
[8] |
GROLLMAN A P, HALL C W, GINSBURG V. Biosynthesis of fucosyllactose and other oligosaccharides found in milk[J]. Journal of Biological Chemistry,1965,240(3):975−981. doi: 10.1016/S0021-9258(18)97522-8
|
[9] |
SPRENGER G A, BAUMGARTNER F, ALBERMANN C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations[J]. Journal of Biotechnology,2017,258:79−91. doi: 10.1016/j.jbiotec.2017.07.030
|
[10] |
ANDERSON A, DONALD A S R. Improved method for the isolation of 2′-fucosyllactose from human milk[J]. Journal of Chromatography A,1981,211(1):170−174. doi: 10.1016/S0021-9673(00)81188-7
|
[11] |
PEREZ E E, ALATORRE S S, CASTANEDA O A, et al. Human milk oligosaccharides as bioactive compounds in infant formula:recent advances and trends in synthetic methods[J]. Critical Reviews in Food Science and Nutrition,2022,62(1):181−214. doi: 10.1080/10408398.2020.1813683
|
[12] |
AGOSTON K, HEDEROS M J, BAJZA I, et al. Kilogram scale chemical synthesis of 2′-fucosyllactose[J]. Carbohydrate Research,2019,476:71−77. doi: 10.1016/j.carres.2019.03.006
|
[13] |
史然, 江正强. 2′-岩藻糖基乳糖的酶法合成研究进展和展望[J]. 合成生物学,2020,1(4):481−494. [SHI R, JIANG Z Q. Enzymatic synthesis of 2'-fucosyllactose:Advances and perspectives[J]. Synthetic Biology Journal,2020,1(4):481−494.] doi: 10.12211/2096-8280.2020-033
SHI R, JIANG Z Q. Enzymatic synthesis of 2'-fucosyllactose: Advances and perspectives[J]. Synthetic Biology Journal, 2020, 1(4): 481−494. doi: 10.12211/2096-8280.2020-033
|
[14] |
ENGELS L, ELLING L. WbgL:A novel bacterial alpha 1,2-fucosyltransferase for the synthesis of 2′-fucosyllactose[J]. Glycobiology, 2014, 24(2):170-178.
|
[15] |
ALBERMANN C, PIEPERSBERG W, WEHMEIER U F. Synthesis of the milk oligosaccharide 2′-fucosyllactose using recombinant bacterial enzymes[J]. Carbohydrate Research,2001,334(2):97−103. doi: 10.1016/S0008-6215(01)00177-X
|
[16] |
IHARA H, IKEDA Y, TANIGUCHI N. Reaction mechanism and substrate specificity for nucleotide sugar of mammalian alpha1, 6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8[J]. Glycobiology,2006,16(4):333−342. doi: 10.1093/glycob/cwj068
|
[17] |
李雯. 代谢工程改造大肠杆菌产2′-岩藻糖基乳糖[D]. 无锡:江南大学, 2021. [LI W. Metabolic engineering to synthesize 2'-fucosyllactose in Escherichia coli[D]. Wuxi:Jiangnan University, 2021.]
LI W. Metabolic engineering to synthesize 2'-fucosyllactose in Escherichia coli[D]. Wuxi: Jiangnan University, 2021.
|
[18] |
LI C, WU M, GAO X, et al. Efficient biosynthesis of 2′-fucosyllactose using an in vitro multienzyme cascade[J]. Journal of Agricultural and Food Chemistry,2020,68(39):10763−10771. doi: 10.1021/acs.jafc.0c04221
|
[19] |
HUANG D, YANG K X, LIU J, et al. Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement[J]. Metabolic Engineering,2017,41:23−38. doi: 10.1016/j.ymben.2017.03.001
|
[20] |
LI W, ZHU Y Y, WAN L, et al. Pathway optimization of 2′-fucosyllactose production in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2021,69(5):1567−1577. doi: 10.1021/acs.jafc.0c07224
|
[21] |
XU M Y, MENG X F, ZHANG W X, et al. Improved production of 2′-fucosyllactose in engineered Saccharomyces cerevisiae expressing a putative alpha-1,2-fucosyltransferase from Bacillus cereus[J]. Microbial Cell Factories,2021,20(1):165. doi: 10.1186/s12934-021-01657-5
|
[22] |
ZHU Y Y, CHEN R L, WANG H, et al. Elimination of byproduct generation and enhancement of 2′-Fucosyllactose synthesis by expressing a novel α-1,2-Fucosyltransferase in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2023,71(12):4915−4923. doi: 10.1021/acs.jafc.3c00139
|
[23] |
CHEN Y H, ZHU Y Y, WANG H, et al. De novo biosynthesis of 2′-fucosyllactose in a metabolically engineered Escherichia coli using a novel ɑ-1,2-fucosyltransferase from Azospirillum lipoferum[J]. Bioresource Technology,2023,374:128818. doi: 10.1016/j.biortech.2023.128818
|
[24] |
CHEN G, WU H, ZHU Y Y, et al. Glycosyltransferase from Bacteroides gallinaceum is a novel alpha-1,3-Fucosyltransferase that can be used for 3-fucosyllactose production in vivo by metabolically engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2022,70(6):1934−1942. doi: 10.1021/acs.jafc.1c06719
|
[25] |
YU J, SHIN J, PARK M, et al. Engineering of alpha-1, 3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli[J]. Metabolic Engineering,2018,48:269−278. doi: 10.1016/j.ymben.2018.05.021
|
[26] |
GUZMAN-RODRIGUEZ F, ALATORRE-SANTAMARIA S, GOMEZ-RUIZ L, et al. Employment of fucosidases for the synthesis of fucosylated oligosaccharides with biological potential[J]. Biotechnology and Applied Biochemistry,2018,66(2):172−191.
|
[27] |
GUZMAN-RODRIGUEZ F, ALATORRE-SANTAMARIA S, GOMEZ-RUIZ L, et al. Synthesis of a fucosylated trisaccharide via transglycosylation by alpha-L-Fucosidase from Thermotoga maritima[J]. Applied Biochemistry and Biotechnology,2018,186(3):681−691. doi: 10.1007/s12010-018-2771-x
|
[28] |
LI M L, LI C C, LUO Y J, et al. Multi-level metabolic engineering of Escherichia coli for high-titer biosynthesis of 2′-fucosyllactose and 3-fucosyllactose[J]. Microbial Biotechnology,2022,15(12):2970−2981. doi: 10.1111/1751-7915.14152
|
[29] |
LEE H J, SHIN D J, HAN K, et al. Simultaneous production of 2′-fucosyllactose and difucosyllactose by engineered Escherichia coli with high secretion efficiency[J]. Biotechnology Journal,2022,17(3):2100629. doi: 10.1002/biot.202100629
|
[30] |
邢敏钰, 谭丹, 冉淦侨. 人乳寡糖2′-岩藻糖基乳糖的功能及其全细胞生物合成[J]. 微生物学报, 2022, 62(7):2478-2497. [XING Minyu, TAN Dan, RAN Ganqiao. Function and whole-cell biosynthesis of human milk oligosaccharide 2′-fucosyllactose. Acta Microbiologica Sinica, 2022, 62(7):2478–2497.]
XING Minyu, TAN Dan, RAN Ganqiao. Function and whole-cell biosynthesis of human milk oligosaccharide 2′-fucosyllactose. Acta Microbiologica Sinica, 2022, 62(7): 2478–2497.
|
[31] |
LIU Y L, ZHU Y Y, WAN L, et al. High-level de novo biosynthesis of 2′-fucosyllactose by metabolically engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2022,70(29):9017−9025. doi: 10.1021/acs.jafc.2c02484
|
[32] |
SUN X, PENG Z T, LI C, et al. Combinatorial metabolic engineering and tolerance evolving of Escherichia coli for high production of 2′-fucosyllactose[J]. Bioresource Technology,2023,372:128667. doi: 10.1016/j.biortech.2023.128667
|
[33] |
XU M Y, SUN M T, MENG X F, et al. Engineering pheromone-mediated quorum sensing with enhanced response output increases fucosyllactose production in Saccharomyces cerevisiae[J]. ACS Synthetic Biology,2022,12(1):238−248.
|
[34] |
ZHANG Q W, LIU Z M, XIA H Z, et al. Engineered Bacillus subtilis for the de novo production of 2′-fucosyllactose[J]. Microbial Cell Factories,2022,21(1):110. doi: 10.1186/s12934-022-01838-w
|
[35] |
SEO J H, CHIN Y W, JO H Y. Method of producing 2'-fucosyllactose using Corynebacterium glutamicum:US2018/0298389 A1[P]. 2018-10-18 [2020-05-26].
|
[36] |
YANG L H, ZHU Y Y, ZHANG W L, et al. Recent progress in health effects and biosynthesis of lacto-N-tetraose, the most dominant core structure of human milk oligosaccharide[J]. Critical Reviews in Food Science and Nutrition, 2023:1-10.
|
[37] |
ZHU Y Y, ZHANG J M, ZHANG W L, et al. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3′-sialyllactose and 6′-sialyllactose[J]. Biotechnology Advances,2022,62:108058.
|
[38] |
LU M Y, MOSLEH I, ABBASPOURRAD A. Engineered microbial routes for human milk oligosaccharides synthesis[J]. ACS Synthetic Biology,2021,10(5):923−938. doi: 10.1021/acssynbio.1c00063
|
[39] |
万李. 构建大肠杆菌细胞工厂生产GDP-L-岩藻糖[D]. 无锡:江南大学, 2021. [WAN L. Construction of Escherichia coli cell factory for production of GDP-L-fucose[D]. Wuxi:Jiangnan University, 2021.]
WAN L. Construction of Escherichia coli cell factory for production of GDP-L-fucose[D]. Wuxi: Jiangnan University, 2021.
|
[40] |
LI M L, LI C C, HU M M, et al. Metabolic engineering strategies of de novo pathway for enhancing 2′-fucosyllactose synthesis in Escherichia coli[J]. Microbial Biotechnology,2021,15(5):1561−1573.
|
[41] |
HOLLANDS K, BARON C M, GIBSON K J, et al. Engineering two species of yeast as cell factories for 2′-fucosyllactose[J]. Metabolic Engineering,2018,52:232−242.
|
[42] |
LIN L, GONG M Y, LIU Y F, et al. Combinatorial metabolic engineering of Escherichia coli for de novo production of 2′-fucosyllactose[J]. Bioresource Technology,2022,351:126949. doi: 10.1016/j.biortech.2022.126949
|
[43] |
LEE J W, KWAK S, LIU J J, et al. 2′-Fucosyllactose production in engineered Escherichia coli with deletion of waaF and wcaJ and overexpression of FucT2[J]. Journal of Biotechnology,2021,340:30−38. doi: 10.1016/j.jbiotec.2021.08.007
|
[44] |
瓮茹茹, 卫鑫慧, 李浩正, 等. 2′-岩藻糖基乳糖的微生物合成研究进展[J]. 食品科学,2021,42(17):248−254. [WENG R R, WEI X H, LI H Z, et al. Progress in microbial synthesis of 2’-fucosyllactose[J]. Food Science,2021,42(17):248−254.] doi: 10.7506/spkx1002-6630-20200526-319
WENG R R, WEI X H, LI H Z, et al. Progress in microbial synthesis of 2’-fucosyllactose[J]. Food Science, 2021, 42(17): 248−254. doi: 10.7506/spkx1002-6630-20200526-319
|
[45] |
LIU W X, TANG S Z, PENG J, et al. Enhancing lactose recognition of a key enzyme in 2′-fucosyllactose synthesis:Alpha-1,2-fucosyltransferase[J]. Journal of the Science of Food and Agriculture,2022,103(3):1303−1314.
|
[46] |
PARK B S, CHOI Y H, KIM M W, et al. Enhancing biosynthesis of 2′-Fucosyllactose in Escherichia coli through engineering lactose operon for lactose transport and alpha-1,2-Fucosyltransferase for solubility[J]. Biotechnology and Bioengineering,2022,119(5):1264−1277. doi: 10.1002/bit.28048
|
[47] |
NI Z J, LI Z K, WU J Y, et al. Multi-path optimization for efficient production of 2′-fucosyllactose in an engineered Escherichia coli C41 (DE3) derivative[J]. Front Bioeng Biotechnol,2020,8:611900. doi: 10.3389/fbioe.2020.611900
|
[48] |
WAN L, ZHU Y Y, CHEN G, et al. Efficient production of 2′-fucosyllactose from L-Fucose via self-Assembling multienzyme complexes in engineered Escherichia coli[J]. ACS Synthetic Biology,2021,10(10):2488−2498. doi: 10.1021/acssynbio.1c00102
|
[49] |
JUNG S M, CHIN Y W, LEE Y G, et al. Enhanced production of 2′-fucosyllactose from fucose by elimination of rhamnose isomerase and arabinose isomerase in engineered Escherichia coli[J]. Biotechnology and Bioengineering,2019,116(9):2412−2417. doi: 10.1002/bit.27019
|
[50] |
CHIN Y W, SEO N, KIM J H, et al. Metabolic engineering of Escherichia coli to produce 2′-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose[J]. Biotechnology and Bioengineering,2016,113(11):2443−2452. doi: 10.1002/bit.26015
|
[51] |
QU J L, CAO S, WEI Q X, et al. Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis in vivo[J]. ACS Nano,2019,13(9):9895−9906. doi: 10.1021/acsnano.9b03631
|
[52] |
CHEN R L, WAN L, ZHU Y Y, et al. Spatial organization of pathway enzymes via self-assembly to improve 2′-fucosyllactose biosynthesis in engineered Escherichia coli[J]. Biotechnology and Bioengineering,2023,120(2):524−535. doi: 10.1002/bit.28279
|
[53] |
LIAO Y X, NI Z J, WU J Y, et al. Effect of acetate metabolism modulation on 2′-fucosyllactose production in engineered Escherichia coli[J]. Biotechnology & Biotechnological Equipment,2021,35(1):425−436.
|
[54] |
LI M L, LUO Y J, HU M M, et al. Module-guided metabolic rewiring for fucosyllactose biosynthesis in engineered Escherichia coli with lactose de novo pathway[J]. Journal of Agricultural and Food Chemistry,2022,70(46):14761−14770. doi: 10.1021/acs.jafc.2c05909
|
[55] |
LIU Y L, ZHU Y Y, WANG H, et al. Strategies for enhancing microbial production of 2′-fucosyllactose, the most abundant human milk oligosaccharide[J]. Journal of Agricultural and Food Chemistry,2022,70(37):11481−11499. doi: 10.1021/acs.jafc.2c04539
|
[56] |
PARSCHAT K, SCHREIBER S, WARTENBERG D, et al. High-titer de novo biosynthesis of the predominant human milk oligosaccharide 2′-fucosyllactose from sucrose in Escherichia coli[J]. ACS Synthetic Biology,2020,9(10):2784−2796. doi: 10.1021/acssynbio.0c00304
|
[57] |
WUNSCHE L. Importance of bacteriophages in fermentation processes[J]. Acta Biotechnologica,1989,9(5):395−419. doi: 10.1002/abio.370090502
|
[58] |
RIETSCHEL E T, BRADE H, HOLST O, et al. Bacterial endotoxin:chemical constitution, biological recognition, host response, and immunological detoxification[J]. Pathology of Septic Shock, 1996:39−81.
|
[59] |
LIU Y N, WU Q, WU X Y, et al. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall:A review[J]. International Journal of Biological Macromolecules,2021,173:445−456. doi: 10.1016/j.ijbiomac.2021.01.125
|
[60] |
LEE J W, KWAK S, LIU J J, et al. Enhanced 2′-fucosyllactose production by engineered Saccharomyces cerevisiae using xylose as a co-substrate[J]. Metabolic Engineering,2020,62:322−329. doi: 10.1016/j.ymben.2020.10.003
|
[61] |
JI M H, LIU Y F, XIE S Q, et al. De novo synthesis of 2′-fucosyllactose in engineered Bacillus subtilis ATCC 6051a[J]. Process Biochemistry,2022,120:178−185. doi: 10.1016/j.procbio.2022.06.007
|
[62] |
YU W W, JIN K, WU Y K, et al. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis[J]. Nucleic Acids Research,2022,50(11):6587−6600. doi: 10.1093/nar/gkac476
|
1. |
韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 .
![]() | |
2. |
邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
![]() | |
3. |
刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 .
![]() | |
4. |
马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
![]() | |
5. |
赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
![]() | |
6. |
周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
![]() | |
7. |
渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 .
![]() | |
8. |
靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .
![]() |