LI Dengbin, WEI Chao, ZHANG Yuan, et al. Research Progress in Metabolic Engineering Strategies for Microbial Synthesis of 2′-Fucosyllactose and 3-Fucosyllactose[J]. Science and Technology of Food Industry, 2024, 45(10): 376−385. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060216.
Citation: LI Dengbin, WEI Chao, ZHANG Yuan, et al. Research Progress in Metabolic Engineering Strategies for Microbial Synthesis of 2′-Fucosyllactose and 3-Fucosyllactose[J]. Science and Technology of Food Industry, 2024, 45(10): 376−385. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060216.

Research Progress in Metabolic Engineering Strategies for Microbial Synthesis of 2′-Fucosyllactose and 3-Fucosyllactose

More Information
  • Received Date: June 24, 2023
  • Available Online: March 17, 2024
  • Human milk oligosaccharides (HMOs) are key components of breast milk, playing a vital role in fostering the healthy development of infants and young children. Among the main HMOs components, 2′-fucosyllactose (2′-FL) and 3-fucosyllactose (3-FL) exhibit considerable benefits in terms of inhibiting pathogenic infections, regulating gut microbiota, and enhancing immunity. In recent years, the synthesis of 2′-FL and 3-FL has emerged as a prominent area of research in the field. Despite the potential advantages of chemical or enzymatic synthesis of 2′-FL and 3-FL, these methods are hindered by their inherent limitations, including intricate reaction procedures, high costs, and poor yield, which are not conducive to meeting the demand of the market. Therefore, more efficient microbial methods have been developed and applied in the commercial production of 2′-FL and 3-FL. This article systematically outlines the methods for preparing both 2′-FL and 3-FL, thoroughly expounds upon the engineering strategies for microbial synthesis of 2′-FL and 3-FL, and provides a compelling framework for further microbial production exploration of 2′-FL and 3-FL.
  • [1]
    ZHU Y Y, WAN L, LI W, et al. Recent advances on 2′-fucosyllactose:Physiological properties, applications, and production approaches[J]. Critical Reviews in Food Science and Nutrition,2022,62(8):2083−2092. doi: 10.1080/10408398.2020.1850413
    [2]
    LI W S, WANG J X, LIN Y Y, et al. How far is it from infant formula to human milk? A look at the human milk oligosaccharides[J]. Trends in Food Science & Technology,2021,118:374−387.
    [3]
    SINGH R P, NIHARIKA J, KONDEPUDI K K, et al. Recent understanding of human milk oligosaccharides in establishing infant gut microbiome and roles in immune system[J]. Food Research International,2022,151:110884. doi: 10.1016/j.foodres.2021.110884
    [4]
    THUM C, WALL C R, WEISS G A, et al. Changes in HMO concentrations throughout lactation:Influencing factors, health effects and opportunities[J]. Nutrients,2021,13(7):2272. doi: 10.3390/nu13072272
    [5]
    PLAZA-DIAZ J, FONTANA L, GIL A. Human milk oligosaccharides and immune system development[J]. Nutrients,2018,10(8):1038. doi: 10.3390/nu10081038
    [6]
    ZHU Y Y, CAO H Z, WANG H, et al. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches:Current advances and challenges[J]. Current Opinion in Biotechnology,2022,78:102841. doi: 10.1016/j.copbio.2022.102841
    [7]
    NOLL A J, GOURDINE J P, YU Y, et al. Galectins are human milk glycan receptors[J]. Glycobiology,2016,26(6):655−669. doi: 10.1093/glycob/cww002
    [8]
    GROLLMAN A P, HALL C W, GINSBURG V. Biosynthesis of fucosyllactose and other oligosaccharides found in milk[J]. Journal of Biological Chemistry,1965,240(3):975−981. doi: 10.1016/S0021-9258(18)97522-8
    [9]
    SPRENGER G A, BAUMGARTNER F, ALBERMANN C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations[J]. Journal of Biotechnology,2017,258:79−91. doi: 10.1016/j.jbiotec.2017.07.030
    [10]
    ANDERSON A, DONALD A S R. Improved method for the isolation of 2′-fucosyllactose from human milk[J]. Journal of Chromatography A,1981,211(1):170−174. doi: 10.1016/S0021-9673(00)81188-7
    [11]
    PEREZ E E, ALATORRE S S, CASTANEDA O A, et al. Human milk oligosaccharides as bioactive compounds in infant formula:recent advances and trends in synthetic methods[J]. Critical Reviews in Food Science and Nutrition,2022,62(1):181−214. doi: 10.1080/10408398.2020.1813683
    [12]
    AGOSTON K, HEDEROS M J, BAJZA I, et al. Kilogram scale chemical synthesis of 2′-fucosyllactose[J]. Carbohydrate Research,2019,476:71−77. doi: 10.1016/j.carres.2019.03.006
    [13]
    史然, 江正强. 2′-岩藻糖基乳糖的酶法合成研究进展和展望[J]. 合成生物学,2020,1(4):481−494. [SHI R, JIANG Z Q. Enzymatic synthesis of 2'-fucosyllactose:Advances and perspectives[J]. Synthetic Biology Journal,2020,1(4):481−494.] doi: 10.12211/2096-8280.2020-033

    SHI R, JIANG Z Q. Enzymatic synthesis of 2'-fucosyllactose: Advances and perspectives[J]. Synthetic Biology Journal, 2020, 1(4): 481−494. doi: 10.12211/2096-8280.2020-033
    [14]
    ENGELS L, ELLING L. WbgL:A novel bacterial alpha 1,2-fucosyltransferase for the synthesis of 2′-fucosyllactose[J]. Glycobiology, 2014, 24(2):170-178.
    [15]
    ALBERMANN C, PIEPERSBERG W, WEHMEIER U F. Synthesis of the milk oligosaccharide 2′-fucosyllactose using recombinant bacterial enzymes[J]. Carbohydrate Research,2001,334(2):97−103. doi: 10.1016/S0008-6215(01)00177-X
    [16]
    IHARA H, IKEDA Y, TANIGUCHI N. Reaction mechanism and substrate specificity for nucleotide sugar of mammalian alpha1, 6-fucosyltransferase—a large-scale preparation and characterization of recombinant human FUT8[J]. Glycobiology,2006,16(4):333−342. doi: 10.1093/glycob/cwj068
    [17]
    李雯. 代谢工程改造大肠杆菌产2′-岩藻糖基乳糖[D]. 无锡:江南大学, 2021. [LI W. Metabolic engineering to synthesize 2'-fucosyllactose in Escherichia coli[D]. Wuxi:Jiangnan University, 2021.]

    LI W. Metabolic engineering to synthesize 2'-fucosyllactose in Escherichia coli[D]. Wuxi: Jiangnan University, 2021.
    [18]
    LI C, WU M, GAO X, et al. Efficient biosynthesis of 2′-fucosyllactose using an in vitro multienzyme cascade[J]. Journal of Agricultural and Food Chemistry,2020,68(39):10763−10771. doi: 10.1021/acs.jafc.0c04221
    [19]
    HUANG D, YANG K X, LIU J, et al. Metabolic engineering of Escherichia coli for the production of 2′-fucosyllactose and 3-fucosyllactose through modular pathway enhancement[J]. Metabolic Engineering,2017,41:23−38. doi: 10.1016/j.ymben.2017.03.001
    [20]
    LI W, ZHU Y Y, WAN L, et al. Pathway optimization of 2′-fucosyllactose production in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2021,69(5):1567−1577. doi: 10.1021/acs.jafc.0c07224
    [21]
    XU M Y, MENG X F, ZHANG W X, et al. Improved production of 2′-fucosyllactose in engineered Saccharomyces cerevisiae expressing a putative alpha-1,2-fucosyltransferase from Bacillus cereus[J]. Microbial Cell Factories,2021,20(1):165. doi: 10.1186/s12934-021-01657-5
    [22]
    ZHU Y Y, CHEN R L, WANG H, et al. Elimination of byproduct generation and enhancement of 2′-Fucosyllactose synthesis by expressing a novel α-1,2-Fucosyltransferase in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2023,71(12):4915−4923. doi: 10.1021/acs.jafc.3c00139
    [23]
    CHEN Y H, ZHU Y Y, WANG H, et al. De novo biosynthesis of 2′-fucosyllactose in a metabolically engineered Escherichia coli using a novel ɑ-1,2-fucosyltransferase from Azospirillum lipoferum[J]. Bioresource Technology,2023,374:128818. doi: 10.1016/j.biortech.2023.128818
    [24]
    CHEN G, WU H, ZHU Y Y, et al. Glycosyltransferase from Bacteroides gallinaceum is a novel alpha-1,3-Fucosyltransferase that can be used for 3-fucosyllactose production in vivo by metabolically engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2022,70(6):1934−1942. doi: 10.1021/acs.jafc.1c06719
    [25]
    YU J, SHIN J, PARK M, et al. Engineering of alpha-1, 3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli[J]. Metabolic Engineering,2018,48:269−278. doi: 10.1016/j.ymben.2018.05.021
    [26]
    GUZMAN-RODRIGUEZ F, ALATORRE-SANTAMARIA S, GOMEZ-RUIZ L, et al. Employment of fucosidases for the synthesis of fucosylated oligosaccharides with biological potential[J]. Biotechnology and Applied Biochemistry,2018,66(2):172−191.
    [27]
    GUZMAN-RODRIGUEZ F, ALATORRE-SANTAMARIA S, GOMEZ-RUIZ L, et al. Synthesis of a fucosylated trisaccharide via transglycosylation by alpha-L-Fucosidase from Thermotoga maritima[J]. Applied Biochemistry and Biotechnology,2018,186(3):681−691. doi: 10.1007/s12010-018-2771-x
    [28]
    LI M L, LI C C, LUO Y J, et al. Multi-level metabolic engineering of Escherichia coli for high-titer biosynthesis of 2′-fucosyllactose and 3-fucosyllactose[J]. Microbial Biotechnology,2022,15(12):2970−2981. doi: 10.1111/1751-7915.14152
    [29]
    LEE H J, SHIN D J, HAN K, et al. Simultaneous production of 2′-fucosyllactose and difucosyllactose by engineered Escherichia coli with high secretion efficiency[J]. Biotechnology Journal,2022,17(3):2100629. doi: 10.1002/biot.202100629
    [30]
    邢敏钰, 谭丹, 冉淦侨. 人乳寡糖2′-岩藻糖基乳糖的功能及其全细胞生物合成[J]. 微生物学报, 2022, 62(7):2478-2497. [XING Minyu, TAN Dan, RAN Ganqiao. Function and whole-cell biosynthesis of human milk oligosaccharide 2′-fucosyllactose. Acta Microbiologica Sinica, 2022, 62(7):2478–2497.]

    XING Minyu, TAN Dan, RAN Ganqiao. Function and whole-cell biosynthesis of human milk oligosaccharide 2′-fucosyllactose. Acta Microbiologica Sinica, 2022, 62(7): 2478–2497.
    [31]
    LIU Y L, ZHU Y Y, WAN L, et al. High-level de novo biosynthesis of 2′-fucosyllactose by metabolically engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2022,70(29):9017−9025. doi: 10.1021/acs.jafc.2c02484
    [32]
    SUN X, PENG Z T, LI C, et al. Combinatorial metabolic engineering and tolerance evolving of Escherichia coli for high production of 2′-fucosyllactose[J]. Bioresource Technology,2023,372:128667. doi: 10.1016/j.biortech.2023.128667
    [33]
    XU M Y, SUN M T, MENG X F, et al. Engineering pheromone-mediated quorum sensing with enhanced response output increases fucosyllactose production in Saccharomyces cerevisiae[J]. ACS Synthetic Biology,2022,12(1):238−248.
    [34]
    ZHANG Q W, LIU Z M, XIA H Z, et al. Engineered Bacillus subtilis for the de novo production of 2′-fucosyllactose[J]. Microbial Cell Factories,2022,21(1):110. doi: 10.1186/s12934-022-01838-w
    [35]
    SEO J H, CHIN Y W, JO H Y. Method of producing 2'-fucosyllactose using Corynebacterium glutamicum:US2018/0298389 A1[P]. 2018-10-18 [2020-05-26].
    [36]
    YANG L H, ZHU Y Y, ZHANG W L, et al. Recent progress in health effects and biosynthesis of lacto-N-tetraose, the most dominant core structure of human milk oligosaccharide[J]. Critical Reviews in Food Science and Nutrition, 2023:1-10.
    [37]
    ZHU Y Y, ZHANG J M, ZHANG W L, et al. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3′-sialyllactose and 6′-sialyllactose[J]. Biotechnology Advances,2022,62:108058.
    [38]
    LU M Y, MOSLEH I, ABBASPOURRAD A. Engineered microbial routes for human milk oligosaccharides synthesis[J]. ACS Synthetic Biology,2021,10(5):923−938. doi: 10.1021/acssynbio.1c00063
    [39]
    万李. 构建大肠杆菌细胞工厂生产GDP-L-岩藻糖[D]. 无锡:江南大学, 2021. [WAN L. Construction of Escherichia coli cell factory for production of GDP-L-fucose[D]. Wuxi:Jiangnan University, 2021.]

    WAN L. Construction of Escherichia coli cell factory for production of GDP-L-fucose[D]. Wuxi: Jiangnan University, 2021.
    [40]
    LI M L, LI C C, HU M M, et al. Metabolic engineering strategies of de novo pathway for enhancing 2′-fucosyllactose synthesis in Escherichia coli[J]. Microbial Biotechnology,2021,15(5):1561−1573.
    [41]
    HOLLANDS K, BARON C M, GIBSON K J, et al. Engineering two species of yeast as cell factories for 2′-fucosyllactose[J]. Metabolic Engineering,2018,52:232−242.
    [42]
    LIN L, GONG M Y, LIU Y F, et al. Combinatorial metabolic engineering of Escherichia coli for de novo production of 2′-fucosyllactose[J]. Bioresource Technology,2022,351:126949. doi: 10.1016/j.biortech.2022.126949
    [43]
    LEE J W, KWAK S, LIU J J, et al. 2′-Fucosyllactose production in engineered Escherichia coli with deletion of waaF and wcaJ and overexpression of FucT2[J]. Journal of Biotechnology,2021,340:30−38. doi: 10.1016/j.jbiotec.2021.08.007
    [44]
    瓮茹茹, 卫鑫慧, 李浩正, 等. 2′-岩藻糖基乳糖的微生物合成研究进展[J]. 食品科学,2021,42(17):248−254. [WENG R R, WEI X H, LI H Z, et al. Progress in microbial synthesis of 2’-fucosyllactose[J]. Food Science,2021,42(17):248−254.] doi: 10.7506/spkx1002-6630-20200526-319

    WENG R R, WEI X H, LI H Z, et al. Progress in microbial synthesis of 2’-fucosyllactose[J]. Food Science, 2021, 42(17): 248−254. doi: 10.7506/spkx1002-6630-20200526-319
    [45]
    LIU W X, TANG S Z, PENG J, et al. Enhancing lactose recognition of a key enzyme in 2′-fucosyllactose synthesis:Alpha-1,2-fucosyltransferase[J]. Journal of the Science of Food and Agriculture,2022,103(3):1303−1314.
    [46]
    PARK B S, CHOI Y H, KIM M W, et al. Enhancing biosynthesis of 2′-Fucosyllactose in Escherichia coli through engineering lactose operon for lactose transport and alpha-1,2-Fucosyltransferase for solubility[J]. Biotechnology and Bioengineering,2022,119(5):1264−1277. doi: 10.1002/bit.28048
    [47]
    NI Z J, LI Z K, WU J Y, et al. Multi-path optimization for efficient production of 2′-fucosyllactose in an engineered Escherichia coli C41 (DE3) derivative[J]. Front Bioeng Biotechnol,2020,8:611900. doi: 10.3389/fbioe.2020.611900
    [48]
    WAN L, ZHU Y Y, CHEN G, et al. Efficient production of 2′-fucosyllactose from L-Fucose via self-Assembling multienzyme complexes in engineered Escherichia coli[J]. ACS Synthetic Biology,2021,10(10):2488−2498. doi: 10.1021/acssynbio.1c00102
    [49]
    JUNG S M, CHIN Y W, LEE Y G, et al. Enhanced production of 2′-fucosyllactose from fucose by elimination of rhamnose isomerase and arabinose isomerase in engineered Escherichia coli[J]. Biotechnology and Bioengineering,2019,116(9):2412−2417. doi: 10.1002/bit.27019
    [50]
    CHIN Y W, SEO N, KIM J H, et al. Metabolic engineering of Escherichia coli to produce 2′-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-l-fucose[J]. Biotechnology and Bioengineering,2016,113(11):2443−2452. doi: 10.1002/bit.26015
    [51]
    QU J L, CAO S, WEI Q X, et al. Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis in vivo[J]. ACS Nano,2019,13(9):9895−9906. doi: 10.1021/acsnano.9b03631
    [52]
    CHEN R L, WAN L, ZHU Y Y, et al. Spatial organization of pathway enzymes via self-assembly to improve 2′-fucosyllactose biosynthesis in engineered Escherichia coli[J]. Biotechnology and Bioengineering,2023,120(2):524−535. doi: 10.1002/bit.28279
    [53]
    LIAO Y X, NI Z J, WU J Y, et al. Effect of acetate metabolism modulation on 2′-fucosyllactose production in engineered Escherichia coli[J]. Biotechnology & Biotechnological Equipment,2021,35(1):425−436.
    [54]
    LI M L, LUO Y J, HU M M, et al. Module-guided metabolic rewiring for fucosyllactose biosynthesis in engineered Escherichia coli with lactose de novo pathway[J]. Journal of Agricultural and Food Chemistry,2022,70(46):14761−14770. doi: 10.1021/acs.jafc.2c05909
    [55]
    LIU Y L, ZHU Y Y, WANG H, et al. Strategies for enhancing microbial production of 2′-fucosyllactose, the most abundant human milk oligosaccharide[J]. Journal of Agricultural and Food Chemistry,2022,70(37):11481−11499. doi: 10.1021/acs.jafc.2c04539
    [56]
    PARSCHAT K, SCHREIBER S, WARTENBERG D, et al. High-titer de novo biosynthesis of the predominant human milk oligosaccharide 2′-fucosyllactose from sucrose in Escherichia coli[J]. ACS Synthetic Biology,2020,9(10):2784−2796. doi: 10.1021/acssynbio.0c00304
    [57]
    WUNSCHE L. Importance of bacteriophages in fermentation processes[J]. Acta Biotechnologica,1989,9(5):395−419. doi: 10.1002/abio.370090502
    [58]
    RIETSCHEL E T, BRADE H, HOLST O, et al. Bacterial endotoxin:chemical constitution, biological recognition, host response, and immunological detoxification[J]. Pathology of Septic Shock, 1996:39−81.
    [59]
    LIU Y N, WU Q, WU X Y, et al. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall:A review[J]. International Journal of Biological Macromolecules,2021,173:445−456. doi: 10.1016/j.ijbiomac.2021.01.125
    [60]
    LEE J W, KWAK S, LIU J J, et al. Enhanced 2′-fucosyllactose production by engineered Saccharomyces cerevisiae using xylose as a co-substrate[J]. Metabolic Engineering,2020,62:322−329. doi: 10.1016/j.ymben.2020.10.003
    [61]
    JI M H, LIU Y F, XIE S Q, et al. De novo synthesis of 2′-fucosyllactose in engineered Bacillus subtilis ATCC 6051a[J]. Process Biochemistry,2022,120:178−185. doi: 10.1016/j.procbio.2022.06.007
    [62]
    YU W W, JIN K, WU Y K, et al. A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis[J]. Nucleic Acids Research,2022,50(11):6587−6600. doi: 10.1093/nar/gkac476
  • Other Related Supplements

  • Cited by

    Periodical cited type(8)

    1. 韩军,王怡,张开屏,田建军. 罗伊氏粘液乳杆菌JBR3生物学特性分析及保护剂对其活力的影响. 食品工业科技. 2025(03): 166-177 . 本站查看
    2. 邓忠惠,谢微. 罗汉果籽吸附氟离子效果的不同预测模型研究. 食品安全质量检测学报. 2024(06): 246-255 .
    3. 刘国祎,郭建章,陈星,王威强. 响应面法和人工神经网络对亚临界CO_2萃取红花籽油的建模与优化. 食品工业科技. 2024(10): 225-233 . 本站查看
    4. 马诗瑜,何敬成,詹陆川,林伟杰,林思濠,胡小刚,卞晓岚. 基于人工神经网络算法的自拟清瘟方制备工艺优化探索. 中国药业. 2023(12): 56-62 .
    5. 赵清香,李大军,李亚萍,姜宇纯,李庚,袁永旭. 反向传播神经网络耦联遗传算法与响应面设计烤制鸽肉工艺优化. 中国调味品. 2023(10): 128-133 .
    6. 周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
    7. 渠一聪,张绍绒,罗理勇,曾亮. 基于人工神经网络耦合遗传算法(BP-GA)优化茶氨酸-葡萄糖美拉德反应的条件. 食品工业科技. 2023(24): 183-192 . 本站查看
    8. 靳浩文,朱巧梅. 益生菌微胶囊技术对益生菌存活率影响的研究进展. 食品安全导刊. 2022(25): 181-183 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (226) PDF downloads (31) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return