PEI Yubo, YU Miao, ZHANG Guofang, et al. Research Status of Nutrients and Products of Buffalo Milk[J]. Science and Technology of Food Industry, 2024, 45(18): 344−354. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060170.
Citation: PEI Yubo, YU Miao, ZHANG Guofang, et al. Research Status of Nutrients and Products of Buffalo Milk[J]. Science and Technology of Food Industry, 2024, 45(18): 344−354. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060170.

Research Status of Nutrients and Products of Buffalo Milk

More Information
  • Received Date: June 18, 2023
  • Available Online: July 14, 2024
  • The dry matter content in buffalo milk is relatively high, and its comprehensive nutritional value, which is higher than that of ordinary milk, is considered a good source of various bioactive components. Therefore, buffalo milk and its related products are receiving increasing attention from consumers. In this paper, the contents of protein, fat, carbohydrate and other nutrients in buffalo milk and their physical and chemical properties are introduced according to the cutting-edge research results on buffalo milk nutrients and their products. Meanwhile, the preparation and related research of buffalo milk dairy products, such as cheese, cream, yogurt and ice cream are summarized. Finally, this paper provides some insights on the possibility of developing functional food based on bioactive substances in buffalo milk and reference for enterprises to develop buffalo-milk-related products.
  • [1]
    王金梅, 杨远, 苗永旺. 我国奶水牛业发展现状及对策研究[J]. 中国畜牧杂志,2020,56(2):177−180. [WANG J M, YANG Y, MIAO Y W. Research on the development status and countermeasures of dairy cattle industry in China[J]. Chinese Journal of Animal Science,2020,56(2):177−180.]

    WANG J M, YANG Y, MIAO Y W. Research on the development status and countermeasures of dairy cattle industry in China[J]. Chinese Journal of Animal Science, 2020, 56(2): 177−180.
    [2]
    杨炳壮. 全球水牛业发展现状与我国奶水牛业的发展趋势[J]. 广西农学报,2011,26(1):40−48. [YANG B Z. The development status of global buffalo industry and the development trend of Chinese dairy cattle industry[J]. Journal of Guangxi Agriculture,2011,26(1):40−48.] doi: 10.3969/j.issn.1003-4374.2011.01.013

    YANG B Z. The development status of global buffalo industry and the development trend of Chinese dairy cattle industry[J]. Journal of Guangxi Agriculture, 2011, 26(1): 40−48. doi: 10.3969/j.issn.1003-4374.2011.01.013
    [3]
    HUSSAIN I, YAN J, GRANDISON A S, et al. Effects of gelation temperature on Mozzarella-type curd made from buffalo and cows’ milk:2. Curd yield, overall quality and casein fractions[J]. Food Chemistry,2012,135(3):1404−1410. doi: 10.1016/j.foodchem.2012.05.110
    [4]
    谢秉锵, 瓦云超, 伍云, 等. 水牛乳资源及其理化特性研究进展[J]. 中国乳品工业,2018,46(11):22−25,44. [XIE B Q, WA Y C, WU Y, et al. Progress on distribution and physicochemical characteristics of buffalo milk[J]. China Dairy Industry,2018,46(11):22−25,44.] doi: 10.3969/j.issn.1001-2230.2018.11.005

    XIE B Q, WA Y C, WU Y, et al. Progress on distribution and physicochemical characteristics of buffalo milk[J]. China Dairy Industry, 2018, 46(11): 22−25,44. doi: 10.3969/j.issn.1001-2230.2018.11.005
    [5]
    LI S S, YANG Y X, CHEN C, et al. Differences in milk fat globule membrane proteins among Murrah, Nili-Ravi and Mediterranean buffaloes revealed by a TMT proteomic approach[J]. Food Research International,2020,139:109847.
    [6]
    简保权, 秦学敏, 龚芳. 世界水牛奶业发展现状和典型模式分析[J]. 世界农业,2015(3):115−118. [JIAN B Q, QIN X M, GONG F. Analysis of development status and typical mode of world buffalo milk industry[J]. World Agricultural, 2015(3): 115−118.]

    JIAN B Q, QIN X M, GONG F. Analysis of development status and typical mode of world buffalo milk industry[J]. World Agricultural, 2015(3): 115−118.
    [7]
    张依, 苏俊东, 罗雪路, 等. 水牛奶与奶牛奶常规营养成分与脂肪酸含量的差异及季节变化规律[J]. 中国奶牛,2021,369(1):35−41. [ZHANG Y, SU J D, LUO X L, et al. Analysis of the differences and characteristics of fatty acids and unsaturated fatty acids in dairy milk and buffalo milk[J]. China Dairy Cattle,2021,369(1):35−41.]

    ZHANG Y, SU J D, LUO X L, et al. Analysis of the differences and characteristics of fatty acids and unsaturated fatty acids in dairy milk and buffalo milk[J]. China Dairy Cattle, 2021, 369(1): 35−41.
    [8]
    戴江河, 石昭意, 潘斌, 等. 水牛奶营养与功能研究进展[J]. 中国奶牛,2017,326(6):10−13. [DAI J H, SHI Z Y, PAN B, et al. Research progress on nutrition and function of buffalo milk[J]. China Dairy Cattle,2017,326(6):10−13.]

    DAI J H, SHI Z Y, PAN B, et al. Research progress on nutrition and function of buffalo milk[J]. China Dairy Cattle, 2017, 326(6): 10−13.
    [9]
    温佩佩, 肖彬彬, 褚楚, 等. 常见动物乳与人乳的营养成分比较分析[J]. 中国乳业,2023,253(1):96−102. [WEN P P, XIAO B B, CHU C, et al. Comparison and analysis of nutritional composition between common animal milk and human milk[J]. China Dairy,2023,253(1):96−102.] doi: 10.12377/1671-4393.23.01.17

    WEN P P, XIAO B B, CHU C, et al. Comparison and analysis of nutritional composition between common animal milk and human milk[J]. China Dairy, 2023, 253(1): 96−102. doi: 10.12377/1671-4393.23.01.17
    [10]
    邱冀, 孟阳, 赵怿, 等. 不同哺乳动物乳中主要营养成分研究进展[J]. 乳业科学与技术,2021,44(3):50−54. [QIU J, MENG Y, ZHAO Y, et al. A review on the major nutritional components in milks of humans and domesticated mammals[J]. Journal of Dairy Science and Technology,2021,44(3):50−54.]

    QIU J, MENG Y, ZHAO Y, et al. A review on the major nutritional components in milks of humans and domesticated mammals[J]. Journal of Dairy Science and Technology, 2021, 44(3): 50−54.
    [11]
    MEHRA R, KELLY P. Milk oligosaccharides:Structural and technological aspects[J]. International Dairy Journal,2006,16(11):1334−1340. doi: 10.1016/j.idairyj.2006.06.008
    [12]
    刘翠, 潘健存, 李媛媛, 等. 人乳营养成分及其生理功能[J]. 食品工业科技,2019,40(1):286−291. [LIU C, PAN J C, LI Y Y, et al. Nutrients and physiological functions of human milk[J]. Science and Technology of Food Industry,2019,40(1):286−291.]

    LIU C, PAN J C, LI Y Y, et al. Nutrients and physiological functions of human milk[J]. Science and Technology of Food Industry, 2019, 40(1): 286−291.
    [13]
    黄子珍, 黄丽, 杨攀, 等. 基于主成分指标变化分析水牛乳中掺入普通牛乳的研究[J]. 中国食品添加剂,2021,32(12):176−181. [HUANG Z Z, HUANG L, YANG P, et al. Study on the identification of buffalo milk adulterated by bovine milk with principal component analysis[J]. China Food Additives,2021,32(12):176−181.]

    HUANG Z Z, HUANG L, YANG P, et al. Study on the identification of buffalo milk adulterated by bovine milk with principal component analysis[J]. China Food Additives, 2021, 32(12): 176−181.
    [14]
    BONFATTI V, GIANTIN M, ROSTELLATO R, et al. Separation and quantification of water buffalo milk protein fractions and genetic variants by RP-HPLC[J]. Food Chemistry,2013,136(2):364−367. doi: 10.1016/j.foodchem.2012.09.002
    [15]
    NAYAK S K, ARORA S, SINDHU J S, et al. Effect of chemical phosphorylation on solubility of buffalo milk proteins[J]. International Dairy Journal,2005,16(3):268−273.
    [16]
    FAN X Y, GAO S S, FU L, et al. Polymorphism and molecular characteristics of the CSN1S2 gene in river and swamp buffalo[J]. Archives Animal Breeding,2020,63(2):345−354. doi: 10.5194/aab-63-345-2020
    [17]
    黄星晨. 水牛奶酪蛋白鉴定和药物残留检测技术的研究[D]. 南宁:广西大学, 2022. [HUANG X C. Study on the casein identification and detection technology of residual veterinary drugs in buffalo milk[D]. Nanning:Guangxi University, 2022.]

    HUANG X C. Study on the casein identification and detection technology of residual veterinary drugs in buffalo milk[D]. Nanning: Guangxi University, 2022.
    [18]
    赵烜影, 郭鸰, 任大喜, 等. 水牛乳β-酪蛋白基因多态性与消化性能及抗氧化性能的关联研究[J]. 中国奶牛,2022,381(1):12−16. [ZHAO X Y, GUO L, REN D X, et al. Study on the association between β-casein gene polymorphism and digestive performance and antioxidant performance of buffalo milk[J]. China Dairy Cattle,2022,381(1):12−16.]

    ZHAO X Y, GUO L, REN D X, et al. Study on the association between β-casein gene polymorphism and digestive performance and antioxidant performance of buffalo milk[J]. China Dairy Cattle, 2022, 381(1): 12−16.
    [19]
    WU K Y, YANG T X, LI Q Y. The effects of pH and NaCl concentration on the structure of β‐casein from buffalo milk[J]. Food Science & Nutrition,2021,9(5):2436−2445.
    [20]
    FAN X Y, ZHANG Z F, QIU L H, et al. Polymorphisms of the kappa casein (CSN 3) gene and inference of its variants in water buffalo (Bubalus bubalis)[J]. Archives Animal Breeding,2019,62(2):585−596. doi: 10.5194/aab-62-585-2019
    [21]
    HOBOR S, KUNEJ T, DOVC P. Polymorphisms in the kappa casein (CSN3) gene in horse and comparative analysis of its promoter and coding region[J]. Animal Genetics,2008,39(5):520−530. doi: 10.1111/j.1365-2052.2008.01764.x
    [22]
    GRIFFITHS M. Improving the safety and quality of milk[J]. International Journal of Dairy Technology,2010,64(2):315−316.
    [23]
    CAROLI A M, CHESSA S, ERHARDT G J. Invited review:Milk protein polymorphisms in cattle:Effect on animal breeding and human nutrition[J]. Journal of Dairy Science,2009,92(11):5335−5352. doi: 10.3168/jds.2009-2461
    [24]
    LI S S, LI L, ZENG Q K, et al. Quantitative differences in whey proteins among Murrah, Nili-Ravi and Mediterranean buffaloes using a TMT proteomic approach[J]. Food Chemistry,2018,269:228−235. doi: 10.1016/j.foodchem.2018.06.122
    [25]
    ZHAO Z T, LI H, LI Q Y. Isolation of β-lactoglobulin from buffalo milk and characterization of its structure changes as a function of pH and ionic strength[J]. Journal of Food Measurement and Characterization,2017,11(3):948−955. doi: 10.1007/s11694-017-9468-7
    [26]
    刘建忠, 田为宇, 敖敬, 等. 水牛α-乳清蛋白基因的克隆及序列分析[J]. 西北农业学报,2009,18(5):31−34. [LIU J Z, TIAN W Y, AO J, et al. Cloning and sequence analysis of the α-lactalbumin gene in Bubalus bubalis[J]. Acta Agriculturae Boreali-occidentalis Sinica,2009,18(5):31−34.] doi: 10.3969/j.issn.1004-1389.2009.05.007

    LIU J Z, TIAN W Y, AO J, et al. Cloning and sequence analysis of the α-lactalbumin gene in Bubalus bubalis[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(5): 31−34. doi: 10.3969/j.issn.1004-1389.2009.05.007
    [27]
    陈文亮, 苏米亚, 贾宏信, 等. α-乳白蛋白的功能特性及其在婴儿配方乳粉中的应用[J]. 乳业科学与技术,2019,42(1):33−38. [CHEN W L, SU M Y, JIA H X, et al. Functional characteristics and application in infant formula of alpha-lactalbumin[J]. Journal of Dairy Science and Technology,2019,42(1):33−38.]

    CHEN W L, SU M Y, JIA H X, et al. Functional characteristics and application in infant formula of alpha-lactalbumin[J]. Journal of Dairy Science and Technology, 2019, 42(1): 33−38.
    [28]
    GABRIELLA D, Z J T, DÁVID B, et al. Identification of the binding site between bovine serum albumin and ultrasmall SiC fluorescent biomarkers[J]. Physical chemistry chemical physics:PCCP,2018,20(19):13419−13429. doi: 10.1039/C8CP02144A
    [29]
    王军, 王周利, 程晶晶. 多光谱法结合分子对接研究柠檬黄与牛血清白蛋白的相互作用[J]. 光谱学与光谱分析,2022,42(3):904−909. [WANG J, WANG Z L, CHENG J J. Interaction between tartrazine and bovine serum albumin using multispectral method and molecular docking[J]. Spectroscopy and Spectral Analysis,2022,42(3):904−909.] doi: 10.3964/j.issn.1000-0593(2022)03-0904-06

    WANG J, WANG Z L, CHENG J J. Interaction between tartrazine and bovine serum albumin using multispectral method and molecular docking[J]. Spectroscopy and Spectral Analysis, 2022, 42(3): 904−909. doi: 10.3964/j.issn.1000-0593(2022)03-0904-06
    [30]
    CAMPANELLA L, MARTINI E, PINTORE M, et al. Determination of lactoferrin and Immunoglobulin G in animal milks by new immunosensors[J]. Sensors,2009,9(3):2202−2221. doi: 10.3390/s90302202
    [31]
    EL-LOLY M M, HASSAN L K, FARAHAT E S A. Impact of heat treatments and some technological processing on immunoglobulins of Egyptian buffalo's milk[J]. International Journal of Biological Macromolecules,2019,123:939−944. doi: 10.1016/j.ijbiomac.2018.11.055
    [32]
    MUBIN K, SONGÜL B. The effects of modified atmosphere packaging on the quality properties of water buffalo milk's concentrated cream[J]. Molecules,2023,28(3):1310. doi: 10.3390/molecules28031310
    [33]
    PEGOLO S, STOCCO G, MELE M, et al. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography[J]. Journal of Dairy Science,2017,100(4):2564−2576. doi: 10.3168/jds.2016-11696
    [34]
    ABESINGHE A M N L, VIDANARACHCHI J K, ISLAM N, et al. Effects of ultrasonication on the physicochemical properties of milk fat globules of Bubalus bubalis (water buffalo) under processing conditions:A comparison with shear-homogenization[J]. Innovative Food Science and Emerging Technologies,2020,59(C):102237.
    [35]
    VALERIA D F, REBECCA A O, DEIRDRE K, et al. Comparative structural and compositional analyses of cow, buffalo, goat and sheep cream[J]. Foods,2021,10(11):2643. doi: 10.3390/foods10112643
    [36]
    LI R, ZHOU Y L, XU Y J. Comparative analysis of oligosaccharides in the milk of human and animals by using LC-QE-HF-MS[J]. Food Chemistry:X,2023,18:100705.
    [37]
    孟宪璞, 焦思明, 秦胜旗, 等. 奶牛与水牛初乳中乳寡糖组分比较研究[J]. 生物化学与生物物理进展,2017,44(10):942−948. [MENG X P, JIAO S M, QIN S Q, et al. Comparative study on milk oligosaccharides in buffalo and cow colostrum milk[J]. Progress in Biochemistry and Biophysics,2017,44(10):942−948.]

    MENG X P, JIAO S M, QIN S Q, et al. Comparative study on milk oligosaccharides in buffalo and cow colostrum milk[J]. Progress in Biochemistry and Biophysics, 2017, 44(10): 942−948.
    [38]
    STOCCO G, CIPOLAT-GOTET C, BONFATTI V, et al. Short communication:Variations in major mineral contents of Mediterranean buffalo milk and application of Fourier-transform infrared spectroscopy for their prediction[J]. Journal of Dairy Science,2016,99(11):8680−8686. doi: 10.3168/jds.2016-11303
    [39]
    MÁRCIO V, MIRIAN P, ARISTIDE M, et al. Buffalo milk as a source of probiotic functional products[J]. Microorganisms,2021,9(11):2303. doi: 10.3390/microorganisms9112303
    [40]
    PATIÑO E M, POCHON D O, FAISAL E L, et al. Influence of breed, year season and lactation stage on the buffalo milk mineral content[J]. Italian Journal of Animal Science,2007,6(2s):1046−1049.
    [41]
    SAMARA G P L, REGINA A E, ANTÔNIO M D C R, et al. World scenario for the valorization of byproducts of buffalo milk production chain[J]. Journal of Cleaner Production,2022,364:132605. doi: 10.1016/j.jclepro.2022.132605
    [42]
    王钰潭, 侯坤辉, 王雪峰, 等. 水牛奶干酪功能活性肽的研究[J]. 中国奶牛,2019(4):46−51. [WANG Y T, HOU K H, WANG X F, et al. Study on functional peptides of buffalo milk cheese[J]. China Dairy Cattle,2019(4):46−51.]

    WANG Y T, HOU K H, WANG X F, et al. Study on functional peptides of buffalo milk cheese[J]. China Dairy Cattle, 2019(4): 46−51.
    [43]
    赵琼, 朱志伟, 赵存朝, 等. 功能型水牛奶乳饼制作工艺的研究[J]. 中国奶牛,2018(12):38−43. [ZHAO Q, ZHU Z W, ZHAO C C, et al. Study on the development of functional buffalo milk cake[J]. China Dairy Cattle,2018(12):38−43.]

    ZHAO Q, ZHU Z W, ZHAO C C, et al. Study on the development of functional buffalo milk cake[J]. China Dairy Cattle, 2018(12): 38−43.
    [44]
    赵叶, 李渊, 赵存朝, 等. 水牛奶奶油冰淇淋的研制[J]. 中国乳品工业,2021,49(3):60−64. [ZHAO Y, LI Y, ZHAO C C, et al. Development of a kind of buffalo grandma oil ice cream[J]. China Dairy Industry,2021,49(3):60−64.]

    ZHAO Y, LI Y, ZHAO C C, et al. Development of a kind of buffalo grandma oil ice cream[J]. China Dairy Industry, 2021, 49(3): 60−64.
    [45]
    陈瑞芳, 郭傲民, 耿丹, 等. 水牛初乳粉和常乳粉对新生仔猪小肠组织形态结构的影响[J]. 中国畜牧兽医,2014,41(4):137−143. [CHEN R F, GUO A M, GENG D, et al. Effects of colostrum powder and mature milk powder of buffalo on small intestine tissue morphological structure in newborn piglets[J]. China Animal Husbandry & Veterinary Medicine,2014,41(4):137−143.]

    CHEN R F, GUO A M, GENG D, et al. Effects of colostrum powder and mature milk powder of buffalo on small intestine tissue morphological structure in newborn piglets[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(4): 137−143.
    [46]
    谢芳, 杨承剑, 李孟伟, 等. 黄秋葵水牛乳酸奶的制备工艺研究[J]. 中国乳品工业,2019,47(1):56−59. [XIE F, YANG C J, LI M W, et al. Prearation of okra buffalo milk yogurt and its technology[J]. China Dairy Industry,2019,47(1):56−59.] doi: 10.3969/j.issn.1001-2230.2019.01.014

    XIE F, YANG C J, LI M W, et al. Prearation of okra buffalo milk yogurt and its technology[J]. China Dairy Industry, 2019, 47(1): 56−59. doi: 10.3969/j.issn.1001-2230.2019.01.014
    [47]
    谢秉锵, 解冠华, 陈红兵. 水牛奶乳制品深加工的研究进展[J]. 食品科技,2007(7):9−12. [XIE B Q, XIE G H, CHEN H B. Progress on buffalo milk products[J]. China Dairy Industry,2007(7):9−12.] doi: 10.3969/j.issn.1005-9989.2007.07.003

    XIE B Q, XIE G H, CHEN H B. Progress on buffalo milk products[J]. China Dairy Industry, 2007(7): 9−12. doi: 10.3969/j.issn.1005-9989.2007.07.003
    [48]
    NGUYEN H T H, ONG L, LOPEZ C, et al. Microstructure and physicochemical properties reveal differences between high moisture buffalo and bovine Mozzarella cheeses[J]. Food Research International,2017,102:458−467. doi: 10.1016/j.foodres.2017.09.032
    [49]
    ONUR G, BÜŞRA A. Characterization of Quark-like probiotic cheese produced from a mixture of buffalo milk and cow milk[J]. Mljekarstvo,2022,72(3):172−188. doi: 10.15567/mljekarstvo.2022.0306
    [50]
    BATOOL M, NADEEM M, IMRAN M, et al. Lipolysis and antioxidant properties of cow and buffalo cheddar cheese in accelerated ripening[J]. Lipids in Health and Disease,2018,17(1):1−10. doi: 10.1186/s12944-017-0646-8
    [51]
    冯玲, 农皓如, 黄丽, 等. 水牛乳稀奶油及其酶解产物挥发性风味物质分析[J]. 食品科技,2018,43(3):251−254. [FENG L, NONG H R, HUANG L, et al. Analysis on the volatile flavor substance of buffalo milk cream and their enzymatic hydrolyzed product[J]. Food Science and Technology,2018,43(3):251−254.]

    FENG L, NONG H R, HUANG L, et al. Analysis on the volatile flavor substance of buffalo milk cream and their enzymatic hydrolyzed product[J]. Food Science and Technology, 2018, 43(3): 251−254.
    [52]
    武志霞, 赵家明, 黄艾祥. 水牛奶研究开发进展[J]. 食品研究与开发,2006(3):139−141,145. [WU Z X, ZHAO J M, HUANG A X. Research and development progress of buffalo milk[J]. Food Research and Development,2006(3):139−141,145.] doi: 10.3969/j.issn.1005-6521.2006.03.054

    WU Z X, ZHAO J M, HUANG A X. Research and development progress of buffalo milk[J]. Food Research and Development, 2006(3): 139−141,145. doi: 10.3969/j.issn.1005-6521.2006.03.054
    [53]
    MUHAMMAD J, SAIMA I, NABILA G, et al. Physical, chemical, microbial, and sensory evaluation and fatty acid profiling of value-added drinking yogurt (laban) under various storage conditions[J]. Journal of Dairy Science,2022,106(1):39−46.
    [54]
    EL-SALAM M H A, EL-SHIBINY S. A comprehensive review on the composition and properties of buffalo milk[J]. Dairy Science & Technology,2011,91(6):663−699.
    [55]
    HASSAN B, AHMED M, G D G, et al. Microstructural, volatile compounds, microbiological and organoleptical characteristics of low-fat buffalo milk yogurt enriched with whey protein concentrate and Ca-caseinate during cold storage[J]. Fermentation,2021,7(4):250. doi: 10.3390/fermentation7040250
    [56]
    HUANG L, HAMID M A, ROMEIH E, et al. Textural and organoleptic properties of fat-free buffalo yogurt as affected by polydextrose[J]. International Journal of Food Properties,2020,23(1):1−8. doi: 10.1080/10942912.2019.1682010
    [57]
    TAJ K I, MUHAMMAD N, RAHMAN U, et al. Triglyceride, fatty acid profile, antioxidant characteristics, vitamins, lipid oxidation and induction period of ice cream produced from cow and buffalo milk[J]. Journal of Food Processing and Preservation, 2022, 46(12).
    [58]
    DURMUŞ S, EMIN M, MEHMET K. Development of buffalo milk ice-cream by high pressure-homogenisation of mix:Physicochemical, textural and microstructural characterisation[J]. LWT,2021,150:112013. doi: 10.1016/j.lwt.2021.112013
    [59]
    ALBINO C, GIOVANNA B M, GIACOMO P, et al. A novel vasoactive peptide ''PG1'' from buffalo ice-cream protects from angiotensin-evoked high blood pressure[J]. Antioxidants,2021,10(3):441. doi: 10.3390/antiox10030441
    [60]
    ABDEL-HAMID M, OTTE J, GOBBA C D, et al. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins[J]. International Dairy Journal,2017,66:91−98. doi: 10.1016/j.idairyj.2016.11.006
    [61]
    LI S S, HU Q, CHEN C, et al. Formation of bioactive peptides during simulated gastrointestinal digestion is affected by αs1-casein polymorphism in buffalo milk[J]. Food Chemistry,2020,313(C):126159.
    [62]
    贺小龙, 姜铁民, 陈历俊, 等. 含母乳植物乳杆菌水牛乳酸奶的ACE抑制肽分布研究[J]. 中国食品添加剂,2023,34(2):35−42. [HE X L, JIANG T M, CHEN L J, et al. Distribution of ACE inhibitory peptides in buffalo milk yoghurt containing Lactobacillus plantarum[J]. China Food Additives,2023,34(2):35−42.]

    HE X L, JIANG T M, CHEN L J, et al. Distribution of ACE inhibitory peptides in buffalo milk yoghurt containing Lactobacillus plantarum[J]. China Food Additives, 2023, 34(2): 35−42.
  • Related Articles

    [1]NING Zhixue, ZHU Libin, ZHU Dan, NIU Guangcai, WEI Wenyi, XU Ruihang. Optimization of Ultrasonic-Assisted Extraction of Blackcurrant Polyphenols by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(22): 221-228. DOI: 10.13386/j.issn1002-0306.2022010220
    [2]LI Hong-an, LI Xia-jia-long, DENG Ze-yuan, JIANG He-dong, LI Hong-yan. Optimization of Ultrasonic-assisted Extraction of Total Flavonoids in Lithocarpus polystachyus Rehd by Response Surface Methodology and Their Antioxidant Activities[J]. Science and Technology of Food Industry, 2020, 41(23): 136-141,154. DOI: 10.13386/j.issn1002-0306.2020020192
    [3]ZHAO Ying, LIU Li-e, HAN Ping, HE Zhi-dong, ZHAO Xiao-di. Optimization of Ultrasonic Assisted Extraction Process by Response Surface Methodology and Antioxidant Activity in Vitro for Polysaccharides from Turnip[J]. Science and Technology of Food Industry, 2020, 41(7): 139-145. DOI: 10.13386/j.issn1002-0306.2020.07.024
    [4]HAO Ke-xin, HU Wen-zhong, ZHANG Qing-jie, WANG Ao-sheng, YU Jiao-xue, GUO Bin-mei, HOU Meng-yang. Optimization of the Ultrasonic-assisted Extraction of Total Flavonoids from Citrus aurantium L. var daidai by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2019, 40(24): 159-164,171. DOI: 10.13386/j.issn1002-0306.2019.24.026
    [5]CAO Xiao-yan, YANG Hai-tao. Optimization of Ultrasonic Assisted Extraction Technology of Polyphenol by Response Surface Methodology from Capsella bursa-pastoris and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2019, 40(2): 223-228,232. DOI: 10.13386/j.issn1002-0306.2019.02.038
    [6]WANG Yan-ping, YANG Hui-hui, QIAN Zhi-wei, SUN Rui-lin, LI Dong. Optimization of ultrasonic-assisted extraction of procyanidins from purple yam by response surface methodology and antioxidant activity[J]. Science and Technology of Food Industry, 2017, (13): 181-185. DOI: 10.13386/j.issn1002-0306.2017.13.034
    [7]WANG Yao-hui, WANG Jing-xue, QIU Xian-chuang, LI Fang, LI Chen. Optimization of ultrasonic-assisted extraction process of polysaccharides from Pleurotus nebrodensis by response surface methodology and evaluation of antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2017, (10): 247-252. DOI: 10.13386/j.issn1002-0306.2017.10.039
    [8]LIU Yang, ZHAO Jing, LIANG Li, YU Guo-yong, LI Quan-hong. Optimization of ultrasonic-assisted alcohol extraction of polyphenols from dandelion and their antioxidant activity[J]. Science and Technology of Food Industry, 2017, (02): 287-292. DOI: 10.13386/j.issn1002-0306.2017.02.047
    [9]KOU Liang, LI Lu, LU Li-na, KANG Shu-he. Optimization of extraction of total flavonoids from Caragana korshinskii kom with ultrasound technology by response surface analysis and evaluation of its antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2016, (17): 225-231. DOI: 10.13386/j.issn1002-0306.2016.17.036
    [10]YANG Zhe, WAN Shan, ZHANG Qiao-hui, DONG Shi-bin, NING Ya-ping, WANG Jian-zhong. Study on optimization of extraction of total flavonoids from shell of wild apricot by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (06): 279-284. DOI: 10.13386/j.issn1002-0306.2015.06.053
  • Other Related Supplements

  • Cited by

    Periodical cited type(9)

    1. 韩科,王夜梅,周胡怿,梁道崴,赵其阳,焦必宁. 腈吡螨酯在橙汁加工过程中的残留行为. 食品与发酵工业. 2022(12): 24-29 .
    2. 郭芫君,黄茜,王鸟,占如意,陈露婷,郝香兰,孟信刚. 甲氧基丙烯酸酯类杀菌剂残留检测方法研究进展. 北方农业学报. 2022(03): 81-88 .
    3. 梁亚杰,李晓梅,许春琦,杜颖,孙玉龙,王金玲,纪明山. 戊唑醇和吡唑醚菌酯在苹果中的残留行为及膳食暴露风险评估. 果树学报. 2021(05): 771-781 .
    4. 刘炜,刘行,王艺多,杨晓凤,尹全,张富丽. 清洗方法对葡萄中四种农药残留的去除效果分析. 湖北农业科学. 2021(17): 116-120 .
    5. 郝莉花,范莹莹,李瑜,张平,王克林,李家寅. 不同加工方式对果蔬中农药残留的影响. 食品工业. 2021(10): 223-227 .
    6. 杨振. 果蔬洗涤剂的研究与发展综述. 盐科学与化工. 2020(05): 1-4 .
    7. 张娟,秦锦云. 食品/农产品中甲氧基丙烯酸酯类农药残留分析研究进展. 农学学报. 2020(05): 67-71 .
    8. 刘炜,刘行,张富丽,杨晓凤,尹全,张义蓉,刘茜. 超高效液相色谱-串联质谱法快速测定黄瓜中8种甲氧基丙烯酸酯类杀菌剂的残留. 食品科技. 2020(11): 306-311 .
    9. 过尘杰. 不同清洗方式对水果农残的影响. 科技资讯. 2019(33): 186-187 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (134) PDF downloads (27) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return