Citation: | GUO Yaqing, WANG Dongshu, ZHU Li, et al. Role of Two Methanol Dehydrogenases in Methanol Metabolism of Methylobacterium[J]. Science and Technology of Food Industry, 2024, 45(10): 126−132. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060130. |
[1] |
WANG C X, ZHANG B R, ZHAGN H Y, et al. Effect of dietary pyrroloquinoline quinone disodium in sows on intestinal health of the offspring[J]. Food & Function,2020,20(4):581−585.
|
[2] |
LIU L X, ZHAGN Y Y, LIU T, et al. Pyrroloquinoline quinone protects against exercise-induced fatigue and oxidative damage via improving mitochondrial function in mice[J]. The FASEB Journal,2021,35(4):21394.
|
[3] |
XU X, CHEN C, LU W J, et al. Pyrroloquinoline quinone can prevent chronic heart failure by regulating mitochondrial function[J]. Cardiovascular Diagnosis and Therapy,2020,10(3):453−469. doi: 10.21037/cdt-20-129
|
[4] |
YAMADA Y, NISHII K, KUWATA K, et al. Effects of pyrroloquinoline quinone and imidazole pyrroloquinoline on biological activities and neural functions[J]. Heliyon,2020,6(1):3240.
|
[5] |
杨嵘, 张连成, 陶慧敏, 等. 吡咯喹啉醌对模拟急性高原暴露小鼠的抗缺氧和抗疲劳作用的研究[J]. 营养学报,2020,42(6):602−606. [YANG R, ZHANG L C, TAO H M, et al. Effects of pyrroloquinoline quinone on anti-hypoxia and anti-fatigue[J]. Acta Nutrimenta Sinica,2020,42(6):602−606.]
YANG R, ZHANG L C, TAO H M, et al. Effects of pyrroloquinoline quinone on anti-hypoxia and anti-fatigue[J]. Acta Nutrimenta Sinica, 2020, 42(6): 602−606.
|
[6] |
寇航, 王艳梅, 李彤, 等. 基于Methylovorus sp. J1-1基因组尺度代谢网络优化吡咯喹啉醌合成[J]. 生物技术通报,2022,38(2):173−183. [KOU H, WANG Y M, LI T, et al. Fermentation optimization for PQQ synthesis based on the genome-scale metabolic model of Methylovorus sp. J1-1[J]. Biotechnology Bulletin,2022,38(2):173−183.]
KOU H, WANG Y M, LI T, et al. Fermentation optimization for PQQ synthesis based on the genome-scale metabolic model of Methylovorus sp. J1-1[J]. Biotechnology Bulletin, 2022, 38(2): 173−183.
|
[7] |
张静, 刘孟粟, 秦志杰, 等. 吡咯喹啉醌高产菌株选育及发酵优化[J]. 食品与发酵工业,2022,48(16):56−64. [ZHANG J, LIU M S, QIN Z J, et al. Breeding and fermentation optimization of high titer pyrrorole-quinoline quinone strain[J]. Food and Fermentation Industries,2022,48(16):56−64.]
ZHANG J, LIU M S, QIN Z J, et al. Breeding and fermentation optimization of high titer pyrrorole-quinoline quinone strain[J]. Food and Fermentation Industries, 2022, 48(16): 56−64.
|
[8] |
AKAGAWA M, MINEMATSU K, SHIBATA T, et al. Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein[J]. Scientific Reports,2016,6(1):26723. doi: 10.1038/srep26723
|
[9] |
JANJA T, KATARINA J, KAZUNOBU M. The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression[J]. Extremophiles,2007,11(4):627−635. doi: 10.1007/s00792-007-0077-y
|
[10] |
孙青, 刘德华, 陈振. 甲醇的生物利用与转化[J]. 中国生物工程杂志,2020,40(10):65−75. [SUN Q, LIU D H, CHEN Z. Bioutilization and transformation of methanol[J]. China Biotechnology,2020,40(10):65−75.]
SUN Q, LIU D H, CHEN Z. Bioutilization and transformation of methanol[J]. China Biotechnology, 2020, 40(10): 65−75.
|
[11] |
ANTHONT C, WILLIAMS P. The structure and mechanism of methanol dehydrogenase[J]. BBA-Proteins and Proteomics,2003,1647(1):18−23.
|
[12] |
RAN F. Preferential binding of lanthanides to methanol dehydrogenase evaluated with density functional theory[J]. The Journal of Physical Chemistry,2021,125(9):2251−2257. doi: 10.1021/acs.jpcb.0c11077
|
[13] |
姚伦, 周雍进. 一碳化合物生物利用和转化研究进展[J]. 化工进展,2023,42(1):16−29. [YAO L, ZHOU Y J. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing[J]. Chemical Industry and Engineering Progress,2023,42(1):16−29.]
YAO L, ZHOU Y J. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 16−29.
|
[14] |
凡立稳, 王钰, 郑平, 等. 一碳代谢关键酶—甲醇脱氢酶的研究进展与展望[J]. 生物工程学报,2021,37(2):530−540. [FAN L W, WAGN Y, ZHEGN P, et al. Methanol dehydrogenase, a key enzyme of one-carbon metabolism:A review[J]. Chinese Journal of Biotechnology,2021,37(2):530−540.]
FAN L W, WAGN Y, ZHEGN P, et al. Methanol dehydrogenase, a key enzyme of one-carbon metabolism: A review[J]. Chinese Journal of Biotechnology, 2021, 37(2): 530−540.
|
[15] |
WILLIAMS P A, COATES L, MOHAMMED F, et al. The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens[J]. Acta Crystallographica. Section D, Biological Crystallography,2005,61:75−79. doi: 10.1107/S0907444904026964
|
[16] |
CHISTOSERDOVA L, LIDSTROM M E. Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1[J]. Microbiology,1997,143:1729−1736. doi: 10.1099/00221287-143-5-1729
|
[17] |
HIBI Y, ASAI K, ARAFUKA H, et al. Molecular structure of La3+-induced methanol dehydrogenase-like protein in Methylobacterium radiotolerans[J]. Journal of Bioscience and Bioengineering,2010,111(5):547−549.
|
[18] |
NAKAGAWA T, MITSUI R, TANI A, et al. A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1[J]. PLoS ONE,2017,7(11):50480.
|
[19] |
邹琪琪, 齐姗姗, 谢录翰, 等. 细菌单杂交方法在筛选甲基营养菌甲醇脱氢酶启动子结合蛋白中的应用[J]. 浙江农业学报,2018,30(10):1705−1714. [ZOU Q Q, QI S S, XIE L H, et al. Application of bacterial-one-hybrid system in screening factors interating with methanol dehydrogenase gene promoter in a methylotrophic bacteria strain[J]. Acta Agriculturae Zhejiangensis,2018,30(10):1705−1714.]
ZOU Q Q, QI S S, XIE L H, et al. Application of bacterial-one-hybrid system in screening factors interating with methanol dehydrogenase gene promoter in a methylotrophic bacteria strain[J]. Acta Agriculturae Zhejiangensis, 2018, 30(10): 1705−1714.
|
[20] |
李淼鑫, 熊向华, 汪建华, 等. 甲基营养菌甲醇脱氢酶基因的克隆及表达[J]. 生物技术通讯,2010,21(6):779−782. [LI M X, XIONG X H, WAGN J H, et al. Cloning and expression of methanol dehydrogenase gene of a Methylotrophic bacteria strain[J]. Lett Biotechnol,2010,21(6):779−782.]
LI M X, XIONG X H, WAGN J H, et al. Cloning and expression of methanol dehydrogenase gene of a Methylotrophic bacteria strain[J]. Lett Biotechnol, 2010, 21(6): 779−782.
|
[21] |
孙晓宇, 薄明井, 杨亚欣, 等. 通过突变甲醇脱氢酶启动子提高甲基营养菌吡咯喹啉醌产量[J]. 生物技术通讯,2019,30(5):609−613,692. [SUN X Y, BO M J, YANG Y X, et al. Increasing pyrroloquinoline quinone yield of Methylovorus sp. by methanol dehydrogenase promoter mutation[J]. Letters in Biotechnology,2019,30(5):609−613,692.]
SUN X Y, BO M J, YANG Y X, et al. Increasing pyrroloquinoline quinone yield of Methylovorus sp. by methanol dehydrogenase promoter mutation[J]. Letters in Biotechnology, 2019, 30(5): 609−613,692.
|
[22] |
李大攀, 葛欣, 魏静远, 等. 甲基营养菌MP688甲醇脱氢酶基因mpq1818的敲除及功能研究[J]. 生物技术通讯,2014,25(5):632−635. [LI D P, GE X, WEI J Y, et al. Knockout and characterization of mpq1818 gene of Methylovorus sp. MP688[J]. Letters in Biotechnology,2014,25(5):632−635.]
LI D P, GE X, WEI J Y, et al. Knockout and characterization of mpq1818 gene of Methylovorus sp. MP688[J]. Letters in Biotechnology, 2014, 25(5): 632−635.
|
[23] |
奥斯博. 精编分子生物学实验指南[M]. 第4版. 北京:科学出版社, 1998:25−127,652. [AUSUBEL F M. Short protocols in molecular biology[M]. 4th ed. Beijing:Science Press, 1998:25−127,652.]
AUSUBEL F M. Short protocols in molecular biology[M]. 4th ed. Beijing: Science Press, 1998: 25−127,652.
|
[24] |
杨延新, 熊向华, 游松, 等. 3种检测吡咯喹啉醌的方法比较[J]. 生物技术通讯,2011,22(4):544−547. [YANG Y X, XIONG X H, YOU S, et al. Comparing three kinds of pyrroloquinoline quinone detection methods[J]. Letters in Biotechnology,2011,22(4):544−547.]
YANG Y X, XIONG X H, YOU S, et al. Comparing three kinds of pyrroloquinoline quinone detection methods[J]. Letters in Biotechnology, 2011, 22(4): 544−547.
|
[25] |
董方, 张惟材, 汪建华, 等. 醌蛋白研究进展[J]. 生物技术通讯,2007,18(1):132−136. [DONG F, ZHANG W C, WANG J H, et al. Advances in quinoprotein research[J]. Letters in Biotechnology,2007,18(1):132−136.]
DONG F, ZHANG W C, WANG J H, et al. Advances in quinoprotein research[J]. Letters in Biotechnology, 2007, 18(1): 132−136.
|
[26] |
NATHAN M G, MATTHIAS F, KEMAL D, et al. Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function[J]. The Journal of Biological Chemistry,2020,295(24):8272−8284. doi: 10.1074/jbc.RA120.013227
|
[27] |
PAULA R J, TOMASZ K, ROBERT S, et al. Occurrence of XoxF-type methanol dehydrogenases in bacteria inhabiting light lanthanide-rich shale rock[J]. FEMS Microbiology Ecology,2021,97(2):259. doi: 10.1093/femsec/fiaa259
|
[28] |
CHU F, LIDSTROM M E. XoxF acts as the predominant methanol dehydrogenase in the type I Methanotroph Methylomicrobium buryatense[J]. Journal of Bacteriology,2016,198(8):1317−1325. doi: 10.1128/JB.00959-15
|
[29] |
WANG L H, ZHOU Q, LU T H, et al. Molecular and cellular mechanism of the effect of La(III) on horseradish peroxidase[J]. Journal of Biological Inorganic Chemistry,2010,15(7):1063−1069. doi: 10.1007/s00775-010-0665-7
|
[30] |
TANI A, MITSUI R, NAKAGAWA T. Discovery of lanthanide-dependent methylotrophy and screening methods for lanthanide-dependent methylotrophs[J]. Methods in Enzymology,2021,650:11−18.
|
[31] |
周狄霏, 冯晨曦, 宋书真, 等. 甲基营养菌代谢过程新进展与代谢工程改造[J]. 南京工业大学学报(自然科学版),2022,44(5):511−522. [ZHOU D F, FENG C X, SONG S Z, et al. New advances in metabolic process and metabolic enineering in methylotrophs[J]. Journal of Nanjing Tech University (Natural Science Edition),2022,44(5):511−522.]
ZHOU D F, FENG C X, SONG S Z, et al. New advances in metabolic process and metabolic enineering in methylotrophs[J]. Journal of Nanjing Tech University (Natural Science Edition), 2022, 44(5): 511−522.
|
[32] |
CHISTOSERDOVA L. Modularity of methylotrophy, revisited[J]. Environmental Microbiology,2011,13(10):2603−2622. doi: 10.1111/j.1462-2920.2011.02464.x
|
[33] |
郭姝媛, 吴良焕, 刘香健, 等. 微生物中一碳代谢网络构建的进展与挑战[J]. 合成生物学,2022,3(1):116−137. [GUO S Y, WU L H, LIU X J, et al. Developing C1-based metabolic network in methylotrophy for biotransformation[J]. Synthetic Biology Journal,2022,3(1):116−137.]
GUO S Y, WU L H, LIU X J, et al. Developing C1-based metabolic network in methylotrophy for biotransformation[J]. Synthetic Biology Journal, 2022, 3(1): 116−137.
|