WANG Wei, CUI Yan, ZHENG Mingzhu, et al. Progress in Preparation and Application of Stimulus-response Zein-based Nanoparticles[J]. Science and Technology of Food Industry, 2024, 45(10): 353−363. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060111.
Citation: WANG Wei, CUI Yan, ZHENG Mingzhu, et al. Progress in Preparation and Application of Stimulus-response Zein-based Nanoparticles[J]. Science and Technology of Food Industry, 2024, 45(10): 353−363. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060111.

Progress in Preparation and Application of Stimulus-response Zein-based Nanoparticles

More Information
  • Received Date: June 11, 2023
  • Available Online: March 20, 2024
  • Zein is a primary by-product of corn starch processing, which is inexpensive and easily obtainable. Based on its unique self-assembly properties, zein could be constructed into nanoparticles through various methods, enabling the loading and delivery of bioactive substances. The preparation methods of nanoparticles include anti-solvent precipitation, pH-driven, electrospray, and microfluidics. The preparation methods can produce zein-based nanoparticles that respond to various environmental stimuli and exhibit stable properties. This article reviews recent advances in the preparation methods, response types, and application progress of stimulus-responsive zein-based nanoparticles. The nanoparticles respond to endogenous (pH, enzymes, and redox) and exogenous environmental stimuli (magnetic and light), which have been used for encapsulated delivery of bioactive substances in smart packaging of food, nanopesticides, and nanomedicine. However, maximizing the effect of active substances is difficult to achieve by relying only on a single stimulus-response. Therefore, nanoparticles responding to multiple stimuli (double stimulation, triple stimulation, etc.) have become a new development trend in the delivery field. In the future, more research should be invested in developing multi-stimulus responsive nanoparticles, and how to combine the multiple response properties of nanoparticles with the targeted delivery of nanoparticles remains to be further explored.
  • [1]
    陈城, 吴楚. 纳米颗粒的绿色合成及其在农业上的应用研究进展[J]. 中国蔬菜,2022(11):32−43. [CHEN Cheng, WU Chu. Research progress of green syntheisis of nanoparticle and its application in agricultural science[J]. China Vegetables,2022(11):32−43.]

    CHEN Cheng, WU Chu. Research progress of green syntheisis of nanoparticle and its application in agricultural science[J]. China Vegetables, 2022(11): 32−43.
    [2]
    程志萍. 纳米颗粒在兽用疫苗中的应用[J]. 检验检疫学刊,2020,30(2):138−142. [CHENG Zhiping. Application of nanoparticles in veterinary vaccines[J]. Quality Safety Inspection and Testing,2020,30(2):138−142.]

    CHENG Zhiping. Application of nanoparticles in veterinary vaccines[J]. Quality Safety Inspection and Testing, 2020, 30(2): 138−142.
    [3]
    YUAN Yongkai, MA Mengjie, XU Ying, et al. Surface coating of zein nanoparticles to improve the application of bioactive compounds:A review[J]. Trends in Food Science & Technology,2021,120:1−15.
    [4]
    XU Yu, ZHU Beiwei, LI Xiang, et al. Glycogen-based pH and redox sensitive nanoparticles ginsenoside Rh2 for effective treatment of ulcerative colitis[J]. Biomaterials,2022,280:121077. doi: 10.1016/j.biomaterials.2021.121077
    [5]
    JASKI A C, SCHMITZ F, HORTA F S, et al. Zein-a plant-based material of growing importance:New perspectives for innovative uses[J]. Industrial Crops and Products,2022,186:115250. doi: 10.1016/j.indcrop.2022.115250
    [6]
    杨易俗, 张讯, 胡楚桓, 等. 玉米醇溶蛋白核壳结构微粒的制备及应用研究进展[J]. 食品科学, 2022, 43(7):349-355. [YANG Yisu, ZHANG Xun, HU Chuhuan, et al. Progress in preparation and application of zein core-shell microparticles[J]. Food Science, 2022, 43(7):349-355.]

    YANG Yisu, ZHANG Xun, HU Chuhuan, et al. Progress in preparation and application of zein core-shell microparticles[J]. Food Science, 2022, 43(7): 349-355.
    [7]
    葛思彤, 贾睿, 刘回民, 等. 玉米醇溶蛋白基纳米颗粒的制备及应用研究进展[J]. 食品科学, 2021, 42(15):285−292. [GE Sitong, JIA Rui, LIU Huimin, et al. Progress in preparation and application of zein-based nanoparticles[J]. Food Science, 2021, 42(15):285−292.]

    GE Sitong, JIA Rui, LIU Huimin, et al. Progress in preparation and application of zein-based nanoparticles[J]. Food Science, 2021, 42(15): 285−292.
    [8]
    HUANG Wenquan, LIU Shiyuan, LI Zhiqiang, et al. Analysis of the differences in self-assembly behaviour, molecular structure and drug delivery performance between α and β-zein[J]. Industrial Crops and Products,2020,181:114822.
    [9]
    ZHANG Yong, CUI Lili, LI Feng, et al. Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems[J]. International Journal of Pharmaceutics,2016,513(1−2):191−210. doi: 10.1016/j.ijpharm.2016.09.023
    [10]
    ARGOS P, PEDERSEN K, MARKS M D, et al. A structural model for maize zein proteins[J]. Journal of Biological Chemistry,1982,257(11):9984−9990.
    [11]
    ZHANG Yong, CUI Lili, CHE Xiaoxia, et al. Zein-based films and their usage for controlled delivery:Origin, classes and current landscape[J]. Journal of Controlled Release,2015,206:206−219. doi: 10.1016/j.jconrel.2015.03.030
    [12]
    MATSUSHIMA N, DANNO G, TAKEZAWA H, et al. Three-dimensional structure of maize α-zein proteins studied by small-angle X-ray scattering[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1997,1399(1):14−22.
    [13]
    PALLWAL R, PALAKURTHI S. Zein in controlled drug delivery and tissue engineering[J]. Journal of Controlled Release,2014,189:108−122. doi: 10.1016/j.jconrel.2014.06.036
    [14]
    PÉREZ-GUZMÁN, CARLOS J, CASTRO-MUñOZ, et al. A review of zein as a potential biopolymer for tissue engineering and nanotechnological applications[J]. Processes,2020,8(11):1376. doi: 10.3390/pr8111376
    [15]
    RAZA A, HAYAT U, BILAL M, et al. Zein-based micro-and nano-constructs and biologically therapeutic cues with multi-functionalities for oral drug delivery systems[J]. Journal of Drug Delivery Science and Technology,2020,58:101818. doi: 10.1016/j.jddst.2020.101818
    [16]
    YAN Xiaojia, LI Motong, XU Xingfeng, et al. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives:A review[J]. Frontiers in Nutrition,2022,9:999373. doi: 10.3389/fnut.2022.999373
    [17]
    GE Sitong, JIA Rui, LIU Wei, et al. Lipid oxidation and in vitro digestion of pickering emulsion based on zein-adzuki bean seed coat polyphenol covalent crosslinking nanoparticles[J]. Food Chemistry,2022,38:132513.
    [18]
    ZHANG Dachao, JIANG Fangyuan, LING Junhong, et al. Delivery of curcumin using a zein-xanthan gum nanocomplex:Fabrication, characterization, and in vitro release properties[J]. Colloids and Surfaces B: Biointerfaces,2021,204:111827. doi: 10.1016/j.colsurfb.2021.111827
    [19]
    WANG Ming, FU Yuying, CHEN Guowen, et al. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method[J]. Food hydrocolloids,2018,77:577−587. doi: 10.1016/j.foodhyd.2017.10.036
    [20]
    GAGLIAEDI A, PAOLINO D, IANNONE M, et al. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system[J]. International Journal of Nanomedicine,2018,13:601−614. doi: 10.2147/IJN.S156930
    [21]
    WANG Lei, ZHANG Yue. Heat-induced self-assembly of zein nanoparticles:Fabrication, stabilization and potential application as oral drug delivery[J]. Food Hydrocolloids,2019,90:403−412. doi: 10.1016/j.foodhyd.2018.12.040
    [22]
    IRIS J J, DAVIS J M. Production of nanoparticles by anti-solvent precipitation for use in food systems[J]. Trends in Food Science & Technology,2013,34(2):109−123.
    [23]
    孙翠霞, 宋镜如, 方亚鹏, 等. 玉米醇溶蛋白-多糖纳米复合物的制备方法、结构表征及其功能特性研究进展[J]. 食品科学,2020,41(9):323−331. [SUN Cuixia, SONG Jingru, FANG Yapeng, et al. Progress in preparation methods, structural characterization and functional progress of zein-polysaccharide nanoparticles[J]. Food Science,2020,41(9):323−331.] doi: 10.7506/spkx1002-6630-20190411-153

    SUN Cuixia, SONG Jingru, FANG Yapeng, et al. Progress in preparation methods, structural characterization and functional progress of zein-polysaccharide nanoparticles[J]. Food Science, 2020, 41(9): 323−331. doi: 10.7506/spkx1002-6630-20190411-153
    [24]
    DAI Lei, ZHOU Hualu, WEI Yang, et al. Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method[J]. Food Hydrocolloids,2019,93:342−350. doi: 10.1016/j.foodhyd.2019.02.041
    [25]
    WANG Lei, XUE Jia, ZHANG Yue. Preparation and characterization of curcumin loaded caseinate/zein nanocomposite film using pH-driven method[J]. Industrial Crops and Products,2019,130:71−80. doi: 10.1016/j.indcrop.2018.12.072
    [26]
    YUAN Yongkai, XIAO Junzi, ZHANG Peiyao, et al. Development of pH-driven zein/tea saponin composite nanoparticles for encapsulation and oral delivery of curcumin[J]. Food Chemistry,2021,364:130401. doi: 10.1016/j.foodchem.2021.130401
    [27]
    LIU Qin, LI Yaochang, ZHOU You, et al. Zein-whey protein isolate-carboxymethyl cellulose complex as carrier of apigenin via pH-driven method:Fabrication, characterization, stability, and in vitro release property[J]. Food Chemistry,2022,387:132926. doi: 10.1016/j.foodchem.2022.132926
    [28]
    GUZMAN E, RUBIO R G, ORTEGA F, et al. A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers[J]. Advances in Colloid and Interface Science,2020,282:102197. doi: 10.1016/j.cis.2020.102197
    [29]
    CHEN Yiran, LIU Chaobing, YANG Zhaojun, et al. Fabrication of zein-based hydrophilic nanoparticles for efficient gene delivery by layer-by-layer assembly[J]. International Journal of Biological Macromolecules,2022,217:381−397. doi: 10.1016/j.ijbiomac.2022.07.042
    [30]
    DA SLIVA C E, DE OLIVEIRA M A, SIMAS F F, et al. Physical chemical study of zein and arabinogalactans or glucuronomannans polyelectrolyte complexes and their film-forming properties[J]. Food Hydrocolloids,2020,100:105394. doi: 10.1016/j.foodhyd.2019.105394
    [31]
    徐海星, 闫玉华, 梅玉峰, 等. 修复周围神经损伤的静电自组装PDLLA/CS/CHS复合材料[J]. 华中科技大学学报(自然科学版),2007(12):121−124. [XU Haixing, YAN Yuhua, MEI Yufeng, et al. PDLLA/CS/CHS composite material for the regeneration of peripheral nerve prepared by LBL-ESA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2007(12):121−124.] doi: 10.3321/j.issn:1671-4512.2007.12.034

    XU Haixing, YAN Yuhua, MEI Yufeng, et al. PDLLA/CS/CHS composite material for the regeneration of peripheral nerve prepared by LBL-ESA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2007(12): 121−124. doi: 10.3321/j.issn:1671-4512.2007.12.034
    [32]
    张哲, 崔慧斐. 静电自组装技术及其在医药领域的应用进展[J]. 食品与药品, 2010,12(9):351−354. [ZHANG Zhe, CUI Huifei. Electrostatic self-assembly technology and its application in medicine field[J]. Food and Drug,2010,12(9):351−354.]

    ZHANG Zhe, CUI Huifei. Electrostatic self-assembly technology and its application in medicine field[J]. Food and Drug, 2010, 12(9): 351−354.
    [33]
    OZTUK O K, TURASAN H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages[J]. Trends in Food Science & Technology,2021,116:609−625.
    [34]
    EBERT S, KOO C K, WEISS J, et al. Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization:Caseinate-coated zein nanoparticles[J]. Food Research International,2017,92:48−55. doi: 10.1016/j.foodres.2016.12.020
    [35]
    HEGEMANN D, BRUNNER H. Plasma treatment of polymers for surface and adhesion improvement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,2003,208:281−286.
    [36]
    DONG Shuang, GUO Peng, CHEN Peng, et al. Surface modification via atmospheric cold plasma (ACP):Improved functional properties and characterization of zein film[J]. Industrial Crops and Products,2018,115:124−133. doi: 10.1016/j.indcrop.2018.01.080
    [37]
    ROSTAMABADI H, FALSAFI S R, ROSTAMABADI M M, et al. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules[J]. Advances in Colloid and Interface Science,2021,290:102384. doi: 10.1016/j.cis.2021.102384
    [38]
    JAVAN H, LAANA M M, SUNDARI S S, et al. Improve the bioavailability of resveratrol by encapsulating in zein using electrospray technology[J]. Journal of Functional Foods,2019,57:417−424. doi: 10.1016/j.jff.2019.04.007
    [39]
    LI X F, MALDONADO L, MALMR M, et al. Development of hollow kafirin-based nanoparticles fabricated through layer-by-layer assembly as delivery vehicles for curcumin[J]. Food Hydrocolloids,2019,96:93−101. doi: 10.1016/j.foodhyd.2019.04.042
    [40]
    XU H L, JIANG Q R, REDDY N, et al. Hollow nanoparticles from zein for potential medical applications[J]. Journal of Materials Chemistry,2011,21(45):18227−18235. doi: 10.1039/c1jm11163a
    [41]
    曹星星, 张学斌, 朱雅君, 等. 中空纳米球的制备和应用[J]. 广州化工,2012,40(11):3−5,8. [CAO Xingxing, ZHANG Xuebin, ZHU Yajun, et al. The preparation & application of hollow nanospheres[J]. Guangzhou Chemical Industry,2012,40(11):3−5,8.]

    CAO Xingxing, ZHANG Xuebin, ZHU Yajun, et al. The preparation & application of hollow nanospheres[J]. Guangzhou Chemical Industry, 2012, 40(11): 3−5,8.
    [42]
    SONG Gongshuai, LIU Jiayuan, WANG Qi, et al. Layer-by-layer self-assembly of hollow dextran sulfate/chitosan-coated zein nanoparticles loaded with crocin:Fabrication, structural characterization and potential biological fate[J]. Food Hydrocolloids,2022,125:107420. doi: 10.1016/j.foodhyd.2021.107420
    [43]
    HU S Q, WANG T R, FERNANDEZ M L, et al. Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin[J]. Food Hydrocolloids,2016,61:821−831. doi: 10.1016/j.foodhyd.2016.07.006
    [44]
    WANG T R, HU Q B, XUE M A, et al. Partition and stability of folic acid and caffeic acid in hollow zein particles coated with chitosan[J]. International Journal of Biological Macromolecules,2021,183:2282−2292. doi: 10.1016/j.ijbiomac.2021.05.216
    [45]
    DAHIYA S, RANI R, DHINGRA D, et al. Conjugation of epigallocatechin gallate and piperine into a zein nanocarrier:Implication on antioxidant and anticancer potential[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology,2018,9(3):035011. doi: 10.1088/2043-6254/aad5c1
    [46]
    YUAN Yongkai, LI Hao, LIU Chengzhen, et al. Fabrication of stable zein nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method[J]. International journal of biological macromolecules,2019,139:30−39. doi: 10.1016/j.ijbiomac.2019.07.090
    [47]
    SHI Qiankun, WANG Xinya, TANG Xudong, et al. In vitro antioxidant and antitumor study of zein/SHA nanoparticles loaded with resveratrol[J]. Food Science & Nutrition,2021,9(7):3530−3537.
    [48]
    WEI Yang, ZHAN Xinyu, ZHANG Liang, et al. Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method[J]. LWT,2021,139:110605. doi: 10.1016/j.lwt.2020.110605
    [49]
    TAPIA J A, RODRIGUEZ F, JUAREA J E, et al. Zein-polysaccharide nanoparticles as matrices for antioxidant compounds:A strategy for prevention of chronic degenerative diseases[J]. Food Research International,2018,111:451−471. doi: 10.1016/j.foodres.2018.05.036
    [50]
    CHEN Shuai, HAN Yahong, HUANG Jingyang, et al. Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of curcumin and quercetagetin[J]. ACS applied materials & interfaces,2019,11(18):16922−16933.
    [51]
    CHEN Huaiqiong, ZHONG Qixin. Processes improving the dispersibility of spray-dried zein nanoparticles using sodium caseinate[J]. Food Hydrocolloids,2014,35:358−366. doi: 10.1016/j.foodhyd.2013.06.012
    [52]
    CAI Zhe, LI Chen, YU Xiaojie, et al. Effect of chitosan molecular weight on the formation and properties of zemarin-lactococcin-chitosan nanocomplexes[J]. Carbohydrate Polymers,2019,292:119664.
    [53]
    LAELORSPOEN N, WONGSAULAK S, YOOVIDHYA T, et al. Microencapsulation of Lactobacillus acidophilus in zein–alginate core–shell microcapsules via electrospraying[J]. Journal of Functional Foods,2014,7:342−349. doi: 10.1016/j.jff.2014.01.026
    [54]
    SUN Cuixia, DAI Lei, LIU Fuguo, et al. Dynamic high pressure microfluidization treatment of zein in aqueous ethanol solution[J]. Food Chemistry,2016,210:388−395. doi: 10.1016/j.foodchem.2016.04.138
    [55]
    WEI Yang, WANG Chao, LIU Xing, et al. Effects of microfluidization and thermal treatment on the characterization and digestion of curcumin loaded protein–polysaccharide–tea saponin complex nanoparticles[J]. Food & Function,2021,12(3):1192−1206.
    [56]
    WEI Yang, SUN Cuixia, DAI Lei, et al. Structure, physicochemical stability andin vitro simulated gastrointestinal digestion properties ofβ-carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method[J]. Food Hydrocolloids,2018,81:149−158. doi: 10.1016/j.foodhyd.2018.02.042
    [57]
    钱佳佳, 王蓓蕾, 查丽琼, 等. 中空玉米醇溶蛋白-芍药苷纳米粒的制备及其体外释药研究[J]. 中国药学杂志,2019,54(4):297−302. [QIAN Jiajia, WANG Beilei, ZHA Liqiong, et al. Preparation and in vitro release of hollow zein-paeoniflorin nanoparticles[J]. Chinese Pharmaceutical Journal,2019,54(4):297−302.]

    QIAN Jiajia, WANG Beilei, ZHA Liqiong, et al. Preparation and in vitro release of hollow zein-paeoniflorin nanoparticles[J]. Chinese Pharmaceutical Journal, 2019, 54(4): 297−302.
    [58]
    MOGHADAM M R, ZARGAR B, RASTEGARZADEH S. Novel magnetic hollow zein nanoparticles for preconcentration of chlorpyrifos from water and soil samples prior to analysis via high-performance liquid chromatography (HPLC)[J]. Analyst,2018,143(9):2174−2182. doi: 10.1039/C7AN01526G
    [59]
    SUN Qianqian, WANG Zhao, LIU Bin, et al. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy[J]. Coordination Chemistry Reviews,2022,451:214267. doi: 10.1016/j.ccr.2021.214267
    [60]
    YANG Dan, HUANG Xin, MENG Qingran, et al. Recent advances in the application of zein-based gels:A review[J]. European Polymer Journal,2022,179:111557. doi: 10.1016/j.eurpolymj.2022.111557
    [61]
    YUAN Yongkai, LI Hao, ZHU Junxiang, et al. Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin[J]. International Journal of Biological Macromolecules,2020,151:1074−1083. doi: 10.1016/j.ijbiomac.2019.10.149
    [62]
    尹琬婷, 李开鑫, 马玲君, 等. 负载辣椒素的巯基改性壳聚糖-玉米醇溶蛋白纳米颗粒制备与稳定性分析[J]. 食品科学,2023,44(10):8−14. [YIN Wanting, LI Kaixin, MA Lingjun, et al. Preparation and stability analysis of capsaicin-loaded thiolated chitosan-zein nanoparticles[J]. Food Science,2023,44(10):8−14.] doi: 10.7506/spkx1002-6630-20220807-085

    YIN Wanting, LI Kaixin, MA Lingjun, et al. Preparation and stability analysis of capsaicin-loaded thiolated chitosan-zein nanoparticles[J]. Food Science, 2023, 44(10): 8−14. doi: 10.7506/spkx1002-6630-20220807-085
    [63]
    ANIRUDHAN T, BINI B, MANJUSHA V. Glycyrrhetinic acid conjugated zein capped aminated mesoporous silica nanoparticle-based dual drug delivery system for liver:A pH-dependent triggered release[J]. Journal of Molecular Liquids,2021,340:116852. doi: 10.1016/j.molliq.2021.116852
    [64]
    LUO Yangchao, ZHANG Boce, WHENT M, et al. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study[J]. Colloids and Surfaces B:Biointerfaces,2011,85(2):145−152. doi: 10.1016/j.colsurfb.2011.02.020
    [65]
    MONTEIRO R A, CAMARA M C, CAMPOS E V R, et al. Zein based-nanoparticles loaded botanical pesticides in pest control:An enzyme stimuli-responsive approach aiming sustainable agriculture[J]. Journal of Hazardous Materials,2021,417:126004. doi: 10.1016/j.jhazmat.2021.126004
    [66]
    AYTAC Z, XU Jie, RAMAN PILLAI S K, et al. Enzyme-and relative humidity-responsive antimicrobial fibers for active food packaging[J]. ACS Applied Materials & Interfaces,2021,13(42):50298−50308.
    [67]
    HOU Heting, ZHANG Dong, LIN Jiewen, et al. Zein-paclitaxel prodrug nanoparticles for redox-triggered drug delivery and enhanced therapeutic efficiency[J]. Journal of agricultural and food chemistry,2018,66(44):11812−11822. doi: 10.1021/acs.jafc.8b04627
    [68]
    LIANG Hongshan, ZHOU Bin, LI Jing, et al. Engineering multifunctional coatings on nanoparticles based on oxidative coupling assembly of polyphenols for stimuli-responsive drug delivery[J]. Journal of Agricultural and Food Chemistry,2018,66(26):6897−6905. doi: 10.1021/acs.jafc.8b01208
    [69]
    ZHAO Ming, LI Peiquan, ZHOU Hongjun, et al. pH/redox dual responsive from natural polymer-based nanoparticles for on-demand delivery of pesticides[J]. Chemical Engineering Journal,2022,435:134861. doi: 10.1016/j.cej.2022.134861
    [70]
    朱芳道. 多重刺激响应型环糊精智能纳米载体的制备及其对抗癌药物的递送研究[D]. 昆明:云南师范大学, 2022:135. [ZHU Fangdao. Preparation of multi-stimulus responsive smart nano carrier based on cyclodextrin and their deliver anticancer drugs[D]. Kunming:Yunnan Normal University, 2022:135.]

    ZHU Fangdao. Preparation of multi-stimulus responsive smart nano carrier based on cyclodextrin and their deliver anticancer drugs[D]. Kunming: Yunnan Normal University, 2022: 135.
    [71]
    MAHLUMBA P, KUMAR P, DU TOIT L C, et al. Fabrication and characterisation of a photo-responsive, injectable nanosystem for sustained delivery of macromolecules[J]. International Journal of Molecular Sciences,2021,22(7):3359. doi: 10.3390/ijms22073359
    [72]
    ABDELSALAM A M, SOMALDA A, AMBREEN G, et al. Surface tailored zein as a novel delivery system for hypericin:Application in photodynamic therapy[J]. Materials Science and Engineering: C,2021,129:112420. doi: 10.1016/j.msec.2021.112420
    [73]
    CHAUHAN D S, ARUNKUMAR P, PRASAD R, et al. Facile synthesis of plasmonic zein nanoshells for imaging-guided photothermal cancer therapy[J]. Materials Science and Engineering: C,2018,90:539−548. doi: 10.1016/j.msec.2018.04.081
    [74]
    张木儒. 多重刺激响应明胶凝胶膜制备与性能研究[D]. 广州:广东工业大学, 2021:79. [ZHANG Muru. Preparation and properties of gelatin gel films with multiple stimulus response[D]. Guangzhou: Guangdong University of Technology, 2021:79.]

    ZHANG Muru. Preparation and properties of gelatin gel films with multiple stimulus response[D]. Guangzhou: Guangdong University of Technology, 2021: 79.
    [75]
    MARIN T, MONTOYA P, ARNACHE O, et al. Bioactive films of zein/magnetite magnetically stimuli-responsive for controlled drug release[J]. Journal of Magnetism and Magnetic Materials,2018,458:355−364. doi: 10.1016/j.jmmm.2018.03.046
    [76]
    TAN Ling, LI Qiaoyao, LI Yanjun, et al. Specific adsorption and determination of aspartame in soft drinks with a zein magnetic molecularly imprinted modified MGCE sensor[J]. RSC advances,2021,11(22):13486−13496. doi: 10.1039/D0RA10824C
    [77]
    KONG Jianglong, GE Xiaohan, SUN Yuting, et al. Multi-functional pH-sensitive active and intelligent packaging based on highly cross-linked zein for the monitoring of pork freshness[J]. Food Chemistry, 2022:134754.
    [78]
    DAI Xiuchun, CHEN Long, ZHOU Hongjun, et al. Development of a stable and efficient zein based nanopesticides through green and simple way for improving utilization efficiency[J]. Journal of Asia-Pacific Entomology,2022,25(2):101906. doi: 10.1016/j.aspen.2022.101906
    [79]
    LI Linlin, XIA Li, XIAO Peng, et al. Colorimetric active carboxymethyl chitosan/oxidized sodium alginate-Oxalis triangularis ssp. papilionacea anthocyanins film@ gelatin/zein-linalool membrane for milk freshness monitoring and preservation[J]. Food Chemistry,2023,405:134994. doi: 10.1016/j.foodchem.2022.134994
    [80]
    DEHCHESHMEH M A, FATHI M. Production of core-shell nanofibers from zein and tragacanth for encapsulation of saffron extract[J]. International Journal of Biological Macromolecules,2019,122:272−279. doi: 10.1016/j.ijbiomac.2018.10.176
    [81]
    PIRSA S, SANI I K, MIRTALEBI S S. Nano-biocomposite based color sensors:Investigation of structure, function, and applications in intelligent food packaging[J]. Food Packaging and Shelf Life,2022,31:100789. doi: 10.1016/j.fpsl.2021.100789
    [82]
    裴菲. 玉米醇溶蛋白基复合微粒的制备及其药物释放性能研究[D]. 兰州:西北师范大学, 2013. [PEI Fei. Synthesis and release behavior of zein-based composite microparticles[D]. Lanzhou:Northwest Normal University, 2013.]

    PEI Fei. Synthesis and release behavior of zein-based composite microparticles[D]. Lanzhou: Northwest Normal University, 2013.
    [83]
    REN Manni, CAI Zhe, CHEN Li, et al. Preparation of zein/chitosan/eugenol/curcumin active films for blueberry preservation[J]. International Journal of Biological Macromolecules,2022,223:1054−1066. doi: 10.1016/j.ijbiomac.2022.11.090
    [84]
    LI Yanzhi, TANG Xianhui, ZHU Liang, et al. Bilayer pH-sensitive colorimetric indicator films based on zein/gellan gum containing black rice (Oryza sativa L.) extracts for monitoring of largemouth bass (Micropterus salmoides) fillets freshness[J]. International Journal of Biological Macromolecules,2022,223:1268−1277. doi: 10.1016/j.ijbiomac.2022.10.273
    [85]
    ZHONG Ximing, WEN Hongjian, ZENG Runxin, et al. Zein-functionalized mesoporous silica as nanocarriers for nanopesticides with pH/enzyme dual responsive properties[J]. Industrial Crops and Products,2022,188:115716. doi: 10.1016/j.indcrop.2022.115716
    [86]
    LI Hao, LIN Guanquan, LIAN Jiajia, et al. Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties[J]. Carbohydrate Polymers,2020,231:115725. doi: 10.1016/j.carbpol.2019.115725
    [87]
    ZHU Wei, HUANG Wenquan, YE Liping, et al. Facile preparation of succinylated-zein-ZIF-8 hybrid for enhanced stability and pH-responsive drug delivery[J]. Chemical Engineering Science,2020,228:115981. doi: 10.1016/j.ces.2020.115981
    [88]
    LEE H S, KANG N, KIM H, et al. Chondroitin sulfate-hybridized zein nanoparticles for tumor-targeted delivery of docetaxel[J]. Carbohydrate Polymers,2021,253:117187. doi: 10.1016/j.carbpol.2020.117187
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. 陈雪花,陈建平,罗宝浈,李佳睿,李瑞,刘晓菲,宋兵兵,钟赛意. 硫酸软骨素纳米硒的结构表征及其对Hela细胞迁移和侵袭的影响. 食品与发酵工业. 2024(03): 73-79 .
    2. 赵猛,丁子康,李欣悦,王晓梅,胡祖广,张忠山. 低分子量坛紫菜多糖纳米硒的制备、表征及其体外抗氧化活性. 食品工业科技. 2024(23): 170-178 . 本站查看
    3. 向东,朱玉昌,周大寨,李爽. 含硒活性物质研发技术进展. 山东化工. 2023(05): 66-69+77 .
    4. 王鑫,周卓,王峙力,修伟业,罗钰,马永强. 硒化甜玉米芯多糖对非酶糖基化的抑制作用. 食品工业科技. 2023(19): 17-23 . 本站查看
    5. 徐孝楠,马浩迪,续炎,李璇,覃智,权春善,张丽影. 耐硒海洋菌株的筛选、鉴定及其产纳米硒的抗菌活性. 食品工业科技. 2023(24): 152-158 . 本站查看
    6. 陈博文,陈建平,黄文浩,钟赛意,李瑞,宋兵兵,刘晓菲,汪卓. 岩藻多糖纳米硒的制备及其抑制肿瘤细胞增殖的研究. 天然产物研究与开发. 2023(12): 2117-2126 .
    7. 向文杰,殷彩桥,黄慧,陈婷. 硒及硒化合物对食管癌作用机制研究进展. 社区医学杂志. 2022(22): 1295-1300 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (235) PDF downloads (24) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return