Citation: | ZHANG Yu, LI Wei, WANG Lijuan, et al. Preparation and Structural Characterization of Ferrous Chelates of Spirulina platensis Peptides[J]. Science and Technology of Food Industry, 2024, 45(10): 165−175. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060103. |
[1] |
LAFARGA T, ACIÉN-FERNÁNDEZ F G, GARCIA-VAQUERO M. Bioactive peptides and carbohydrates from seaweed for food applications:Natural occurrence, isolation, purification, and identification[J]. Algal Research,2020,48:101909. doi: 10.1016/j.algal.2020.101909
|
[2] |
LI B, HE H, SHI W, et al. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization[J]. Journal of the Science of Food and Agriculture,2019,99(4):1834−1841. doi: 10.1002/jsfa.9377
|
[3] |
AI X, YU P, LI X, et al. Polysaccharides from Spirulina platensis:Extraction methods, structural features and bioactivities diversity[J]. International Journal of Biological Macromolecules, 2023:123211.
|
[4] |
ZIMMERMANN M B, HURRELL R F. Nutritional iron deficiency[J]. The Lancet,2007,370(9586):511−520. doi: 10.1016/S0140-6736(07)61235-5
|
[5] |
CIAN R E, GARZÓN A G, ANCONA D B, et al. Chelating properties of peptides from red seaweed Pyropia columbina and its effect on iron bio-accessibility[J]. Plant Foods for Human Nutrition,2016,71:96−101. doi: 10.1007/s11130-016-0533-x
|
[6] |
FAN C, WANG X, SONG X, et al. Identification of a novel walnut iron chelating peptide with potential high antioxidant activity and analysis of its possible binding sites[J]. Foods,2023,12(1):226. doi: 10.3390/foods12010226
|
[7] |
HE Yuanqing, YANG Pengyao, DING Yangyang, et al. The preparation, antioxidant activity evaluation, and iron-deficient anemic improvement of oat (Avena sativa L.) peptides–ferrous chelate[J]. Frontiers in Nutrition,2021,8:687133. doi: 10.3389/fnut.2021.687133
|
[8] |
LÜ Y, GUO S, TAKO E, et al. Hydrolysis of soybean protein improves iron bioavailability by Caco-2 cell[J]. Journal of Food and Nutrition Research,2014,2(4):162−166. doi: 10.12691/jfnr-2-4-5
|
[9] |
HUANG G R, REN Z Y, JIANG J X. Optimization of hydrolysis conditions for iron binding peptides production from shrimp processing byproducts[J]. American Journal of Food Technology,2014,9(1):49−55.
|
[10] |
LIN S, HU X, LI L, et al. Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreoch romis niloticus) skin collagen and characterization of the peptide-iron complexes[J]. LWT,2021,149:111796. doi: 10.1016/j.lwt.2021.111796
|
[11] |
QU W, FENG Y, XIONG T, et al. Preparation of corn ACE inhibitory peptide-ferrous chelate by dual-frequency ultrasound and its structure and stability analyses[J]. Ultrasonics Sonochemistry,2022,83:105937. doi: 10.1016/j.ultsonch.2022.105937
|
[12] |
FAN C, GE X, HAO J, et al. Identification of high iron–chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode[J]. Food Chemistry,2023,399:133912. doi: 10.1016/j.foodchem.2022.133912
|
[13] |
孙宜君. 螺旋藻抗菌肽的纯化鉴定及其抑菌机理的研究[D]. 北京:北京林业大学, 2016. [SUN Yijun. Purification, identification and antibacterial mechanism of Spirulina antibacterial peptides[D]. Beijing:Beijing Forestry University, 2016.]
SUN Yijun. Purification, identification and antibacterial mechanism of Spirulina antibacterial peptides[D]. Beijing: Beijing Forestry University, 2016.
|
[14] |
庞忠莉. 牡蛎肽亚铁螯合物的制备及性质研究[D]. 广州:华南理工大学, 2020. [PANG Zhongli. Preparation and properties of ferrous peptide chelate from oyster[D]. Guangzhou:South China University of Technology, 2020.]
PANG Zhongli. Preparation and properties of ferrous peptide chelate from oyster[D]. Guangzhou: South China University of Technology, 2020.
|
[15] |
廉雯蕾. 脱酰胺—酶解法制备米蛋白肽及其亚铁螯合物的研究[D]. 无锡:江南大学, 2015. [LIAN Wenlei. Preparation of rice protein peptides and their ferrous chelates by deamide-enzymatic hydrolysis[D]. Wuxi:Jiangnan University, 2015.]
LIAN Wenlei. Preparation of rice protein peptides and their ferrous chelates by deamide-enzymatic hydrolysis[D]. Wuxi: Jiangnan University, 2015.
|
[16] |
LI F, CAO J, WANG Z, et al. Dual aggregation in ground state and ground-excited state induced by high concentrations contributes to chlorophyll stability[J]. Food Chemistry,2022,383:132447. doi: 10.1016/j.foodchem.2022.132447
|
[17] |
LU T, CHEN F. Multiwfn:A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry,2012,33(5):580−92. doi: 10.1002/jcc.22885
|
[18] |
SUN N, CUI P, JIN Z, et al. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates[J]. Food Chemistry,2017,230:627−636. doi: 10.1016/j.foodchem.2017.03.077
|
[19] |
ZHANG Y, DING X, LI M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans[J]. Food Chemistry,2021,349:129101. doi: 10.1016/j.foodchem.2021.129101
|
[20] |
ZHANG S Q, YU X F, ZHANG H B, et al. Comparison of the oral absorption, distribution, excretion, and bioavailability of zinc sulfate, zinc gluconate, and zinc-enriched yeast in rats[J]. Molecular Nutrition & Food Research,2018,62(7):1700981.
|
[21] |
REDDI A R, GUZMAN T R, BREECE R M, et al. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides[J]. Journal of the American Chemical Society,2007,129(42):12815−12827. doi: 10.1021/ja073902+
|
[22] |
杨玉蓉. 西藏野桃仁酶解多肽的生物活性及其亚铁螯合物的研究[D]. 长沙:中南林业科技大学, 2019. [YANG Yurong. Study on the bioactivity of enzymolysis polypeptides and their ferrous chelates from Tibetan wild peach kernel[D]. Changsha:Central South University of Forestry and Technology, 2019.]
YANG Yurong. Study on the bioactivity of enzymolysis polypeptides and their ferrous chelates from Tibetan wild peach kernel[D]. Changsha: Central South University of Forestry and Technology, 2019.
|
[23] |
UPPAL R, LAKSHMI K V, VALENTINE A M. Isolation and characterization of the iron-binding properties of a primitive monolobal transferrin from Ciona intestinalis[J]. JBIC Journal of Biological Inorganic Chemistry,2008,13:873−885. doi: 10.1007/s00775-008-0375-6
|
[24] |
CAETANO-SILVA M E, NETTO F M, BERTOLDO-PACHECO M T, et al. Peptide-metal complexes:Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1470−1489. doi: 10.1080/10408398.2020.1761770
|
[25] |
CUI P, SUN N, JIANG P, et al. Optimised condition for preparing sea cucumber ovum hydrolysate–calcium complex and its structural analysis[J]. International Journal of Food Science & Technology,2017,52(8):1914−1922.
|
[26] |
TIAN Q, FAN Y, HAO L, et al. A comprehensive review of calcium and ferrous ions chelating peptides:Preparation, structure and transport pathways[J]. Critical Reviews in Food Science and Nutrition, 2021:1−13.
|
[27] |
CAO Y, ROMERO J, OLSON J P, et al. Quantum chemistry in the age of quantum computing[J]. Chemical Reviews,2019,119(19):10856−10915. doi: 10.1021/acs.chemrev.8b00803
|
[28] |
SUN N, WANG T, WANG D, et al. Antarctic krill derived nonapeptide as an effective iron-binding ligand for facilitating iron absorption via the small intestine[J]. Journal of Agricultural and Food Chemistry,2020,68(40):11290−11300. doi: 10.1021/acs.jafc.0c03223
|
[29] |
RAFE A, RAZAVI S M A. Effect of thermal treatment on chemical structure of β-lactoglobulin and basil seed gum mixture at different states by ATR-FTIR spectroscopy[J]. International Journal of Food Properties,2015,18(12):2652−2664. doi: 10.1080/10942912.2014.999864
|
[30] |
ZHOU J, WANG X, AI T, et al. Preparation and characterization of β-lactoglobulin hydrolysate-iron complexes[J]. Journal of Dairy Science,2012,95(8):4230−4236. doi: 10.3168/jds.2011-5282
|
[31] |
CHEN M, JI H, ZHANG Z, et al. A novel calcium-chelating peptide purified from Auxis thazard protien hydrolysate and its binding properties with calcium[J]. Journal of Functional Foods,2019,60:103447. doi: 10.1016/j.jff.2019.103447
|
[32] |
孙如男. 南极磷虾肽-锌螯合物的制备, 结构表征与生物利用度研究[D]. 青岛:青岛大学, 2021. [SUN Runan. Preparation, characterization and bioavailability of peptide-Zinc chelates from Krill Antarctic[D]. Qingdao:Qingdao University, 2021.]
SUN Runan. Preparation, characterization and bioavailability of peptide-Zinc chelates from Krill Antarctic[D]. Qingdao: Qingdao University, 2021.
|
[33] |
LIU F R, WANG L, WANG R, et al. Calcium-binding capacity of wheat germ protein hydrolysate and characterization of peptide–calcium complex[J]. Journal of Agricultural and Food Chemistry,2013,61(31):7537−7544. doi: 10.1021/jf401868z
|
1. |
张瑞娟,苏艳群,夏菲,刘金刚,肖贵华,孙德文,杨小博,黄举. 不同种类研磨淀粉用于纸质食品包装的防油性能研究. 中国造纸. 2025(01): 62-68+84 .
![]() | |
2. |
李晶晶,张甜甜,佟岳,刘培玲. 高静压协同酸水解促淀粉颗粒纳米晶体化. 中国食品学报. 2024(12): 57-68 .
![]() | |
3. |
张芮娟. 固体制剂制药工艺及质量控制研究. 粘接. 2023(04): 149-152 .
![]() | |
4. |
高琦,张首央,唐子程,彭雪,王宁,薛友林. 蛋白质纳米颗粒的制备及其在食品领域的应用研究进展. 食品工业科技. 2023(11): 30-37 .
![]() | |
5. |
段智颖,王申宛,艾斌凌,郑丽丽,郑晓燕,杨旸,校导,杨劲松,盛占武. 表没食子儿茶素没食子酸酯-香蕉脱支淀粉纳米颗粒的绿色制备及其性质. 食品科学. 2023(12): 74-83 .
![]() |