LI Shuyan, HE Yanli, SONG Chaodong, et al. Optimization of Siderophores Production and Its Antifungal Activity of Pseudomonas aeruginosa Gxun-2[J]. Science and Technology of Food Industry, 2024, 45(10): 118−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060087.
Citation: LI Shuyan, HE Yanli, SONG Chaodong, et al. Optimization of Siderophores Production and Its Antifungal Activity of Pseudomonas aeruginosa Gxun-2[J]. Science and Technology of Food Industry, 2024, 45(10): 118−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060087.

Optimization of Siderophores Production and Its Antifungal Activity of Pseudomonas aeruginosa Gxun-2

More Information
  • Received Date: June 11, 2023
  • Available Online: March 21, 2024
  • The aim of this study was to identify the type of siderophore secreted by Pseudomonas aeruginosa Gxun-2, determine the optimal fermentation conditions and investigate the antagonistic effect of fermentation broth on plant pathogens, so as to provide theoretical basis of the strain in agriculture. The chrome azurol sulfonate (CAS) plate and full-band ultraviolet light absorption method was to qualitatively and quantitatively analyze the siderophore production of P. aeruginosa Gxun-2. The iron-producing medium and culture conditions were optimized by the combined method of single-factor, Plackett-Burman and orthogonal tests. Finally, the plate confrontation method was used to assess the antagonistic effect of its fermentation brot on the pathogenic fungus, Fusarium oxysporum f. sp. cubense (FOC4). The results showed that the type of siderophore produced by strain Gxun-2 was isohydroxamic acid type, and the optimal fermentation medium and culture conditions were determined as follows: Sodium succinate 2 g/L, glycerol 10 g/L, ammonium sulfate 1 g/L, initial pH 6.8, temperature 35 ℃, inoculum 1.0% (v/v), and loading volume 140 mL/250 mL. Under these conditions, the siderophore activity unit (Su) of the Gxun-2 fermentation broth reached 81.20%±0.24%, which was 82.84%±0.82% higher than that before optimization, and the inhibition rate on FOC4 reached 70.60%±1.87%, which was 52.68%±4.23% higher than that before optimization.
  • [1]
    SHENKER M, CHEN Y. Increasing iron availability to crops:fertilizers, organo-fertilizers, and biological approaches[J]. Soil Science & Plant Nutrition,2005,51(1):1−17.
    [2]
    古添源, 余黄, 曾伟民, 等. 功能内生菌强化超积累植物修复重金属污染土壤的研究进展[J]. 生命科学,2018,30(11):1228−1235. [GU T Y, YU H, ZENG W M, et al. Progress on the endophyte of hyperaccumulators and their beneficial role in heavy metal phytoremediation[J]. Chinese Bulletin of Life Sciences,2018,30(11):1228−1235.]

    GU T Y, YU H, ZENG W M, et al. Progress on the endophyte of hyperaccumulators and their beneficial role in heavy metal phytoremediation[J]. Chinese Bulletin of Life Sciences, 2018, 30(11): 1228−1235.
    [3]
    KAUR H, KAUR J, GERA R. Plant growth promoting rhizobacteria:a boon to agriculture[J]. International Journal of Cell, 2016, 5:17−22.
    [4]
    LLAMAS M A, SÁNCHEZ-JIMÉNEZ A. Iron homeostasis in Pseudomonas aeruginosa:Targeting iron acquisition and storage as an antimicrobial strategy[M]. Springer:Cham, 2022:29−68.
    [5]
    贺春萍, 赵璐璐, 孙亮, 等. 一株产铁载体橡胶树拮抗细菌的分离鉴定及耐药性分析[J]. 热带作物学报,2012,33(12):2240. [HE C P, ZHAO L L, SUN L, et al. Identification and drug resistant analysis of a strain of siderophores producting antagonist bacteria from rubber tree[J]. Chinese Journal of Tropical Crops,2012,33(12):2240.] doi: 10.3969/j.issn.1000-2561.2012.12.023

    HE C P, ZHAO L L, SUN L, et al. Identification and drug resistant analysis of a strain of siderophores producting antagonist bacteria from rubber tree[J]. Chinese Journal of Tropical Crops, 2012, 33(12): 2240. doi: 10.3969/j.issn.1000-2561.2012.12.023
    [6]
    许佳露, 张平, 李美芳, 等. 产铁载体菌株的分离、培养条件优化及初步应用[J]. 微生物学通报,2022,49(3):1004−1016. [XU J L, ZHANG P, LI M F, et al. Isolation, optimization of culture conditions and preliminary application of siderophore-producing strains[J]. Microbiology China,2022,49(3):1004−1016.]

    XU J L, ZHANG P, LI M F, et al. Isolation, optimization of culture conditions and preliminary application of siderophore-producing strains[J]. Microbiology China, 2022, 49(3): 1004−1016.
    [7]
    AMSRI A, SRICHAIRATANAKOOL S, TEERAWUTGULRAG A, et al. Genetic engineering of Talaromyces marneffei to enhance siderophore production and preliminary testing for medical application potential[J]. Journal of Fungi,2022,8(11):1183. doi: 10.3390/jof8111183
    [8]
    GANGWAR M, KAUR G. Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass[J]. Internet Journal of Microbiology,2009,7(1):139−144.
    [9]
    RUNGIN S, INDANANDA C, SUTTIVIRIYA P, et al. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105)[J]. Antonie Van Leeuwenhoek,2012,102(3):463−472. doi: 10.1007/s10482-012-9778-z
    [10]
    ANDRIĆ S, RIGOLET A, ARGÜELLES ARIAS A, et al. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor[J]. The ISME Journal, 2022:1−13.
    [11]
    邹雪峰, 李铭刚, 包玲风, 等. 一株分泌型铁载体真菌分离鉴定及生物活性研究[J]. 生物技术通报,2022,38(3):130−138. [ZOU X F, LI M G, BAO L F, et al. Isolation and identification and biological activity of a secretory siderophore fungus[J]. Biotechnology Bulletin,2022,38(3):130−138.]

    ZOU X F, LI M G, BAO L F, et al. Isolation and identification and biological activity of a secretory siderophore fungus[J]. Biotechnology Bulletin, 2022, 38(3): 130−138.
    [12]
    NARAYANAN M, PUGAZHENDHI A, MA Y. Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Mill sp. phytoremediation potential on metal-polluted soil under controlled conditions[J]. Frontiers in Plant Science,2022,13:1017043. doi: 10.3389/fpls.2022.1017043
    [13]
    朱芝宜, 李培根, 李林玉, 等. 铁载体细菌对植物缺铁性黄化病生物防治的研究现状[J]. 林业科技情报,2020,52(3):9−11. [ZHU Z Y, LI P G, LI L Y, et al. Research status of hemophoretic bacteria on biological control of plant iron deficiency yellowing disease[J]. Forestry Science and Technology Information,2020,52(3):9−11.]

    ZHU Z Y, LI P G, LI L Y, et al. Research status of hemophoretic bacteria on biological control of plant iron deficiency yellowing disease[J]. Forestry Science and Technology Information, 2020, 52(3): 9−11.
    [14]
    王英丽, 林庆祺, 李宇, 等. 产铁载体根际菌在植物修复重金属污染土壤中的应用潜力[J]. 应用生态学报,2013,24(7):2081−2088. [WANG Y L, LIN Q Q, LI Y, et al. Application potential of rhizometrophy in phytoremediation of heavy metal contaminated soil[J]. Chinese Journal of Applied Ecology,2013,24(7):2081−2088.]

    WANG Y L, LIN Q Q, LI Y, et al. Application potential of rhizometrophy in phytoremediation of heavy metal contaminated soil[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 2081−2088.
    [15]
    WINKELMANN G. Ecology of siderophores with special reference to the fungi[J]. Biometals,2007,20(3):379−392.
    [16]
    TORRES M A, WEST A J, NEALSON K. Microbial acceleration of olivine dissolution via siderophore production[J]. Procedia Earth and Planetary Science,2014,10:118−122. doi: 10.1016/j.proeps.2014.08.041
    [17]
    BAU M, TEPE N, MOHWINKEL D. Siderophore-promoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water[J]. Earth and Planetary Science Letters,2013,364:30−36. doi: 10.1016/j.jpgl.2013.01.002
    [18]
    吴岭, 汤建新, 李文, 等. 微生物螯合剂的合成及其条件优化研究[J]. 包装学报,2017,9:28−34. [WU L, TANG J X, LI W, et al. Synthesis of microbial chelators and optimization of their conditions[J]. Journal of Packaging,2017,9:28−34.]

    WU L, TANG J X, LI W, et al. Synthesis of microbial chelators and optimization of their conditions[J]. Journal of Packaging, 2017, 9: 28−34.
    [19]
    尹凤娇. Bacillus amyloliquefaciens Y14和Paenibacillus illinoisensis YZ29的培养基及培养条件优化[D]. 泰安:山东农业大学, 2018. [YIN F J. Optimization of culture media and culture conditions of Bacillus amyloliquefaciens Y14 and Paenibacillus illinoisensis YZ29[D]. Taian:Shandong Agricultural University, 2018.]

    YIN F J. Optimization of culture media and culture conditions of Bacillus amyloliquefaciens Y14 and Paenibacillus illinoisensis YZ29[D]. Taian: Shandong Agricultural University, 2018.
    [20]
    杨常娥, 鲁艳莉, 倪捍成, 等. 创伤弧菌产铁载体菌株的筛选及其诱导条件的响应面优化[J]. 食品工业科技,2017,38(3):159−165. [YANG C E, LU Y L, NI H C, et al. Screening of siderophore-producing strains of Vibrio vulnificus and optimization of response surface of their induction conditions[J]. Science and Technology of Food Industry,2017,38(3):159−165.]

    YANG C E, LU Y L, NI H C, et al. Screening of siderophore-producing strains of Vibrio vulnificus and optimization of response surface of their induction conditions[J]. Science and Technology of Food Industry, 2017, 38(3): 159−165.
    [21]
    李枢妍, 阳黎恒, 肖雪婷, 等. 一株香蕉枯萎病拮抗菌的筛选、鉴定及生防效果研究[J]. 南方农业学报,2021,52(7):1826−1834. [LI S Y, YANG L H, XUE X T, et al. Screening, identification and biocontrol effect of antagonistic antibacterial effect of banana wilt[J]. Southern Journal of Agricultural Sciences,2021,52(7):1826−1834.]

    LI S Y, YANG L H, XUE X T, et al. Screening, identification and biocontrol effect of antagonistic antibacterial effect of banana wilt[J]. Southern Journal of Agricultural Sciences, 2021, 52(7): 1826−1834.
    [22]
    SCHWYN B, NEILANDS J B. Universal chemical assay for the detection and determination of siderophores[J]. Analytical biochemistry,1987,160(1):47−56. doi: 10.1016/0003-2697(87)90612-9
    [23]
    BAAKZA A, VALA A K, DAVE B P, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats[J]. Journal of Experimental Marine Biology and Ecology,2004,311(1):1−9. doi: 10.1016/j.jembe.2003.12.028
    [24]
    于婷, 董庆龙, 刘嘉芬, 等. 嗜铁细菌CAS17的分离鉴定及其对毒死蜱的降解特性研究[J]. 环境科学学报,2014,34(1):136−142. [YU T, DONG Q L, LIU J F, et al. Isolation and identification of ironophilic bacteria CAS17 and its degradation characteristics on chlorpyrifos[J]. Journal of Environmental Science,2014,34(1):136−142.]

    YU T, DONG Q L, LIU J F, et al. Isolation and identification of ironophilic bacteria CAS17 and its degradation characteristics on chlorpyrifos[J]. Journal of Environmental Science, 2014, 34(1): 136−142.
    [25]
    TAILOR A J, JOSHI B H. Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere[J]. Journal of Environmental Research and Development,2012,6(3A):688−694.
    [26]
    王前程, 张迎迎, 戴陶宇, 等. 拟康宁木霉T-51菌株对番茄枯萎病的生物防治及其机理研究[J]. 西北植物学报,2022,42(6):974−982. [WANG Q C, ZHANG Y Y, DAI T Y, et al. Study on biological control effect and mechanism of Trichoderma koningiopsis T-51 on tomato fusarium wilt[J]. Northwest Botanical Journal,2022,42(6):974−982.]

    WANG Q C, ZHANG Y Y, DAI T Y, et al. Study on biological control effect and mechanism of Trichoderma koningiopsis T-51 on tomato fusarium wilt[J]. Northwest Botanical Journal, 2022, 42(6): 974−982.
    [27]
    SANTOS S, NETO I F F, MACHADO M D, et al. Siderophore production by Bacillus megaterium:Effect of growth phase and cultural conditions[J]. Applied Biochemistry and Biotechnology,2014,172:549−560. doi: 10.1007/s12010-013-0562-y
    [28]
    RACHID D, AHMED B. Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens[J]. African Journal of Biotechnology,2005,4(7):697−702. doi: 10.5897/AJB2005.000-3129
    [29]
    陈伟, 舒健虹, 陈莹, 等. 黑麦草根际铁载体产生菌WN-H3的分离鉴定及其产铁载体培养条件的优化[J]. 生物技术通报,2016,32(10):219−226. [CHEN W, SHU J H, CHEN Y, et al. Isolation and identification of ryegrass rhizosphere siderophore-producing bacteria WN-H3 and optimization of iron-producing culture conditions[J]. Biotechnology Bulletin,2016,32(10):219−226.]

    CHEN W, SHU J H, CHEN Y, et al. Isolation and identification of ryegrass rhizosphere siderophore-producing bacteria WN-H3 and optimization of iron-producing culture conditions[J]. Biotechnology Bulletin, 2016, 32(10): 219−226.
    [30]
    彭雯杰, 詹伊婧, 雷鹏, 等. 阿斯青霉菌XK-12产铁载体特性及其抑菌活性[J]. 江苏农业学报,2022,38(1):73−80. [PENG W J, ZHAN Y J, LEI P, et al. Siderophore-producing characteristics and antibacterial activity of Penicillium aspenicillum XK-12[J]. Jiangsu Journal of Agricultural Sciences,2022,38(1):73−80.]

    PENG W J, ZHAN Y J, LEI P, et al. Siderophore-producing characteristics and antibacterial activity of Penicillium aspenicillum XK-12[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(1): 73−80.
    [31]
    BANO N, MUSARRAT J. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent[J]. Current Microbiology,2003,46(5):324−328. doi: 10.1007/s00284-002-3857-8
    [32]
    SAYYED R Z, PATEL P R. Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-à-vis organophosphorus fungicide[J]. Indian Journal of Microbiology,2011,51(3):266−272. doi: 10.1007/s12088-011-0170-x
    [33]
    SOLANS M, SCERVINO J M, MESSUTI M I, et al. Potential biocontrol actinobacteria:Rhizospheric isolates from the Argentine pampas lowlands legumes[J]. Journal of Basic Microbiology,2016,56(11):1289−1298. doi: 10.1002/jobm.201600323
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (120) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return