JIANG Fulin, LU Yunhao, HE Qiang. Dual-directional Regulation of Tea Polyphenols on the Growth of Lactobacillus plantarum, Staphylococcus aureus, and Escherichia coli[J]. Science and Technology of Food Industry, 2023, 44(22): 152−159. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040081.
Citation: JIANG Fulin, LU Yunhao, HE Qiang. Dual-directional Regulation of Tea Polyphenols on the Growth of Lactobacillus plantarum, Staphylococcus aureus, and Escherichia coli[J]. Science and Technology of Food Industry, 2023, 44(22): 152−159. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040081.

Dual-directional Regulation of Tea Polyphenols on the Growth of Lactobacillus plantarum, Staphylococcus aureus, and Escherichia coli

More Information
  • Received Date: April 15, 2023
  • Available Online: September 13, 2023
  • Enhancing the vitality of probiotics in probiotic product while inhibiting the growth of food-borne pathogenic and spoilage bacteria can improve product quality stability. Under mono-culture and co-culture conditions, the effects of different concentrations of tea polyphenols on the growth of Lactobacillus plantarum, Staphylococcus aureus, and Escherichia coli were comparatively investigated by culture-dependent method and high-throughput sequencing. Mono-culture result showed that with the increase of tea polyphenols concentration, the viable count of L. plantarum first ascended and then decreased, reaching the maximum at the concentration of 2.0 mg/mL. However, the survival rate of the two pathogens decreased continuously, with S. aureus decreasing more significantly. In the co-culture system (S. aureus/E. coli-L. plantarum), the biomass of L. plantarum showed a significant increase with culture time, coupled with a general decrease in the number of the pathogen and pH of the medium. In addition, Illumina Miseq sequencing further showed that the relative abundance of Lactobacillus was higher than that of the control when coexisted with the pathogen in the presence of tea polyphenols, while the relative abundance of the pathogen was lower than that of the control. The results indicated that tea polyphenols at an appropriate concentration (2~4 mg/mL) had a dual-directional regulation on the growth of L. plantarum and pathogens, that was, proliferating L. plantarum while inhibiting the growth of pathogens.
  • [1]
    白慧慧. 母乳婴儿源益生菌筛选鉴定及其潜在益生特性研究[D]. 兰州:兰州理工大学, 2022

    BAI H H. Screening and identification of breast-feeding probiotics and their potential probiotics[D]. Lanzhou:Lanzhou University of Technology, 2022.
    [2]
    DAHIYA D, NIGAM P S. Clinical potential of microbial strains, used in fermentation for probiotic food, beverages and in synbiotic supplements, as psychobiotics for cognitive treatment through gut-brain signaling[J]. Microorganisms,2022,10(9):1687. doi: 10.3390/microorganisms10091687
    [3]
    KUMAR S, RATTU G, MITHARWAL S, et al. Trends in non-dairy-based probiotic food products: Advances and challenges[J]. Journal of Food Processing and Preservation,2022,46(9):16578.
    [4]
    杨滔, 张晓东, 刘红梅, 等. 不同发酵剂对发酵猪肉香肠品质的影响[J]. 食品工业科技,2022,43(1):101−109

    YANG T, ZHANG X D, LIU H M, et al. Effect of different starters on the quality of fermented pork sausage[J]. Science and Technology of Food Industry,2022,43(1):101−109.
    [5]
    严涛, 陈珂可, 杨恒飞, 等. 益生菌菌粉贮存活性影响因素研究[J]. 生物技术通报,2022,39(4):56−63

    YAN T, CHEN K K, YANG H F, et al. Study on factors affecting the storage survival rates of probiotic bacteria powder[J]. Biotechnology Bulletin,2022,39(4):56−63.
    [6]
    李卓思, 高彬茹, 吴梦洁, 等. 低聚糖拮抗食源性致病菌的研究及应用进展[J]. 现代食品科技,2022,38(12):394−401 doi: 10.13982/j.mfst.1673-9078.2022.12.0191

    LI Z S, GAO B R, WU M J, et al. Research and application progress of oligosaccharides against foodborne pathogens[J]. Modern Food Science and Technology,2022,38(12):394−401. doi: 10.13982/j.mfst.1673-9078.2022.12.0191
    [7]
    王睿, 王琦, 周敏, 等. 茶多酚和EGCG对风干金鲳鱼品质相关理化指标的改善效果比较[J]. 食品科学,2023,44(2):54−63

    WANG R, WANG Q, ZHOU M, et al. Comparison of the effects of tea polyphenols and epigallocatechin gallate on improving physicochemical indexes related to quality of air-dried golden pomfret[J]. Food Science,2023,44(2):54−63.
    [8]
    ZHANG Q L, ZHANG J, ZHANG J Q, et al. Antimicrobial effect of tea polyphenols against foodborne pathogens: A review[J]. Journal of Food Protection,2021,84(10):1801−1808. doi: 10.4315/JFP-21-043
    [9]
    KITICHALERMKIAT A, KURAHACHI M, NONAKA A, et al. Effects of epigallocatechin gallate on viability and cellular proteins of Staphylococcus aureus[J]. Food Science and Technology Research,2019,25(2):277−285. doi: 10.3136/fstr.25.277
    [10]
    王文娟, 孙京新, 罗欣, 等. 茶多酚对肉源腐败菌和致病菌的抑制效果[J]. 食品科技,2010,35(2):102−105

    WANG W J, SUN J X, LUO X, et al. Inhibitory effect of tea polyphenols on spoilage organisms and pathogens of meat origin[J]. Food Science and Technology,2010,35(2):102−105.
    [11]
    PIEKARSKA-RADZIK L, KLEWICKA E. Mutual influence of polyphenols and Lactobacillus spp. bacteria in food: A review[J]. European Food Research and Technology,2020,247(1):9−24.
    [12]
    TABASCO R, SANCHEZ-PATAN F, MONAGAS M, et al. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: Resistance and metabolism[J]. Food Microbiology,2011,28(7):1345−1352. doi: 10.1016/j.fm.2011.06.005
    [13]
    ZHANG X, ZHU X L, SUN Y K, et al. Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota[J]. Food Research International,2013,54(2):1589−1595. doi: 10.1016/j.foodres.2013.10.005
    [14]
    潘冬梅, 吴怡瑾, 王玉露, 等. 茶多酚辅助植物乳杆菌FQR降解亚硝酸盐效应的研究[J]. 中国酿造,2020,39(5):131−134 doi: 10.11882/j.issn.0254-5071.2020.05.025

    PAN D M, WU Y J, WANG Y L, et al. Effect of tea polyphenols-assisted Lactobacillus plantarum FOR on nitrite degradation[J]. China Brewing,2020,39(5):131−134. doi: 10.11882/j.issn.0254-5071.2020.05.025
    [15]
    倪倩, 佟玲, 高钧, 等. 高效液相色谱-质谱法及模式识别法用于鉴别普洱生茶与熟茶[J]. 理化检验(化学分册),2012,48(2):171−174

    NI Q, TONG L, GAO J, et al. ldentification of raw and ripe Pu-Er tea by HPLC-MS/MS with pattern recognition[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis),2012,48(2):171−174.
    [16]
    CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):884−890. doi: 10.1093/bioinformatics/bty560
    [17]
    MAGOČ T, SALZBERG S L. Flash: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics,2011,27(21):2957−2963. doi: 10.1093/bioinformatics/btr507
    [18]
    EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996−998. doi: 10.1038/nmeth.2604
    [19]
    WANG Q, GARRITY G M, TIEDJE J M, et al. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology,2007,73(16):5261−5267. doi: 10.1128/AEM.00062-07
    [20]
    ZHAO D Y, SHAH N P. Effect of tea extract on lactic acid bacterial growth, their cell surface characteristics and isoflavone bioconversion during soymilk fermentation[J]. Food Research International,2014,62:877−885. doi: 10.1016/j.foodres.2014.05.004
    [21]
    张雪婷, 柯婷玉娲, 李宜春, 等. 提高益生菌存活率影响因素的研究[J]. 食品工业,2017,38(12):146−150

    ZHANG X T, KE T Y W, LI Y C, et al. Study on the factors of the survival rate of probiotics[J]. The Food Industry,2017,38(12):146−150.
    [22]
    MARGINA D, ILIE M, MANDA G, et al. Quercetin and epigallocatechin gallate effects on the cell membranes biophysical properties correlate with their antioxidant potential[J]. General Physiology and Biophysics,2012,31(1):47−55. doi: 10.4149/gpb_2012_005
    [23]
    ALBERTO M R, FARÍAS M E, MANCA DE NADRA M C. Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds[J]. Journal of Agricultural and Food Chemistry,2001,49:4359−4363. doi: 10.1021/jf0101915
    [24]
    FILANNINO P, GOBBETTI M, DE ANGELIS M, et al. Hydroxycinnamic acids used as external acceptors of electrons: An energetic advantage for strictly heterofermentative lactic acid bacteria[J]. Applied and Environmental Microbiology,2014,80(24):7574−7582. doi: 10.1128/AEM.02413-14
    [25]
    LI Q C, LI Y, TANG Y Y, et al. Prevalence and characterization of Staphylococcus aureus and Staphylococcus argenteus in chicken from retail markets in China[J]. Food Control,2019,96:158−164. doi: 10.1016/j.foodcont.2018.08.030
    [26]
    温燕龙, 李文云, 张楠, 等. 紫云英苷对大肠杆菌的抑制作用及其机制研究[J]. 云南农业大学学报(自然科学),2022,37(3):471−477

    WEN Y L, LI W Y, ZHANG N, et al. The inhibitory effect of astragalin on Escherichia coli and its mechanism[J]. Journal of Yunnan Agricultural University (Natural Science),2022,37(3):471−477.
    [27]
    BOUARAB-CHIBANE L, FORQUET V, LANTERI P, et al. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) models[J]. Frontiers in Microbiology,2019,10:829−852. doi: 10.3389/fmicb.2019.00829
    [28]
    SHI Y G, ZHANG R R, ZHU C M, et al. Antimicrobial mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus and its combined effect with electrospun nanofibers on Chinese Taihu icefish preservation[J]. Food Chemistry,2021,346:128949. doi: 10.1016/j.foodchem.2020.128949
    [29]
    CUI Y, OH Y J, LIM J, et al. AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria[J]. Food Microbiology,2012,29(1):80−87. doi: 10.1016/j.fm.2011.08.019
    [30]
    袁先铃, 周莺茹, 郑连强, 等. 酸菜中乳酸菌生长曲线、产酸性能及抑菌性能探究[J]. 食品研究与开发,2022,43(14):199−203 doi: 10.12161/j.issn.1005-6521.2022.14.025

    YUAN X L, ZHOU Y R, ZHENG L Q, et al. Investigation into the growth curve, acid-production ability, and bacterial inhibition of lactic acid bacteria in sauerkraut[J]. Food Research and Development,2022,43(14):199−203. doi: 10.12161/j.issn.1005-6521.2022.14.025
    [31]
    BAUZA-KASZEWSKA J, ŻARY-SIKORSKA E, GUGOLEK A, et al. Synergistic antimicrobial effect of raspberry (Rubus idaeus L., Rosaceae) preparations and probiotic bacteria on enteric pathogen[J]. Polish Journal of Food and Nutrition Sciences, 2021, 71:51−59.
    [32]
    BOUARAB CHIBANE L, DEGRAEVE P, FERHOUT H, et al. Plant antimicrobial polyphenols as potential natural food preservatives[J]. Journal of the Science of Food and Agriculture,2019,99(4):1457−1474. doi: 10.1002/jsfa.9357
    [33]
    吴晓宗. 烟草青枯病发病对植烟根际土壤微生态的影响[D]. 郑州:郑州大学, 2020

    WU X Z. The effect of tobacco bacterial wilt on the rhizosphere soil microecology of tobacco[D]. Zhengzhou:Zhouzheng University, 2022.
  • Cited by

    Periodical cited type(12)

    1. 林柳雁,王丽,萧绮莉,蒋小红,陈惠冰. 成人炎症性肠病患者经口营养管理的证据总结. 护理实践与研究. 2025(02): 244-251 .
    2. 雷露,吕沛然,张宁,梁越,赵耀,赵娴. 中医治疗炎症性肠病机制的研究进展. 中医药学报. 2024(02): 116-121 .
    3. 李振,崔艳红,刘长忠,袁梦. 枯草芽孢杆菌对环境耐受性和产中性蛋白酶能力研究. 黑龙江畜牧兽医. 2024(04): 81-87+92 .
    4. 耿英杰,戚浩龙,李园,蔡晓青. 益生菌治疗炎症性肠病的研究进展. 中国医药工业杂志. 2024(08): 1069-1077 .
    5. 李文,刘夫锋. 基于益生菌口服药物递送系统的研究进展. 微生物学报. 2024(11): 4086-4105 .
    6. 曾馨苑,吴严玮. 益生菌联合复方谷氨酰胺和马来酸曲美布汀治疗腹泻型肠易激综合征的疗效观察. 中国处方药. 2024(11): 105-107 .
    7. 乌云,浩斯,巴达玛斯仁,锡林其其格,斯琴. 蒙医大肠宝如病与炎症性肠病的相关研究进展. 中国民族医药杂志. 2023(01): 65-67 .
    8. 王秋珍,邓自腾,兰静,刘雪连,范祥伟,薛毅,马云飞. 干酪乳杆菌对DSS诱导结肠炎小鼠焦虑样行为的影响及对结肠的保护作用. 中国农业大学学报. 2023(04): 139-146 .
    9. 杨硕,唐宗馨,段勃帆,陈禹含,郭欢新,孟祥晨. 双歧杆菌及其制剂对炎症性肠病作用机制研究进展. 食品科学. 2023(05): 275-281 .
    10. 侯保秋,董怡文,刘方. 一株分离自牦牛乳中的副干酪乳杆菌ZZ102对溃疡性结肠炎的缓解作用研究. 中国乳品工业. 2023(10): 21-25 .
    11. 刘柘君,刘振权,孙文燕. 复方益生菌粉提高小鼠免疫力的实验研究. 食品与药品. 2023(05): 456-461 .
    12. 杨敏琪,张吉翔,董卫国. 益生菌治疗炎性肠病的研究进展. 疑难病杂志. 2022(11): 1202-1205 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return