YANG Xingwen, YAO Shiwei, LU Hongling, et al. Effect of Sciadonic Acid on Hepatic Lipid Metabolism in Obese Mice Induced by A High-fat Diet[J]. Science and Technology of Food Industry, 2024, 45(6): 304−312. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040023.
Citation: YANG Xingwen, YAO Shiwei, LU Hongling, et al. Effect of Sciadonic Acid on Hepatic Lipid Metabolism in Obese Mice Induced by A High-fat Diet[J]. Science and Technology of Food Industry, 2024, 45(6): 304−312. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040023.

Effect of Sciadonic Acid on Hepatic Lipid Metabolism in Obese Mice Induced by A High-fat Diet

More Information
  • Received Date: April 05, 2023
  • Available Online: January 16, 2024
  • Objective: To investigate the potential beneficial effects of sciadonic acid (SA) on improving obesity induced by a high-fat diet in mice. Methods: Forty-eight male C57BL/6 mice were adaptively fed for one week and then randomly divided into the following groups: Control group (C), positive control group (S), model group (M), low-dose sciadonic acid group (LSA), medium-dose sciadonic acid group (MSA), and high-dose sciadonic acid group (HSA). The modeling process lasted for 16 weeks, and the low and high-dose groups were orally administered different doses of SA solution at a fixed time each day. After the modeling period, potential mechanisms of SA in regulating lipid metabolism in obese mice were explored, including aspects such as blood lipid metabolism, hepatic fat metabolism, hepatic oxidative stress, hepatic lipid synthesis, and expression of metabolism-related genes. Results: The high-dose SA intervention in obese mice significantly decreased the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in serum, while increasing high-density lipoprotein cholesterol (HDL-C) (P<0.05). It inhibited weight gain, reduced epididymal fat accumulation, and improved liver tissue damage. Additionally, SA significantly increased the activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in mice (P<0.05), and significantly reduced the production of oxidative end products MDA (P<0.05), alleviated oxidative stress in vivo, and inhibited lipid synthesis by regulating the expression of genes related to lipid metabolism to improve lipid metabolism. Conclusion: SA could improve lipid metabolism disorders in obese mice by suppressing fat accumulation, alleviate oxidative stress, regulate lipid synthesis and metabolism.
  • [1]
    WANG H, LI Y, WANG R, et al. Chinese Torreya grandis cv. Merrillii seed oil affects obesity through accumulation of sciadonic acid and altering the composition of gut microbiota[J]. Food Science and Human Wellness,2022,11(1):58−67. doi: 10.1016/j.fshw.2021.07.007
    [2]
    KIM S, HENNEICKE H, L. CAVANAGH L, et al. Osteoblastic glucocorticoid signaling exacerbates high-fat-diet induced bone loss and obesity[J]. Bone Research,2021,9(4):537−548.
    [3]
    PAN X F, WANG L M, PAN A. Epidemiology and determinants of obesity in China[J]. The Lancet Diabetes & Endocrinology,2021,9(6):373−392.
    [4]
    卜军, 陈章炜, 崔晓通, 等. 中国成人代谢异常与心血管疾病防治[J]. 上海医学,2020,43(3):129−164. [BU J, CHEN Z W, CUI X T, et al. Current status ot metabolic abnormality & treatment of cardiovascular diseases in Chinese adults[J]. Shanghai Medical & Pharmaceutical Journal,2020,43(3):129−164.]

    BU J, CHEN Z W, CUI X T, et al. Current status ot metabolic abnormality & treatment of cardiovascular diseases in Chinese adults[J]. Shanghai Medical & Pharmaceutical Journal, 2020, 433): 129164.
    [5]
    JOHN G K, WANG L, NANAVATI J, et al. Dietary alteration of the gut microbiome and its impact on weight and fat mass:A systematic review and meta-analysis[J]. Genes,2018,9(3):167. doi: 10.3390/genes9030167
    [6]
    LI S, ZHAO J H, LUAN J, et al. Genetic predisposition to obesity leads to increased risk of type 2 diabetes[J]. Diabetologia,2011,54(4):776−782. doi: 10.1007/s00125-011-2044-5
    [7]
    FUJII R, PATTARO C. Genetically-instrumented public health:Facing obesity to prevent chronic kidney disease[J]. Cardiovascular research, 2022, 18(5): 3013−3015.
    [8]
    ANCA T, ADRIAN R, REMUS S, et al. Clinical and laboratory characteristics of normal weight and obese individuals with non-alcoholic fatty liver disease[J]. Diagnostics,2022,12(4):801. doi: 10.3390/diagnostics12040801
    [9]
    CONNOLLY K, BATACAN R J, JACKSON D, et al. Perindopril prevents development of obesity and hypertension in middle aged diet-induced obese rat models of metabolic syndrome[J]. Life Sciences,2022,314:121291.
    [10]
    TIM B, REBECCA L S. Body fatness as a cause of cancer:Epidemiologic clues to biologic mechanisms[J]. Endocrine-related cancer, 2015, 22(3): R125-R134.
    [11]
    MOPURI R, ISLAM M S. Medicinal plants and phytochemicals with anti-obesogenic potentials:A review[J]. Biomedicine & Pharmacotherapy,2017,89:1442−1452.
    [12]
    LIU M, VERYSER C, LU J G, et al. Bioassay-guided isolation of active substances from Semen Torreyae identifies two new anthelmintic compounds with novel mechanism of action[J]. Journal of Ethnopharmacology,2018,224:421−428. doi: 10.1016/j.jep.2018.06.026
    [13]
    肖铭慧, 黄敏婕, 董捷, 等. 香榧籽油对高脂膳食SD大鼠脂质代谢的影响及机理[J]. 中国油脂,2022,47(3):71−77. [XIAO M H, HUANG M J, DONG J, et al. Effect of Torreya grandis cv. Merrilli seed oil on lipid metabolism in SD rats fed with high fat diet[J]. China Oils and Fats,2022,47(3):71−77.]

    XIAO M H, HUANG M J, DONG J, et al. Effect of Torreya grandis cv. Merrilli seed oil on lipid metabolism in SD rats fed with high fat diet[J]. China Oils and Fats, 2022, 473): 7177.
    [14]
    朱杰丽, 柴振林, 吴翠蓉, 等. 浙江省香榧及其油脂综合性状研究[J]. 中国粮油学报,2019,34(3):67−73. [ZHU J L, CHAI Z L, WU C R, et al. Comprehensive research on the quality of torreya grandis and its oil in Zhejiang Province[J]. Journal of the Chinese Cereals and Oils Association,2019,34(3):67−73.]

    ZHU J L, CHAI Z L, WU C R, et al. Comprehensive research on the quality of torreya grandis and its oil in Zhejiang Province[J]. Journal of the Chinese Cereals and Oils Association, 2019, 343): 6773.
    [15]
    SHI L K, MAO J H, ZHENG L, et al. Chemical characterization and free radical scavenging capacity of oils obtained from Torreya grandis Fort. ex. Lindl. and Torreya grandis Fort. var. Merrillii:A comparative study using chemometrics[J]. Industrial Crops and Products,2018,115:250−260. doi: 10.1016/j.indcrop.2018.02.037
    [16]
    李哲斌. 香榧仁油的营养特性研究进展[J]. 中国油料作物学报,2022,44(6):1166−1172. [LI Z B. Progress in nutritional property of Torreya grandis kernel oil[J]. Oil Crop Science,2022,44(6):1166−1172.]

    LI Z B. Progress in nutritional property of Torreya grandis kernel oil[J]. Oil Crop Science, 2022, 446): 11661172.
    [17]
    CHEN B Q, CUI X Y, ZHAO X, et al. Antioxidative and acute antiinflammatory effects of Torreya grandis[J]. Fitoterapia,2006,77(4):262−267. doi: 10.1016/j.fitote.2006.03.019
    [18]
    YOU J S, HE S C, CHEN L, et al. Analysis of pharmacological activities and mechanisms of essential oil in leaves of C. grandis 'Tomentosa' by GC-MS/MS and network pharmacology[J]. Combinatorial Chemistry & High Throughput Screening, 2023, 26(9):1689−1700.
    [19]
    王衍彬, 刘本同, 秦玉川, 等. 不同品种香榧种子油脂肪酸及香味物质组成分析[J]. 中国油脂,2016,41(2):101−105. [WANG Y B, LIU B T, QIN Y C, et al. Comparison of fruit characteristics and fatty acid composition of different Torreya grandis varieties[J]. China Oils and Fats,2016,41(2):101−105.]

    WANG Y B, LIU B T, QIN Y C, et al. Comparison of fruit characteristics and fatty acid composition of different Torreya grandis varieties[J]. China Oils and Fats, 2016, 412): 101105.
    [20]
    毛家辉. 品种、产地和制油工艺对榧籽油成分的影响[D]. 无锡:江南大学, 2017. [MAO J H. Effect of varieties, regions and production process on the component of Torreya grandis seed oil[J]. Wuxi:Jiangnan University, 2017.]

    MAO J H. Effect of varieties, regions and production process on the component of Torreya grandis seed oil[J]. Wuxi: Jiangnan University, 2017.
    [21]
    ENDO Y, TSUNOKAKE K, IKEDA I. Effects of non-methylene-interrupted polyunsaturated fatty acid, sciadonic (all-cis-5, 11, 14-eicosatrienoic acid) on lipid metabolism in rats[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(3):577−581. doi: 10.1271/bbb.80646
    [22]
    WOLFF R L, PÉDRONO F, PASQUIER E, et al. General characteristics of Pinus spp. seed fatty acid compositions, and importance of δ5-olefinic acids in the taxonomy and phylogeny of the genus[J]. Lipids,2000,35(1):1−22. doi: 10.1007/s11745-000-0489-y
    [23]
    ECKEL R H. The complex metabolic mechanisms relating obesity to hypertriglyceridemia[Z]. Am Heart Assoc,2011:1946−8.
    [24]
    PÉDRONO F, BOULIER-MONTHÉAN N, BOISSEL F, et al. Sciadonic acid derived from pine nuts as a food component to reduce plasma triglycerides by inhibiting the rat hepatic Δ9-desaturase[J]. Scientific Reports,2020,10(1):6223. doi: 10.1038/s41598-020-63301-3
    [25]
    温思思, 陆元超, 丁珏, 等. 金松酸对HepG2细胞中甘油三酯蓄积的影响[J]. 中国粮油学报,2022,37(11):191−198. [WEN S S, LU Y C, DING J, et al. Effects of sciadonic acid on triglyceride accumulation in HepG2 cells[J]. Journal of the Chinese Cereals and Oils Association,2022,37(11):191−198.]

    WEN S S, LU Y C, DING J, et al. Effects of sciadonic acid on triglyceride accumulation in HepG2 cells[J]. Journal of the Chinese Cereals and Oils Association, 2022, 3711): 191198.
    [26]
    林宁. 人参皂甙Rb1对高脂饮食诱导C57/BL6小鼠肥胖的预防作用及机制探讨[D]. 上海:第二军医大学, 2010. [LIN N. The preventive effect of paranoxsides Rb1 on diet-induced obese C57/BL6 mice and its mechanism[D]. Shanghai:The Second Military Medical University, 2010.]

    LIN N. The preventive effect of paranoxsides Rb1 on diet-induced obese C57/BL6 mice and its mechanism[D]. Shanghai: The Second Military Medical University, 2010.
    [27]
    郭彩霞, 韩丽, 乔进平, 等. 翅果油对高脂饮食小鼠的降脂减肥作用[J]. 食品工业科技,2020,41(5):293−298. [GUO C X, HAN L, QIAO J P, et al. The prevention effect of elaeagnus mollis oil on high-fat diet induced obesity in mice[J]. Science and Technology of Food Industry,2020,41(5):293−298.]

    GUO C X, HAN L, QIAO J P, et al. The prevention effect of elaeagnus mollis oil on high-fat diet induced obesity in mice[J]. Science and Technology of Food Industry, 2020, 415): 293298.
    [28]
    许阳, 胡新中, 张恒, 等. 燕麦米对肥胖小鼠减肥降脂作用的研究[J]. 中国粮油学报,2013,28(2):15−21. [XU Y, HU X Z, ZHANG H, et al. The function of oat-rice in reducing obesity and blood lipids of obese mice[J]. Journal of the Chinese Cereals and Oils Association,2013,28(2):15−21.]

    XU Y, HU X Z, ZHANG H, et al. The function of oat-rice in reducing obesity and blood lipids of obese mice[J]. Journal of the Chinese Cereals and Oils Association, 2013, 282): 1521.
    [29]
    于智慧, 周丽媛, 朱迎春. 全蛋及去蛋黄替代物摄入对代谢综合征小鼠脂代谢调控作用的比较分析[J]. 现代食品科技,2022,38(6):37−45,83. [YU Z H, ZHOU L Y, ZHU Y C. Comparative analysis of effects of whole egg and substitute of egg yolk consumption on lipid metabolism in mice with metabolic syndrome[J]. Modern Food Science & Technology,2022,38(6):37−45,83.]

    YU Z H, ZHOU L Y, ZHU Y C. Comparative analysis of effects of whole egg and substitute of egg yolk consumption on lipid metabolism in mice with metabolic syndrome[J]. Modern Food Science & Technology, 2022, 386): 3745,83.
    [30]
    孔欠文, 卫克昭, 张世瑜, 等. 花生油、橄榄油和猪油对小鼠血脂水平、肥胖及糖尿病易感性的影响研究[J]. 中国油脂,2019,44(8):96−101. [KONG Q W, WEI K Z, ZHANG S Y, et al. Effects of peanut oil, olive oil and lard on serum lipid level, obesity and diabetes susceptibility in mice[J]. China Oils and Fats,2019,44(8):96−101.]

    KONG Q W, WEI K Z, ZHANG S Y, et al. Effects of peanut oil, olive oil and lard on serum lipid level, obesity and diabetes susceptibility in mice[J]. China Oils and Fats, 2019, 448): 96101.
    [31]
    WANG D X, QING S L, MIAO Z W, et al. Hepatic nampt deficiency aggravates dyslipidemia and fatty liver in high fat diet fed mice[J]. Cells, 2023, 12:568.
    [32]
    陈敏, 尹明雨, 赵一梦, 等. 甜叶菊提取物对高糖脂饮食鼠血脂及其肠道菌群的影响[J]. 食品与发酵工业,2023,49(14):242−249. [CHEN M, YIN M Y, ZHAO Y M, et al. Effects of stevia extract on blood lipids and intestinal flora in mice fed with high sugar and fat diet[J]. Food and Fermentation Industries,2023,49(14):242−249.]

    CHEN M, YIN M Y, ZHAO Y M, et al. Effects of stevia extract on blood lipids and intestinal flora in mice fed with high sugar and fat diet[J]. Food and Fermentation Industries, 2023, 4914): 242249.
    [33]
    PANCHAL S K, POUDYAL H, IYER A, et al. High-carbohydrate, high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats[J]. Journal of Cardiovascular Pharmacology,2011,57(5):51−64.
    [34]
    CLARA L, MALOU F P, ROBERTO P R, et al. Mitochondrial oxidative stress in obesity:Role of the mineralocorticoid receptor[J]. The Journal of Endocrinology,2018,238(3):R143−R159. doi: 10.1530/JOE-18-0163
    [35]
    张佳丽, 张爱霞, 赵巍, 等. 发芽粟米对高血脂症小鼠血脂调节和抗氧化作用的研究[J]. 中国粮油学报,2020,35(3):37−44. [ZHANG J L, ZHANG A X, ZHAO W, et al. Effects of germinated millet on blood lipid and antioxidation in hyperlipidemia mice[J]. Journal of the Chinese Cereals and Oils Association,2020,35(3):37−44.]

    ZHANG J L, ZHANG A X, ZHAO W, et al. Effects of germinated millet on blood lipid and antioxidation in hyperlipidemia mice[J]. Journal of the Chinese Cereals and Oils Association, 2020, 353): 3744.
    [36]
    WANG J, YANG R W, LIU J B, et al. Effects of soybean antioxidant peptides (SAP) on SOD, GSH-Px, CAT activity and MDA level in vivo [J]. Advanced Materials Research, 2014, 3482(1025−1026).
    [37]
    刘小微, 李娟娥, 姜小帆, 等. 丹蒌片对载脂蛋白E基因敲除小鼠血脂及AMPK/SREBP通路的影响[J]. 陕西中医, 2021, 42(11):1531−5. [LI X W, LI J E, JIANG X F, et al. Effects of piper betel tablets on blood lipids and AMPK/SREBP pathway in ApoE knockout mice [J]. Shaanxi Journal of Traditional Chinese Medicine, 2021, 42(11):1531−1535.]

    LI X W, LI J E, JIANG X F, et al. Effects of piper betel tablets on blood lipids and AMPK/SREBP pathway in ApoE knockout mice [J]. Shaanxi Journal of Traditional Chinese Medicine, 2021, 42(11): 1531−1535.
    [38]
    LI X J, XU Z M, WANG S J, et al. Emodin ameliorates hepatic steatosis through endoplasmic reticulum-stress sterol regulatory element-binding protein 1c pathway in liquid fructose-feeding rats[J]. Hepatology Research:The official journal of the Japan Society of Hepatology,2016,46(3):12538.
    [39]
    曾丽荣. 膳食单宁酸抑制高脂饮食诱导的小鼠肥胖的调控机制[D]. 武汉:武汉科技大学, 2020. [ZENG L R. The mechanism of dietary tannic acid prevents high-fat-diet induced obesity in mice [D]. Wuhan:Wuhan University of Technology, 2020.]

    ZENG L R. The mechanism of dietary tannic acid prevents high-fat-diet induced obesity in mice [D]. Wuhan: Wuhan University of Technology, 2020.
    [40]
    CHEN L, JIANG Q H, JIANG C K, et al. Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota[J]. Food & Function,2023,14(6):2870−2880.
    [41]
    XU M X, GE C X, QIN Y T, et al. Activated TNF- α/RIPK3 signaling is involved in prolonged high fat diet-stimulated hepatic inflammation and lipid accumulation:Inhibition by dietary fisetin intervention[J]. Food & Function,2019,10(3):1302−1316.
    [42]
    GAO Q Y, LUO Z, MA S, et al. Microbe-derived antioxidants alleviate liver and adipose tissue lipid disorders and metabolic inflammation induced by high fat diet in mice[J]. International Journal of Molecular Sciences,2023,24(4):3269. doi: 10.3390/ijms24043269
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (210) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return