Citation: | BAI Yuhe. Advances in the Study of Natural Product Polysaccharides for the Relief of Depression and Their Mechanisms[J]. Science and Technology of Food Industry, 2023, 44(22): 394−401. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030197. |
[1] |
GERHARD D M, WOHLEB E S, DUMAN R S. Emerging treatment mechanisms for depression:Focus on glutamate and synaptic plasticity[J]. Drug Discovery Today,2016,21(3):454−464. doi: 10.1016/j.drudis.2016.01.016
|
[2] |
CHERRY J D, OLSCHOWKA J A, O’BANION M K. Neuroinflammation and M2 microglia:The good, the bad, and the inflamed[J]. J Neuroinflamm,2014,11(1):98. doi: 10.1186/1742-2094-11-98
|
[3] |
CHISHOLM D, SWEENY K, SHEEHAN P, et al. Scaling-up treatment of depression and anxiety:A global return on investment analysis[J]. Lancet Psychiat,2016,3(5):415−424. doi: 10.1016/S2215-0366(16)30024-4
|
[4] |
REN L, CHEN G. Rapid antidepressant effects of Yueju:A new look at the function and mechanism of an old herbal medicine[J]. Journal of Ethnopharmacology,2017,203(5):226−232.
|
[5] |
张建萍, 王钰. 高频经颅磁刺激辅助治疗卒中后抑郁的疗效及对5-羟色胺水平的影响[J]. 神经损伤与功能重建,2019,14(12):645−646
ZHANG J P, WANG Y. Efficacy of high-frequency transcranial magnetic stimulation as an adjunctive treatment for post-stroke depression and its effect on 5-hydroxytryptamine levels[J]. Neurological Injury and Functional Reconstruction,2019,14(12):645−646.
|
[6] |
李雪, 郝铭, 罗有才, 等. 出血性卒中后抑郁患者认知功能与生活质量研究[J]. 陕西医学杂志,2017,46(11):1545−1547
LI X, HAO M, LUO Y C, et al. Study on cognitive function and quality of life in depressed patients after hemorrhagic stroke[J]. Shaanxi Medical Journal,2017,46(11):1545−1547.
|
[7] |
HERRMAN H, PATEL V, KIELING C, et al. Time for united action on depression:A Lancet-World Psychiatric Association Commission[J]. Lancet (London, England),2022,399(10328):957−1022. doi: 10.1016/S0140-6736(21)02141-3
|
[8] |
HONG X Y. The application of natural plant products in cosmetics[J]. Subtrop Plant Sci,2017,46(3):297−300.
|
[9] |
CAMPELO M D, NETO J F C, LIMA A B N, et al. Polysaccharides and extracts from Agaricus brasiliensis Murill-A comprehensive review[J]. Int J Biol Macromol,2021,183:1697−1714. doi: 10.1016/j.ijbiomac.2021.05.112
|
[10] |
JI X L, HOU C Y, GUO X D, Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from Plantago L. (Plantaginaceae):A review[J]. Int J Biol Macromol, 2019, 135:637-646.
|
[11] |
ZENG H, HUANG L, ZHOU L, et al. A galactoglucan isolated from of Cistanche deserticola Y. C. Ma. and its bioactivity on intestinal bacteria strains[J]. Carbohydr Polym,2019,223:e115038. doi: 10.1016/j.carbpol.2019.115038
|
[12] |
LEE M M, REIF A, SCHMITT A G. Major depression:A role for hippocampal neurogenesis[J]. Curr Top Behav Neurosci,2013,14:153−179.
|
[13] |
张建军. AMPA受体增强剂在慢性应激中的抗抑郁作用[J]. 中国医药杂志,2010,13(9):1207−1218
ZHANG J J. Antidepressant effects of AMPA receptor enhancers in chronic stress[J]. Chinese Journal of Medicine,2010,13(9):1207−1218.
|
[14] |
DIERING G H, HUGANIR R L. The AMPA receptor code of synaptic plasticity[J]. Neuron,2018,100(2):314-329. doi: 10.1016/j.neuron.2018.10.018
|
[15] |
SVENNINGSSON P, TZAVARA E T, WITKIN J M, et al. Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac)[J]. Proc Natl Acad Sci USA,2002,99(5) :3182−3187. doi: 10.1073/pnas.052712799
|
[16] |
MAENG S, ZARATE C A, DU J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine:Role of alpha-amino3-hydroxy-5-methylisoxazole-4-propionic acid receptors[J]. Biol Psychiatry,2008,63(4):349−352. doi: 10.1016/j.biopsych.2007.05.028
|
[17] |
KESSLER R C, BERGLUND P, DEMLER O, et al. The epidemiology of major depressive disorder:Results from the national comorbidity survey replication (NCS-R)[J]. JAMA,2003, 289(23):3095−3105.
|
[18] |
SHAO R, ZHANG H-J, LEE T M C. The neural basis of social risky decision making in females with major depressive disorder[J]. Neuropsychologia,2015,67:100−110. doi: 10.1016/j.neuropsychologia.2014.12.009
|
[19] |
LI W, GUO B, TAO K, et al. Inhibition of SIRT1 in hippocampal CA1 ameliorates PTSD-like behaviors in mice by protections of neuronal plasticity and serotonin homeostasis via NHLH2/MAO-A pathway[J]. Biochemical and Biophysical Research Communications,2019,518(2):344−350. doi: 10.1016/j.bbrc.2019.08.060
|
[20] |
BOKU S, NAKAGAWA S, TODA H, et al. Neural basis of major depressive disorder:Beyond monoamine hypothesis[J]. Psychiatry Clin Neurosci,2018,72(1):3−12. doi: 10.1111/pcn.12604
|
[21] |
JEANETTE M, BRIJESH S. Phytochemistry and pharmacology of anti-depressant medicinal plants:A review[J]. Biomedicine & Pharmacotherapy,2018,104:343−365.
|
[22] |
MCMURRAY K M J, RAMAKER M J, BARKLEY-LEVENSON A M, et al. Identification of a novel, fast-acting GABAergic antidepressant[J]. Mol Psychiatry,2018,23(2):384−391. doi: 10.1038/mp.2017.14
|
[23] |
WANG J C, CHENG C L, XIN C, et al. The antidepressant like effect of flavonoids from Trigonella foenum-graecum seeds in chronic restraint stress mice via modulation of monoamine regulatory pathways[J]. Molecules,2019,24(6):1105. doi: 10.3390/molecules24061105
|
[24] |
YADAV R K, KHANDAY M A, MALLICK B N. Interplay of dopamine and GABA in substantia nigra for the regulation of rapid eye movement sleep in rats[J]. Behave Brain Res,2019,30(376):112−169.
|
[25] |
KIM E Y, KIM S H, LEE H J, et al. A randomized, double-blind, 6-week prospective pilot study on the efficacy and safety of dose escalation in non-remitters in comparison to those of the standard dose of escitalopram for major depressive disorder[J]. J Affect Disord,2019,259:91−97. doi: 10.1016/j.jad.2019.08.057
|
[26] |
RAHMAN M S, THOMAS P. Molecular cloning, characterization and expression of two tryptophan hydroxylase (TPH-1 and TPH-2) genes in the hypothalamus of atlantic croaker:Down-regulation after chronic exposure to hypoxia[J]. Neuroscience,2009,158(2):751−765. doi: 10.1016/j.neuroscience.2008.10.029
|
[27] |
FELDMAN L, LAPIN B, BUSCH R M, et al. Evaluating subjective cognitive impairment in the adult epilepsy clinic:effects of depression, number of antiepileptic medications, and seizure frequency[J]. Epilepsy Behav,2018,81:18−24. doi: 10.1016/j.yebeh.2017.10.011
|
[28] |
DONG Y, YANG F M. Insomnia symptoms predict both future hypertension and depression[J]. Preventive Medicine,2019,123:41−47. doi: 10.1016/j.ypmed.2019.02.001
|
[29] |
周鸿铭, 李铁臣. 硫酸茯苓多糖抗抑郁作用机制的探讨[J]. 皖南医学院学报, 2020, 39(3):209-213
ZHON H M, LI T C, Antidepressant mechanism of sulfated pachymaran[J]. Journal of Wannan Medical College, 2020, 39(3):209-213.
|
[30] |
汤娟, 张倩, 丁伯平, 等. 硫酸茯苓多糖对抑郁症大鼠海马AMPA受体表达的影响[J]. 中国药理学与毒理学杂志,2019,33(6):449
TANG J, ZHANG Q, DING B P, et al. Effects of Poria cocos polysaccharide sulfate on AMPA receptor expression in the hippocampus of depressed rats[J]. Chinese Journal of Pharmacology and Toxicology,2019,33(6):449.
|
[31] |
NICIU M J, LONESCU D F, MATHEWS D C, et al. Second messenger/signal transduction pathways in major mood disorders:Moving from membrane to mechanism of action, part 1:Major depressive disorder[J]. CNS Spectr,2013,18(5):231−241. doi: 10.1017/S1092852913000059
|
[32] |
丁超, 许寅, 葛韵芝. 当归多糖对慢性应激抑郁小鼠的行为影响及其机制研究[J]. 西部中医药,2021,34(6):21−27
DING C, XU Y, GE Y Z. Research on the mechanism and the effects of angelica polysaccharide on the behavior of chronic stress depression mice[J]. Western Chinese Medicine,2021,34(6):21−27.
|
[33] |
ŁUKASZ M, FILIP M, PAWEŁ M B, et al. Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs long-term depression[J]. Biochimica et Biophysica Acta,2016,1864(6):1071−1087.
|
[34] |
刘雨涵, 王婕. 抑郁症发病机制及5-羟色胺再摄取抑制药治疗研究进展[J]. 世界最新医学信息文摘,2019,19(26):84−86
LIU Y H, WANG J. Research progress on the pathogenesis of depression and 5-hydroxytryptamine reuptake inhibitor therapy[J]. World Abstract of the Latest Medical Information,2019,19(26):84−86.
|
[35] |
DICKENS M J, PAWLUSKI J L. The HPA axis during the perinatal period:Implications for perinatal depression[J]. Endocrinology,2018,159(11):3737−3746. doi: 10.1210/en.2018-00677
|
[36] |
SHEN F, SONG Z, XIE P, et al. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage[J]. Journal of Ethnopharmacology,2021,275:114−164.
|
[37] |
刘佳蕾, 王宇亮, 赵宏, 等. 百合多糖与黄芪多糖联用对慢性应激小鼠抑郁行为的影响及机制[J]. 中国实验方剂学杂志,2022,28(5):62−70
LIU J L, WANG Y L, ZHAO H, et al. Effect and mechanism of lily polysaccharide combined with astragalus polysaccharide on depressive behavior in chronic stress mice[J]. Chinese Journal of Experimental Traditional Medical Formulae,2022,28(5):62−70.
|
[38] |
RASTEDT W, BLUMRICH E M, DRINGEN R. Metabolism of mannose in cultured primary rat neurons[J]. Neurochem Res,2017,42(8):2282−2293. doi: 10.1007/s11064-017-2241-9
|
[39] |
ZHANG W, CHENG H, GUI Y Y, et al. Mannose treatment:A promising novel strategy to suppress inflammation[J]. Front Immunol,2021,12:756−920.
|
[40] |
MILLER A H, MALETIC V, RAISON C L. Inflammation and its discontents:The role of cytokines in the pathophysiology of major depression[J]. Biological Psychiatry,2009,65(9):732−741. doi: 10.1016/j.biopsych.2008.11.029
|
[41] |
YE G, YIN G Z, TANG Z, et al. Association between increased serum interleukin-6 levels and sustained attention deficits in patients with major depressive disorder[J]. Psychol Med,2018(15):2508−2514.
|
[42] |
KAUFANN F N, COSTA A P, GHISLENI G, et al. NLRP3 inflammasome-driven pathways in depression:Clinical and preclinical findings[J]. Brain Behavlmmun,2017,64:367−383.
|
[43] |
LAN T, HU Y, HU F, et al. Hepatocyte glutathione S-transferase mu 2 prevents non-alcoholic steatohepatitis by suppressing ASK1 signaling[J]. Journal of Hepatology,2022,76(2):407−419. doi: 10.1016/j.jhep.2021.09.040
|
[44] |
ZHANG L, PREVIN R, LU L, et al. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF- κB and NLRP3 signaling pathway[J]. Brain Res Bull,2018,142:352−359. doi: 10.1016/j.brainresbull.2018.08.021
|
[45] |
SINGHAL G, JAEHNE E J, CORRIGAN F, et al. Inflammasomes in neuroinflammation and changes in brain function:A focused review[J]. Frontiers in Neuroscience,2014,8:315.
|
[46] |
LIU P, BAI X Y, ZHANG T, et al. The protective effect of Lonicera japonica polysaccharide on mice with depression by inhibiting NLRP3 inflammasome[J]. Annals of Translational Medicine, 7(24):811.
|
[47] |
陈可琢, 陈实, 任洁贻, 等. 茯苓酸性多糖抗抑郁作用及其调节神经递质和NLRP3通路机制研究[J]. 中国中药杂志,2021,46(19):5088−5095 doi: 10.19540/j.cnki.cjcmm.20210610.705
CHEN K Z, CHEN S, REN J Y, et al. Antidepressant effect of acidic polysaccharides from Poria and their regulation of neurotransmitters and NLRP3 pathway[J]. Chinese Journal of Traditional Chinese Medicine,2021,46(19):5088−5095. doi: 10.19540/j.cnki.cjcmm.20210610.705
|
[48] |
史云静, 李玉霞. 茯苓多糖通过NF- κB 和NLRP3 信号通路调节脂多糖引起的焦虑和抑郁样行为[J]. 食品工业技术,2023,44(12):371−377
SHI Y J, LI Y X. Poria cocos polysaccharides regulate anxiety and depression-like behaviors induced by lipopolysaccharide through NF- κB and NLRP3 signaling pathways[J]. Science and Tecnology of Food Industry,2023,44(12):371−377.
|
[49] |
丁继红, 姜春玉, 杨乐, 等. 刺五加多糖调控PI3K/Akt/mTOR通路改善大鼠抑郁行为的作用[J]. 食品工业技术,2022,43(11):369−375
DING J H, JIANG C Y, YANG L, et al. Ameliorative effect of Acanathopanax senticosus polysaccharides on depressive behavior in rats by regulating PI3K/Akt/mTOR pathway[J]. Science and Technology of Food Industry,2022,43(11):369−375.
|
[50] |
YU J, LI Y, ZHANG Z, et al. Genome-wide identification of MKK and MAPK gene families and their expression analysis under abiotic stress in largemouth bass ( Micropterus salmoides)[J]. Aquaculture,2022,561:688738.
|
[51] |
HU Y, LU Y, XING F, et al. FGFR1/MAPK-directed brachyury activation drives PD-L1-mediated immune evasion to promote lung cancer progression[J]. Cancer Letters,2022,547:215867. doi: 10.1016/j.canlet.2022.215867
|
[52] |
JIN Z, TAO S, ZHANG C, et al. KIF20A promotes the development of fibrosarcoma via PI3K-Akt signaling pathway[J]. Experimental Cell Research,2022,420(1):113322. doi: 10.1016/j.yexcr.2022.113322
|
[53] |
YONG S J, TONG T , CHEW J, et al. Antidepressive mechanisms of probiotics and their therapeutic potential[J]. Front Neurosci, 2019, 13:1361.
|
[54] |
KELLY J R, BORRE Y, BRIEN C O', et al. Transferring the blues:Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res,2016,82(C):109−118.
|
[55] |
GRENHAM S, CLARKE G, CRYAN J F, et al. Brain-gut-microbe communication in health and disease[J]. Front Physiol,2011,2:94.
|
[56] |
MAYER E A, TILLISCH K. The brain-gut axis in abdominal pain syndromes[J]. Annu Rev Med,2011,62(1):381−396. doi: 10.1146/annurev-med-012309-103958
|
[57] |
WILHELMSEN I. Brain-gut axis as an example of the bio-psycho-social model[J]. Gut,2000,47(Suppl 4):iv5–iv10.
|
[58] |
ELFIL M, KAMEL S, KANDIL M, et al. Implications of the gut microbiome in Parkinson's disease[J]. Mov Disord,2020,35(6):921–933. doi: 10.1002/mds.28004
|
[59] |
SUDO N, CHIDA Y, AIBA Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice[J]. J Physiol, 2004, 558(Pt 1):263–275.
|
[60] |
YAN T, NIAN T, LIAO Z, et al. Antidepressant effects of a polysaccharide from okra ( Abelmoschus esculentus (L) Moench) by anti-inflammation and rebalancing the gut microbiota[J]. International Journal of Biological Macromolecules,2020,144:427−440. doi: 10.1016/j.ijbiomac.2019.12.138
|
[61] |
ABU-ELFOTUH K, AL-NAJJAR A H, MOHAMMED A A, et al. Fluoxetine ameliorates Azheimer's disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nr2H0-1 and hindering TLR4/NLRP3 inflammasome signaling pathway[J]. Int lmmunopharmacol,2022,104:108488. doi: 10.1016/j.intimp.2021.108488
|
[62] |
TAN S J, WANG Y, CHEN K, et al. Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice[J]. Biol Pharm Bull,2017,40(8):1260−1267. doi: 10.1248/bpb.b17-00131
|
[63] |
ZHANG L, CHOOP M, LIU X, et al. Combination therapy with VElCADE and tissue plasminogen acivator is neuroprotective in aged rats after stroke and targets microRNA-146a and the toll-like receptor signaling pathway[J]. Arterioscler Thromb Vasc Biol,2012,32(8):1856−1864. doi: 10.1161/ATVBAHA.112.252619
|
[64] |
MACARON C, MANKANEY G N, HAIDER M, et al. Chemoprevention considerations in patients with hereditary colorectal cancer syndromes[J]. Gastrointestinal Endoscopy Clinics of North America,2022,32(1):131−146. doi: 10.1016/j.giec.2021.08.005
|
[65] |
BRENNER L A, STEARNS-YODER K A, STAMPER C E, et al. Rationale, design, and methods:A randomized placebo-controlled trial of an immunomodulatory probiotic intervention for Veterans with PTSD[J]. Contemporary Clinical Trials Communications,2022,28:100960. doi: 10.1016/j.conctc.2022.100960
|
[66] |
MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host Microbe,2018,23(6):705–715. doi: 10.1016/j.chom.2018.05.012
|
[67] |
ZENI A L, ZOMKOWSKI A D, MARASCHIN M, et al. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice:Evidence for the involvement of the serotonergic system[J]. Eur J Pharmacol,2012,679(1−3):68–74. doi: 10.1016/j.ejphar.2011.12.041
|
1. |
马骋,付冉,宿书芳,刘艳明,高敏. 高效液相色谱法测定婴幼儿配方奶粉中维生素B_2含量的不确定度评定. 现代食品. 2024(09): 209-214 .
![]() |