BAI Yuhe. Advances in the Study of Natural Product Polysaccharides for the Relief of Depression and Their Mechanisms[J]. Science and Technology of Food Industry, 2023, 44(22): 394−401. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030197.
Citation: BAI Yuhe. Advances in the Study of Natural Product Polysaccharides for the Relief of Depression and Their Mechanisms[J]. Science and Technology of Food Industry, 2023, 44(22): 394−401. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030197.

Advances in the Study of Natural Product Polysaccharides for the Relief of Depression and Their Mechanisms

More Information
  • Received Date: March 20, 2023
  • Available Online: September 14, 2023
  • Depression, as a common mental disorder, is often alleviated and treated with antipsychotic drugs in clinical practice. However, long-term use of such drugs can lead to serious sequelae such as drowsiness, nausea and memory loss in patients. Therefore, effective prevention or relief of depression, reducing the pain and side effects of treatment for depressed patients and increasing the cure rate of depression have become current research hotspots. Polysaccharides are biologically active substances derived from natural products, and many studies have shown that polysaccharides in natural products are effective in alleviating depression. This paper reviews the effects and mechanisms of polysaccharides in natural products on the alleviation of depression by modulating neuronal dysfunction in the brain, modulating HPA axis abnormalities, modulating inflammation in the body, modulating microbial-gut-brain axis functions, and propose the cross-linking of polysaccharide products with drugs as a new therapeutic strategy for the prevention, alleviation and treatment of depression in the future based on these mechanisms of action. The study also suggests new targets and candidate compounds for the treatment of depression.
  • [1]
    GERHARD D M, WOHLEB E S, DUMAN R S. Emerging treatment mechanisms for depression:Focus on glutamate and synaptic plasticity[J]. Drug Discovery Today,2016,21(3):454−464. doi: 10.1016/j.drudis.2016.01.016
    [2]
    CHERRY J D, OLSCHOWKA J A, O’BANION M K. Neuroinflammation and M2 microglia:The good, the bad, and the inflamed[J]. J Neuroinflamm,2014,11(1):98. doi: 10.1186/1742-2094-11-98
    [3]
    CHISHOLM D, SWEENY K, SHEEHAN P, et al. Scaling-up treatment of depression and anxiety:A global return on investment analysis[J]. Lancet Psychiat,2016,3(5):415−424. doi: 10.1016/S2215-0366(16)30024-4
    [4]
    REN L, CHEN G. Rapid antidepressant effects of Yueju:A new look at the function and mechanism of an old herbal medicine[J]. Journal of Ethnopharmacology,2017,203(5):226−232.
    [5]
    张建萍, 王钰. 高频经颅磁刺激辅助治疗卒中后抑郁的疗效及对5-羟色胺水平的影响[J]. 神经损伤与功能重建,2019,14(12):645−646

    ZHANG J P, WANG Y. Efficacy of high-frequency transcranial magnetic stimulation as an adjunctive treatment for post-stroke depression and its effect on 5-hydroxytryptamine levels[J]. Neurological Injury and Functional Reconstruction,2019,14(12):645−646.
    [6]
    李雪, 郝铭, 罗有才, 等. 出血性卒中后抑郁患者认知功能与生活质量研究[J]. 陕西医学杂志,2017,46(11):1545−1547

    LI X, HAO M, LUO Y C, et al. Study on cognitive function and quality of life in depressed patients after hemorrhagic stroke[J]. Shaanxi Medical Journal,2017,46(11):1545−1547.
    [7]
    HERRMAN H, PATEL V, KIELING C, et al. Time for united action on depression:A Lancet-World Psychiatric Association Commission[J]. Lancet (London, England),2022,399(10328):957−1022. doi: 10.1016/S0140-6736(21)02141-3
    [8]
    HONG X Y. The application of natural plant products in cosmetics[J]. Subtrop Plant Sci,2017,46(3):297−300.
    [9]
    CAMPELO M D, NETO J F C, LIMA A B N, et al. Polysaccharides and extracts from Agaricus brasiliensis Murill-A comprehensive review[J]. Int J Biol Macromol,2021,183:1697−1714. doi: 10.1016/j.ijbiomac.2021.05.112
    [10]
    JI X L, HOU C Y, GUO X D, Physicochemical properties, structures, bioactivities and future prospective for polysaccharides from Plantago L. (Plantaginaceae):A review[J]. Int J Biol Macromol, 2019, 135:637-646.
    [11]
    ZENG H, HUANG L, ZHOU L, et al. A galactoglucan isolated from of Cistanche deserticola Y. C. Ma. and its bioactivity on intestinal bacteria strains[J]. Carbohydr Polym,2019,223:e115038. doi: 10.1016/j.carbpol.2019.115038
    [12]
    LEE M M, REIF A, SCHMITT A G. Major depression:A role for hippocampal neurogenesis[J]. Curr Top Behav Neurosci,2013,14:153−179.
    [13]
    张建军. AMPA受体增强剂在慢性应激中的抗抑郁作用[J]. 中国医药杂志,2010,13(9):1207−1218

    ZHANG J J. Antidepressant effects of AMPA receptor enhancers in chronic stress[J]. Chinese Journal of Medicine,2010,13(9):1207−1218.
    [14]
    DIERING G H, HUGANIR R L. The AMPA receptor code of synaptic plasticity[J]. Neuron,2018,100(2):314-329. doi: 10.1016/j.neuron.2018.10.018
    [15]
    SVENNINGSSON P, TZAVARA E T, WITKIN J M, et al. Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac)[J]. Proc Natl Acad Sci USA,2002,99(5) :3182−3187. doi: 10.1073/pnas.052712799
    [16]
    MAENG S, ZARATE C A, DU J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine:Role of alpha-amino3-hydroxy-5-methylisoxazole-4-propionic acid receptors[J]. Biol Psychiatry,2008,63(4):349−352. doi: 10.1016/j.biopsych.2007.05.028
    [17]
    KESSLER R C, BERGLUND P, DEMLER O, et al. The epidemiology of major depressive disorder:Results from the national comorbidity survey replication (NCS-R)[J]. JAMA,2003, 289(23):3095−3105.
    [18]
    SHAO R, ZHANG H-J, LEE T M C. The neural basis of social risky decision making in females with major depressive disorder[J]. Neuropsychologia,2015,67:100−110. doi: 10.1016/j.neuropsychologia.2014.12.009
    [19]
    LI W, GUO B, TAO K, et al. Inhibition of SIRT1 in hippocampal CA1 ameliorates PTSD-like behaviors in mice by protections of neuronal plasticity and serotonin homeostasis via NHLH2/MAO-A pathway[J]. Biochemical and Biophysical Research Communications,2019,518(2):344−350. doi: 10.1016/j.bbrc.2019.08.060
    [20]
    BOKU S, NAKAGAWA S, TODA H, et al. Neural basis of major depressive disorder:Beyond monoamine hypothesis[J]. Psychiatry Clin Neurosci,2018,72(1):3−12. doi: 10.1111/pcn.12604
    [21]
    JEANETTE M, BRIJESH S. Phytochemistry and pharmacology of anti-depressant medicinal plants:A review[J]. Biomedicine & Pharmacotherapy,2018,104:343−365.
    [22]
    MCMURRAY K M J, RAMAKER M J, BARKLEY-LEVENSON A M, et al. Identification of a novel, fast-acting GABAergic antidepressant[J]. Mol Psychiatry,2018,23(2):384−391. doi: 10.1038/mp.2017.14
    [23]
    WANG J C, CHENG C L, XIN C, et al. The antidepressant like effect of flavonoids from Trigonella foenum-graecum seeds in chronic restraint stress mice via modulation of monoamine regulatory pathways[J]. Molecules,2019,24(6):1105. doi: 10.3390/molecules24061105
    [24]
    YADAV R K, KHANDAY M A, MALLICK B N. Interplay of dopamine and GABA in substantia nigra for the regulation of rapid eye movement sleep in rats[J]. Behave Brain Res,2019,30(376):112−169.
    [25]
    KIM E Y, KIM S H, LEE H J, et al. A randomized, double-blind, 6-week prospective pilot study on the efficacy and safety of dose escalation in non-remitters in comparison to those of the standard dose of escitalopram for major depressive disorder[J]. J Affect Disord,2019,259:91−97. doi: 10.1016/j.jad.2019.08.057
    [26]
    RAHMAN M S, THOMAS P. Molecular cloning, characterization and expression of two tryptophan hydroxylase (TPH-1 and TPH-2) genes in the hypothalamus of atlantic croaker:Down-regulation after chronic exposure to hypoxia[J]. Neuroscience,2009,158(2):751−765. doi: 10.1016/j.neuroscience.2008.10.029
    [27]
    FELDMAN L, LAPIN B, BUSCH R M, et al. Evaluating subjective cognitive impairment in the adult epilepsy clinic:effects of depression, number of antiepileptic medications, and seizure frequency[J]. Epilepsy Behav,2018,81:18−24. doi: 10.1016/j.yebeh.2017.10.011
    [28]
    DONG Y, YANG F M. Insomnia symptoms predict both future hypertension and depression[J]. Preventive Medicine,2019,123:41−47. doi: 10.1016/j.ypmed.2019.02.001
    [29]
    周鸿铭, 李铁臣. 硫酸茯苓多糖抗抑郁作用机制的探讨[J]. 皖南医学院学报, 2020, 39(3):209-213

    ZHON H M, LI T C, Antidepressant mechanism of sulfated pachymaran[J]. Journal of Wannan Medical College, 2020, 39(3):209-213.
    [30]
    汤娟, 张倩, 丁伯平, 等. 硫酸茯苓多糖对抑郁症大鼠海马AMPA受体表达的影响[J]. 中国药理学与毒理学杂志,2019,33(6):449

    TANG J, ZHANG Q, DING B P, et al. Effects of Poria cocos polysaccharide sulfate on AMPA receptor expression in the hippocampus of depressed rats[J]. Chinese Journal of Pharmacology and Toxicology,2019,33(6):449.
    [31]
    NICIU M J, LONESCU D F, MATHEWS D C, et al. Second messenger/signal transduction pathways in major mood disorders:Moving from membrane to mechanism of action, part 1:Major depressive disorder[J]. CNS Spectr,2013,18(5):231−241. doi: 10.1017/S1092852913000059
    [32]
    丁超, 许寅, 葛韵芝. 当归多糖对慢性应激抑郁小鼠的行为影响及其机制研究[J]. 西部中医药,2021,34(6):21−27

    DING C, XU Y, GE Y Z. Research on the mechanism and the effects of angelica polysaccharide on the behavior of chronic stress depression mice[J]. Western Chinese Medicine,2021,34(6):21−27.
    [33]
    ŁUKASZ M, FILIP M, PAWEŁ M B, et al. Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs long-term depression[J]. Biochimica et Biophysica Acta,2016,1864(6):1071−1087.
    [34]
    刘雨涵, 王婕. 抑郁症发病机制及5-羟色胺再摄取抑制药治疗研究进展[J]. 世界最新医学信息文摘,2019,19(26):84−86

    LIU Y H, WANG J. Research progress on the pathogenesis of depression and 5-hydroxytryptamine reuptake inhibitor therapy[J]. World Abstract of the Latest Medical Information,2019,19(26):84−86.
    [35]
    DICKENS M J, PAWLUSKI J L. The HPA axis during the perinatal period:Implications for perinatal depression[J]. Endocrinology,2018,159(11):3737−3746. doi: 10.1210/en.2018-00677
    [36]
    SHEN F, SONG Z, XIE P, et al. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage[J]. Journal of Ethnopharmacology,2021,275:114−164.
    [37]
    刘佳蕾, 王宇亮, 赵宏, 等. 百合多糖与黄芪多糖联用对慢性应激小鼠抑郁行为的影响及机制[J]. 中国实验方剂学杂志,2022,28(5):62−70

    LIU J L, WANG Y L, ZHAO H, et al. Effect and mechanism of lily polysaccharide combined with astragalus polysaccharide on depressive behavior in chronic stress mice[J]. Chinese Journal of Experimental Traditional Medical Formulae,2022,28(5):62−70.
    [38]
    RASTEDT W, BLUMRICH E M, DRINGEN R. Metabolism of mannose in cultured primary rat neurons[J]. Neurochem Res,2017,42(8):2282−2293. doi: 10.1007/s11064-017-2241-9
    [39]
    ZHANG W, CHENG H, GUI Y Y, et al. Mannose treatment:A promising novel strategy to suppress inflammation[J]. Front Immunol,2021,12:756−920.
    [40]
    MILLER A H, MALETIC V, RAISON C L. Inflammation and its discontents:The role of cytokines in the pathophysiology of major depression[J]. Biological Psychiatry,2009,65(9):732−741. doi: 10.1016/j.biopsych.2008.11.029
    [41]
    YE G, YIN G Z, TANG Z, et al. Association between increased serum interleukin-6 levels and sustained attention deficits in patients with major depressive disorder[J]. Psychol Med,2018(15):2508−2514.
    [42]
    KAUFANN F N, COSTA A P, GHISLENI G, et al. NLRP3 inflammasome-driven pathways in depression:Clinical and preclinical findings[J]. Brain Behavlmmun,2017,64:367−383.
    [43]
    LAN T, HU Y, HU F, et al. Hepatocyte glutathione S-transferase mu 2 prevents non-alcoholic steatohepatitis by suppressing ASK1 signaling[J]. Journal of Hepatology,2022,76(2):407−419. doi: 10.1016/j.jhep.2021.09.040
    [44]
    ZHANG L, PREVIN R, LU L, et al. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF- κB and NLRP3 signaling pathway[J]. Brain Res Bull,2018,142:352−359. doi: 10.1016/j.brainresbull.2018.08.021
    [45]
    SINGHAL G, JAEHNE E J, CORRIGAN F, et al. Inflammasomes in neuroinflammation and changes in brain function:A focused review[J]. Frontiers in Neuroscience,2014,8:315.
    [46]
    LIU P, BAI X Y, ZHANG T, et al. The protective effect of Lonicera japonica polysaccharide on mice with depression by inhibiting NLRP3 inflammasome[J]. Annals of Translational Medicine, 7(24):811.
    [47]
    陈可琢, 陈实, 任洁贻, 等. 茯苓酸性多糖抗抑郁作用及其调节神经递质和NLRP3通路机制研究[J]. 中国中药杂志,2021,46(19):5088−5095 doi: 10.19540/j.cnki.cjcmm.20210610.705

    CHEN K Z, CHEN S, REN J Y, et al. Antidepressant effect of acidic polysaccharides from Poria and their regulation of neurotransmitters and NLRP3 pathway[J]. Chinese Journal of Traditional Chinese Medicine,2021,46(19):5088−5095. doi: 10.19540/j.cnki.cjcmm.20210610.705
    [48]
    史云静, 李玉霞. 茯苓多糖通过NF- κB 和NLRP3 信号通路调节脂多糖引起的焦虑和抑郁样行为[J]. 食品工业技术,2023,44(12):371−377

    SHI Y J, LI Y X. Poria cocos polysaccharides regulate anxiety and depression-like behaviors induced by lipopolysaccharide through NF- κB and NLRP3 signaling pathways[J]. Science and Tecnology of Food Industry,2023,44(12):371−377.
    [49]
    丁继红, 姜春玉, 杨乐, 等. 刺五加多糖调控PI3K/Akt/mTOR通路改善大鼠抑郁行为的作用[J]. 食品工业技术,2022,43(11):369−375

    DING J H, JIANG C Y, YANG L, et al. Ameliorative effect of Acanathopanax senticosus polysaccharides on depressive behavior in rats by regulating PI3K/Akt/mTOR pathway[J]. Science and Technology of Food Industry,2022,43(11):369−375.
    [50]
    YU J, LI Y, ZHANG Z, et al. Genome-wide identification of MKK and MAPK gene families and their expression analysis under abiotic stress in largemouth bass ( Micropterus salmoides)[J]. Aquaculture,2022,561:688738.
    [51]
    HU Y, LU Y, XING F, et al. FGFR1/MAPK-directed brachyury activation drives PD-L1-mediated immune evasion to promote lung cancer progression[J]. Cancer Letters,2022,547:215867. doi: 10.1016/j.canlet.2022.215867
    [52]
    JIN Z, TAO S, ZHANG C, et al. KIF20A promotes the development of fibrosarcoma via PI3K-Akt signaling pathway[J]. Experimental Cell Research,2022,420(1):113322. doi: 10.1016/j.yexcr.2022.113322
    [53]
    YONG S J, TONG T , CHEW J, et al. Antidepressive mechanisms of probiotics and their therapeutic potential[J]. Front Neurosci, 2019, 13:1361.
    [54]
    KELLY J R, BORRE Y, BRIEN C O', et al. Transferring the blues:Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res,2016,82(C):109−118.
    [55]
    GRENHAM S, CLARKE G, CRYAN J F, et al. Brain-gut-microbe communication in health and disease[J]. Front Physiol,2011,2:94.
    [56]
    MAYER E A, TILLISCH K. The brain-gut axis in abdominal pain syndromes[J]. Annu Rev Med,2011,62(1):381−396. doi: 10.1146/annurev-med-012309-103958
    [57]
    WILHELMSEN I. Brain-gut axis as an example of the bio-psycho-social model[J]. Gut,2000,47(Suppl 4):iv5–iv10.
    [58]
    ELFIL M, KAMEL S, KANDIL M, et al. Implications of the gut microbiome in Parkinson's disease[J]. Mov Disord,2020,35(6):921–933. doi: 10.1002/mds.28004
    [59]
    SUDO N, CHIDA Y, AIBA Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice[J]. J Physiol, 2004, 558(Pt 1):263–275.
    [60]
    YAN T, NIAN T, LIAO Z, et al. Antidepressant effects of a polysaccharide from okra ( Abelmoschus esculentus (L) Moench) by anti-inflammation and rebalancing the gut microbiota[J]. International Journal of Biological Macromolecules,2020,144:427−440. doi: 10.1016/j.ijbiomac.2019.12.138
    [61]
    ABU-ELFOTUH K, AL-NAJJAR A H, MOHAMMED A A, et al. Fluoxetine ameliorates Azheimer's disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nr2H0-1 and hindering TLR4/NLRP3 inflammasome signaling pathway[J]. Int lmmunopharmacol,2022,104:108488. doi: 10.1016/j.intimp.2021.108488
    [62]
    TAN S J, WANG Y, CHEN K, et al. Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice[J]. Biol Pharm Bull,2017,40(8):1260−1267. doi: 10.1248/bpb.b17-00131
    [63]
    ZHANG L, CHOOP M, LIU X, et al. Combination therapy with VElCADE and tissue plasminogen acivator is neuroprotective in aged rats after stroke and targets microRNA-146a and the toll-like receptor signaling pathway[J]. Arterioscler Thromb Vasc Biol,2012,32(8):1856−1864. doi: 10.1161/ATVBAHA.112.252619
    [64]
    MACARON C, MANKANEY G N, HAIDER M, et al. Chemoprevention considerations in patients with hereditary colorectal cancer syndromes[J]. Gastrointestinal Endoscopy Clinics of North America,2022,32(1):131−146. doi: 10.1016/j.giec.2021.08.005
    [65]
    BRENNER L A, STEARNS-YODER K A, STAMPER C E, et al. Rationale, design, and methods:A randomized placebo-controlled trial of an immunomodulatory probiotic intervention for Veterans with PTSD[J]. Contemporary Clinical Trials Communications,2022,28:100960. doi: 10.1016/j.conctc.2022.100960
    [66]
    MAKKI K, DEEHAN E C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host Microbe,2018,23(6):705–715. doi: 10.1016/j.chom.2018.05.012
    [67]
    ZENI A L, ZOMKOWSKI A D, MARASCHIN M, et al. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice:Evidence for the involvement of the serotonergic system[J]. Eur J Pharmacol,2012,679(1−3):68–74. doi: 10.1016/j.ejphar.2011.12.041
  • Cited by

    Periodical cited type(1)

    1. 马骋,付冉,宿书芳,刘艳明,高敏. 高效液相色谱法测定婴幼儿配方奶粉中维生素B_2含量的不确定度评定. 现代食品. 2024(09): 209-214 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (174) PDF downloads (34) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return