Citation: | MA Yongqiang, NIU Jichao, YOU Tingting, et al. Research on the Stability of Pickering Emulsion and Its Application in Food Field[J]. Science and Technology of Food Industry, 2023, 44(23): 376−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030079. |
[1] |
PICKERING S U. CXCVI.—Emulsions[J]. Journal of the Chemical Society, Transactions,1907,91:2001−2021. doi: 10.1039/CT9079102001
|
[2] |
LI W, JIAO B, LI S, et al. Recent advances on pickering emulsions stabilized by diverse edible particles:Stability mechanism and applications[J]. Frontiers in Nutrition,2022,9:864943. doi: 10.3389/fnut.2022.864943
|
[3] |
LINKE C, DRUSCH S. Pickering emulsions in foods-opportunities and limitations[J]. Critical Reviews in Food Science and Nutrition,2018,58(12):1971−1985. doi: 10.1080/10408398.2017.1290578
|
[4] |
COSSU A, WANG M S, CHAUDHARI A, et al. Antifungal activity against Candida albicans of starch Pickering emulsion with thymol or amphotericin B in suspension and calcium alginate films[J]. International Journal of Pharmaceutics,2015,493(1):233−242.
|
[5] |
GAO Z, ZHAO J, HUANG Y, et al. Edible Pickering emulsion stabilized by protein fibrils. Part 1:Effects of pH and fibrils concentration[J]. LWT-Food Science and Technology,2017,76:1−8. doi: 10.1016/j.lwt.2016.10.038
|
[6] |
CHEN L, AO F, GE X, et al. Food-grade pickering emulsions:Preparation, stabilization and applications[J]. Molecules,2020,25(14):3202. doi: 10.3390/molecules25143202
|
[7] |
LAM S, VELIKOV K P, VELEV O D. Pickering stabilization of foams and emulsions with particles of biological origin[J]. Current Opinion in Colloid & Interface Science,2014,19(5):490−500.
|
[8] |
YANG Y, FANG Z, CHEN X, et al. An overview of pickering emulsions:Solid-particle materials, classification, morphology, and applications[J]. Front Pharmacol,2017,8:287. doi: 10.3389/fphar.2017.00287
|
[9] |
BINKS B P, LUMSDON S O. Stability of oil-in-water emulsions stabilised by silica particles[J]. Physical Chemistry Chemical Physics,1999,1(12):3007−3016. doi: 10.1039/a902209k
|
[10] |
WANG Y W, CHEN C W, HSIEH J H, et al. Preparation of Ag/TiO2 composite foams via Pickering emulsion for bactericide and photocatalysis[J]. Ceramics International,2017,43:S797−S801. doi: 10.1016/j.ceramint.2017.05.290
|
[11] |
FESSI N, NSIB M F, CHEVALIER Y, et al. Pickering emulsions of fluorinated TiO2:A new route for intensification of photocatalytic degradation of nitrobenzene[J]. Langmuir,2020,36(45):13545−13554. doi: 10.1021/acs.langmuir.0c02285
|
[12] |
林正远. 光催化纳米二氧化钛材料及其应用[J]. 中国新通信,2019,21(1):226−227. [LIN Z Y. Photocatalytic nanometer titanium dioxide and its application[J]. China New Telecommunications,2019,21(1):226−227. doi: 10.3969/j.issn.1673-4866.2019.01.180
|
[13] |
GONG H, ZHOU Q, LIN F, et al. Preparation and application of uniform TiO2 electrospun nanofiber based on Pickering emulsion stabilized by TiO2/amphiphilic sodium alginate/polyoxyethylene[J]. Journal of Dispersion Science and Technology, 2022:1−12.
|
[14] |
WANG J, DENG H, SUN Y, et al. Montmorillonite and alginate co-stabilized biocompatible Pickering emulsions with multiple-stimulus tunable rheology[J]. J Colloid Interface Sci,2020,562:529−539. doi: 10.1016/j.jcis.2019.11.081
|
[15] |
PEITO S, PEIXOTO D, FERREIRA-FARIA I, et al. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications[J]. Int J Pharm,2022,615:121455. doi: 10.1016/j.ijpharm.2022.121455
|
[16] |
MACHADO J P E, DE FREITAS R A, WYPYCH F. Layered clay minerals, synthetic layered double hydroxides and hydroxide salts applied as Pickering emulsifiers[J]. Applied Clay Science,2019,169:10−20. doi: 10.1016/j.clay.2018.12.007
|
[17] |
CHEN Q, YANG Z, TAI X, et al. Study on influencing factors of Pickering emulsion stabilized by modified montmorillonite and fatty alcohol polyoxyethylene ether[J]. Journal of Dispersion Science and Technology, 2021:1−9.
|
[18] |
DE VOLDER M F, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes:Present and future commercial applications[J]. Science,2013,339(6119):535−539. doi: 10.1126/science.1222453
|
[19] |
CHEN W, LIU X, LIU Y, et al. Novel synthesis of self-assembled CNT microcapsules by O/W Pickering emulsions-science direct[J]. Materials Letters,2010,64(23):2589−2592. doi: 10.1016/j.matlet.2010.08.052
|
[20] |
CHEN W, LIU X, LIU Y, et al. Preparation of O/W Pickering emulsion with oxygen plasma treated carbon nanotubes as surfactants[J]. Journal of Industrial & Engineering Chemistry,2011,17(3):455−460.
|
[21] |
NGO Q P, HE M, CONCELLON A, et al. Reconfigurable Pickering emulsions with functionalized carbon nanotubes[J]. Langmuir,2021,37(27):8204−8211. doi: 10.1021/acs.langmuir.1c00904
|
[22] |
ZHOU F Z, HUANG X N, WU Z L, et al. Fabrication of zein/pectin hybrid particle-stabilized Pickering high internal phase emulsions with robust and ordered interface architecture[J]. Journal of Agricultural and Food Chemistry,2018,66(42):11113−11123. doi: 10.1021/acs.jafc.8b03714
|
[23] |
GAO J, LIANG H, LI S, et al. Development of zein/soluble soybean polysaccharide nanoparticle-stabilized Pickering emulsions[J]. Journal of Food Science,2021,86(5):1907−1916. doi: 10.1111/1750-3841.15730
|
[24] |
LI Y, XU G, LI W, et al. The role of ultrasound in the preparation of zein nanoparticles/flaxseed gum complexes for the stabilization of Pickering emulsion[J]. Foods,2021,10(9):1990. doi: 10.3390/foods10091990
|
[25] |
WEI Y, LIU Z, GUO A, et al. Zein colloidal particles and cellulose nanocrystals synergistic stabilization of Pickering emulsions for delivery of β-carotene[J]. Journal of Agricultural and Food Chemistry,2021,69(41):12278−12294. doi: 10.1021/acs.jafc.0c07800
|
[26] |
MA L, ZOU L, MCCLEMENTS D J, et al. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers:Gliadin nanoparticles/gum Arabic[J]. Food Hydrocolloids,2020,100:105381. doi: 10.1016/j.foodhyd.2019.105381
|
[27] |
BI C H, CHI S Y, ZHOU T, et al. Characterization of a novel high internal phase Pickering emulsions stabilized by soy protein self-assembled gel particles[J]. Frontiers in Nutrition,2021,8:795396. doi: 10.3389/fnut.2021.795396
|
[28] |
JU M, ZHU G, HUANG G, et al. A novel pickering emulsion produced using soy protein-anthocyanin complex nanoparticles[J]. Food Hydrocolloids,2020,99:105329. doi: 10.1016/j.foodhyd.2019.105329
|
[29] |
ZHANG X, WU Y, LI Y, et al. Effects of the interaction between bacterial cellulose and soy protein isolate on the oil-water interface on the digestion of the Pickering emulsions[J]. Food Hydrocolloids,2022,126:107480. doi: 10.1016/j.foodhyd.2021.107480
|
[30] |
JIANG F, PAN Y, PENG D, et al. Tunable self-assemblies of whey protein isolate fibrils for Pickering emulsions structure regulation[J]. Food Hydrocolloids,2022,124:107264. doi: 10.1016/j.foodhyd.2021.107264
|
[31] |
ZHOU S, HAN L, LU K, et al. Whey protein isolate-phytosterols nanoparticles:Preparation, characterization, and stabilized food-grade Pickering emulsions[J]. Food Chemistry,2022,384:132486. doi: 10.1016/j.foodchem.2022.132486
|
[32] |
FENG X, DAI H, MA L, et al. Food-grade gelatin nanoparticles:preparation, characterization, and preliminary application for stabilizing Pickering emulsions[J]. Foods,2019,8(10):479. doi: 10.3390/foods8100479
|
[33] |
DU Z, LI Q, LI J, et al. Self-assembled egg yolk peptide micellar nanoparticles as a versatile emulsifier for food-grade oil-in-water Pickering nanoemulsions[J]. Journal of Agricultural and Food Chemistry,2019,67(42):11728−11740. doi: 10.1021/acs.jafc.9b04595
|
[34] |
YU Z Y, JIANG S W, ZHENG Z, et al. Preparation and properties of OSA-modified taro starches and their application for stabilizing Pickering emulsions[J]. International Journal of Biological Macromolecules,2019,137:277−285. doi: 10.1016/j.ijbiomac.2019.06.230
|
[35] |
ZHENG W, REN L, HAO W, et al. Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch:Preparation, characterization and storage stability properties[J]. Food Chemistry,2022,386:132846. doi: 10.1016/j.foodchem.2022.132846
|
[36] |
ESTRADA-FERNÁNDEZ A G, DORANTES-BAUTISTA G, ROMÁN-GUERRERO A, et al. Modification of Oxalis tuberosa starch with OSA, characterization and application in food-grade Pickering emulsions[J]. Journal of Food Science and Technology,2021,58(8):2896−2905. doi: 10.1007/s13197-020-04790-y
|
[37] |
LI S, ZHANG B, TAN C P, et al. Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels:Preparation, microstructure and gelling mechanism[J]. Food Hydrocolloids,2019,91:40−47. doi: 10.1016/j.foodhyd.2019.01.001
|
[38] |
GARCíA A, GANDINI A, LABIDI J, et al. Industrial and crop wastes:A new source for nanocellulose biorefinery[J]. Industrial Crops and Products,2016,93:26−38. doi: 10.1016/j.indcrop.2016.06.004
|
[39] |
陈安祥, 宗毓东, 王金霞, 等. 纤维素稳定皮克林乳液的研究及在食品领域中的应用[J/OL]. 食品科学:1−13[2023-04-09]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220613.1104.083.html. [CHEN A X, ZONG Y D, WANG J X, et al. Research on cellulose stabilized Pickering emulsion and its application in food field[J/OL]. Food Science:1−13 [2023-04-09]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220613.1104.083.html.
CHEN A X, ZONG Y D, WANG J X, et al. Research on cellulose stabilized Pickering emulsion and its application in food field[J/OL]. Food Science: 1−13 [2023-04-09]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220613.1104.083.html.
|
[40] |
汤洋, 高成成, 张岩, 等. 多糖基颗粒稳定的Pickering乳液凝胶研究进展[J]. 食品科学,2022,43(3):341−351. [TANG Y, GAO C C, ZHANG Y, et al. A review of literature on Pickering emulsion gels stabilized by polysaccharide-based particles[J]. Food Science,2022,43(3):341−351. doi: 10.7506/spkx1002-6630-20201030-316
|
[41] |
CHEN Q H, ZHENG J, XU Y T, et al. Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals[J]. Food Hydrocolloids,2018,75:125−130. doi: 10.1016/j.foodhyd.2017.09.005
|
[42] |
PARHI R. Drug delivery applications of chitin and chitosan:A review[J]. Environmental Chemistry Letters,2020,18(3):577−594. doi: 10.1007/s10311-020-00963-5
|
[43] |
SHARKAWY A, BARREIRO M F, RODRIGUES A E. Chitosan-based Pickering emulsions and their applications:A review[J]. Carbohydrate Polymers,2020,250:116885. doi: 10.1016/j.carbpol.2020.116885
|
[44] |
MWANGI W W, HO K W, TEY B T, et al. Effects of environmental factors on the physical stability of Pickering-emulsions stabilized by chitosan particles[J]. Food Hydrocolloids,2016,60:543−550. doi: 10.1016/j.foodhyd.2016.04.023
|
[45] |
MATOS M, MAREFATI A, BARRERO P, et al. Resveratrol loaded Pickering emulsions stabilized by OSA modified rice starch granules[J]. Food Research International,2021,139:109837. doi: 10.1016/j.foodres.2020.109837
|
[46] |
ZHANG J, RAN C, JIANG X, et al. Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch[J]. LWT-Food Science and Technology,2021(8):112320.
|
[47] |
AW Y Z, LIM H P, LOW L E, et al. Cellulose nanocrystal (CNC)-stabilized Pickering emulsion for improved curcumin storage stability[J]. LWT,2022,159:113249. doi: 10.1016/j.lwt.2022.113249
|
[48] |
SHARKAWY A, CASIMIRO F M, BARREIRO M F, et al. Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions[J]. International Journal of Biological Macromolecules,2020,147:150−159. doi: 10.1016/j.ijbiomac.2020.01.057
|
[49] |
LIM H P, HO K W, SURJIT SINGH C K, et al. Pickering emulsion hydrogel as a promising food delivery system:Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery[J]. Food Hydrocolloids,2020,103:105659. doi: 10.1016/j.foodhyd.2020.105659
|
[50] |
LI F, LI X, HUANG K, et al. Preparation and characterization of Pickering emulsion stabilized by hordein-chitosan complex particles[J]. Journal of Food Engineering,2021,292:110275. doi: 10.1016/j.jfoodeng.2020.110275
|
[51] |
LI K Y, ZHOU Y, HUANG G Q, et al. Preparation of powdered oil by spray drying the Pickering emulsion stabilized by ovalbumin-gum Arabic polyelectrolyte complex[J]. Food Chemistry,2022,391:133223. doi: 10.1016/j.foodchem.2022.133223
|
[52] |
SHARKAWY A, BARREIRO M F, RODRIGUES A E. Preparation of chitosan/gum Arabic nanoparticles and their use as novel stabilizers in oil/water Pickering emulsions[J]. Carbohydrate Polymers,2019,224:115190. doi: 10.1016/j.carbpol.2019.115190
|
[53] |
WANG L, ZHANG H, LI H, et al. Fabrication and digestive characteristics of high internal phase Pickering emulsions stabilized by ovalbumin-pectin complexes for improving the stability and bioaccessibility of curcumin[J]. Food Chemistry,2022,389:133055. doi: 10.1016/j.foodchem.2022.133055
|
[54] |
ZHANG W, GU X, LIU X, et al. Fabrication of Pickering emulsion based on particles combining pectin and zein:Effects of pectin methylation[J]. Carbohydrate Polymers,2021,256:117515. doi: 10.1016/j.carbpol.2020.117515
|
[55] |
蓝漫钰, 欧仕益, 刘付. 多酚基颗粒稳定Pickering乳液的研究进展[J]. 中国食品学报,2021,21(11):290−300. [LAN M Y, OU S Y, LIU F. Research advances on Pickering emulsions stabilized by polyphenol-based particles[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(11):290−300. doi: 10.16429/j.1009-7848.2021.11.032
|
[56] |
ZHAO X L, BAO Y H, GUO Y, et al. Effect of phenolic compounds and hydroxyl content on the physicochemical properties of pine nut oil Pickering emulsions[J]. Journal of the Science of Food and Agriculture,2022,102(13):5814−5825. doi: 10.1002/jsfa.11931
|
[57] |
NOON J, MILLS T B, NORTON I T. The use of antioxidant rutin hydrate Pickering particles to combat lipid oxidation in O/W emulsions[J]. Journal of Food Engineering,2020,274:109830. doi: 10.1016/j.jfoodeng.2019.109830
|
[58] |
李海明, 杨盛, 韦何雯, 等. 食品级Pickering乳液的研究进展[J]. 食品科学,2015,36(19):265−270. [LI H M, YANG S, WEI H W, et al. Food grade pickering emulsion:A review[J]. Food Science,2015,36(19):265−270. doi: 10.7506/spkx1002-6630-201519048
|
[59] |
SCHRÖDER A, SPRAKEL J, SCHROËN K, et al. Coalescence stability of Pickering emulsions produced with lipid particles:A microfluidic study[J]. Journal of Food Engineering,2018,234:63−72. doi: 10.1016/j.jfoodeng.2018.04.007
|
[60] |
LIM H, JO M, BAN C, et al. Interfacial and colloidal characterization of oil-in-water emulsions stabilized by interface-tunable solid lipid nanoparticles[J]. Food Chemistry,2020,306:125619. doi: 10.1016/j.foodchem.2019.125619
|
[61] |
SCHRÖDER A, SPRAKEL J, BOERKAMP W, et al. Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles?[J]. Food Research International,2019,120:352−363. doi: 10.1016/j.foodres.2019.03.004
|
[62] |
WANG C, JIANG H, LI Y. Water-in-oil Pickering emulsions stabilized by phytosterol/chitosan complex particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,657:130489. doi: 10.1016/j.colsurfa.2022.130489
|
[63] |
PRASAD M, JAYARAMAN S, ELADL M A, et al. A comprehensive review on therapeutic perspectives of phytosterols in insulin resistance:A mechanistic approach[J]. Molecules,2022,27(5):1595. doi: 10.3390/molecules27051595
|
[64] |
LAN M, ZHENG J, HUANG C, et al. Water-in-oil Pickering emulsions stabilized by microcrystalline phytosterols in oil:Fabrication mechanism and application as a salt release system[J]. Journal of Agricultural and Food Chemistry,2022,70(17):5408−5416. doi: 10.1021/acs.jafc.1c05115
|
[65] |
LOUDET J C, ALSAYED A M, ZHANG J, et al. Capillary interactions between anisotropic colloidal particles[J]. Physical Review Letters,2005,94(1):018301. doi: 10.1103/PhysRevLett.94.018301
|
[66] |
LEHLE H, NORUZIFAR E, OETTEL M. Ellipsoidal particles at fluid interfaces[J]. The European Physical Journal E,2008,26(1):151−160.
|
[67] |
PÄÄKKÖ M, ANKERFORS M, KOSONEN H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules,2007,8(6):1934−1941. doi: 10.1021/bm061215p
|
[68] |
SUN Z, YAN X, XIAO Y, et al. Pickering emulsions stabilized by colloidal surfactants:Role of solid particles[J]. Particuology,2022,64:153−163. doi: 10.1016/j.partic.2021.06.004
|
[69] |
COOK A B, SCHLICH M, MANGHNANI P N, et al. Size effects of discoidal PLGA nanoconstructs in Pickering emulsion stabilization[J]. Journal of Polymer Science,2022,60(9):1480−1491. doi: 10.1002/pol.20210748
|
[70] |
WEN C, YUAN Q, LIANG H, et al. Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals[J]. Carbohydrate Polymers,2014,112:695−700. doi: 10.1016/j.carbpol.2014.06.051
|
[71] |
HEDJAZI S, RAZAVI S H. A comparison of canthaxanthine Pickering emulsions, stabilized with cellulose nanocrystals of different origins[J]. Int J Biol Macromol,2018,106:489−497. doi: 10.1016/j.ijbiomac.2017.08.030
|
[72] |
BINKS B P, CLINT J H. Solid wettability from surface energy components:Relevance to Pickering emulsions[J]. Langmuir,2002,18(4):1270−1273. doi: 10.1021/la011420k
|
[73] |
LI S, JIAO B, MENG S, et al. Edible mayonnaise-like Pickering emulsion stabilized by pea protein isolate microgels:Effect of food ingredients in commercial mayonnaise recipe[J]. Food Chemistry,2022,376:131866. doi: 10.1016/j.foodchem.2021.131866
|
[74] |
DYAB A K F. Destabilisation of Pickering emulsions using pH[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,402:2−12.
|
[75] |
TSUJI S, KAWAGUCHI H. Thermosensitive Pickering emulsion stabilized by poly(N-isopropylacrylamide)-carrying particles[J]. Langmuir,2008,24(7):3300−3305. doi: 10.1021/la701780g
|
[76] |
ZHANG Y, CHEN K, CAO L, et al. Stabilization of Pickering emulsions by hairy nanoparticles bearing polyanions[J]. Polymers,2019,11(5):816. doi: 10.3390/polym11050816
|
[77] |
LIU F, TANG C H. Phytosterol colloidal particles as Pickering stabilizers for emulsions[J]. Journal of Agricultural and Food Chemistry,2014,62(22):5133−5141. doi: 10.1021/jf404930c
|
[78] |
HE X, JIA K, YU L, et al. Robust pH-switchable Pickering emulsions stabilized solely by organic rosin-based particles with adjustable wettability[J]. Journal of Molecular Liquids,2022,353:118751. doi: 10.1016/j.molliq.2022.118751
|
[79] |
SOBHAN A, MUTHUKUMARAPPAN K, WEI L. Biosensors and biopolymer-based nanocomposites for smart food packaging:Challenges and opportunities[J]. Food Packaging and Shelf Life,2021,30:100745. doi: 10.1016/j.fpsl.2021.100745
|
[80] |
WANG J, SUN X, ZHANG H, et al. Dual-functional intelligent gelatin based packaging film for maintaining and monitoring the shrimp freshness[J]. Food Hydrocolloids,2022,124:107258. doi: 10.1016/j.foodhyd.2021.107258
|
[81] |
LIU J, LI K, CHEN Y, et al. Active and smart biomass film containing cinnamon oil and curcumin for meat preservation and freshness indicator[J]. Food Hydrocolloids,2022,133:107979. doi: 10.1016/j.foodhyd.2022.107979
|
[82] |
LIU D, DANG S, ZHANG L, et al. Corn starch/polyvinyl alcohol based films incorporated with curcumin-loaded Pickering emulsion for application in intelligent packaging[J]. International Journal of Biological Macromolecules,2021,188:974−982. doi: 10.1016/j.ijbiomac.2021.08.080
|
[83] |
ATARIAN M, RAJAEI A, TABATABAEI M, et al. Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability[J]. Carbohydrate Polymers,2019,210:47−55. doi: 10.1016/j.carbpol.2019.01.008
|
[84] |
MCCLEMENTS D J, DECKER E. Interfacial antioxidants:A review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation[J]. Journal of Agricultural and Food Chemistry,2018,66(1):20−35. doi: 10.1021/acs.jafc.7b05066
|
[85] |
WANG J, ZHANG L, TAN C, et al. Pickering emulsions by regulating the molecular interactions between gelatin and catechin for improving the interfacial and antioxidant properties[J]. Food Hydrocolloids,2022,126:107425. doi: 10.1016/j.foodhyd.2021.107425
|
[86] |
WANG Z, MA Y, CHEN H, et al. Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion:An interfacial antioxidant inhibiting lipid oxidation[J]. Food Chemistry,2022,387:132874. doi: 10.1016/j.foodchem.2022.132874
|
[87] |
HUANG X N, ZHOU F Z, YANG T, et al. Fabrication and characterization of Pickering high internal phase emulsions (HIPEs) stabilized by chitosan-caseinophosphopeptides nanocomplexes as oral delivery vehicles[J]. Food Hydrocolloids,2019,93:34−45. doi: 10.1016/j.foodhyd.2019.02.005
|
[88] |
HAN J, CHEN F, GAO C, et al. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles[J]. International Journal of Biological Macromolecules,2020,157:202−211. doi: 10.1016/j.ijbiomac.2020.04.177
|
[89] |
WEI Y, ZHOU D, MACKIE A, et al. Stability, interfacial structure, and gastrointestinal digestion of β-carotene-loaded Pickering emulsions co-stabilized by particles, a biopolymer, and a surfactant[J]. Journal of Agricultural and Food Chemistry,2021,69(5):1619−1636. doi: 10.1021/acs.jafc.0c06409
|
[90] |
LV P, WANG D, CHEN Y, et al. Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan:Fabrication, characterization and encapsulation[J]. Food Hydrocolloids,2020,108:105992. doi: 10.1016/j.foodhyd.2020.105992
|
[91] |
ZHANG Q, FAN L, LU Q, et al. Preparation and application of molecularly imprinted polymer solid-phase microextraction fiber for the selective analysis of auxins in tobacco[J]. Journal of Separation Science,2019,42(16):2687−2695. doi: 10.1002/jssc.201900265
|
[92] |
LI X, MA X, HUANG R, et al. Synthesis of a molecularly imprinted polymer on mSiO2@Fe3O4 for the selective adsorption of atrazine[J]. Journal of Separation Science,2018,41(13):2837−2845. doi: 10.1002/jssc.201800146
|
[93] |
YIN R, CHEN L, MA L. Extraction of matrine from soil with matrix solid-phase dispersion by molecularly imprinted polymers derived from lignin-based Pickering emulsions[J]. Journal of Separation Science,2019,42(23):3563−3570. doi: 10.1002/jssc.201900803
|
[94] |
LI T, LI X, LIU H, et al. Preparation and characterization of molecularly imprinted polymers based on beta-cyclodextrin-stabilized Pickering emulsion polymerization for selective recognition of erythromycin from river water and milk[J]. Journal of Separation Science,2020,43(18):3683−3690. doi: 10.1002/jssc.201901255
|
[95] |
ZHANG X, SUN X, WANG M, et al. Dummy molecularly imprinted microspheres prepared by Pickering emulsion polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples[J]. Journal of Chromatography A,2020,1620:461013. doi: 10.1016/j.chroma.2020.461013
|
[96] |
陈波, 司马文月, 王岩, 等. Pickering乳液聚合法制备分子印迹聚合物用于苹果中丁香菌酯的检测[J/OL]. 吉林农业大学学报:1−12 [2023-04-09]. http://kns.cnki.net/kcms/detail/22.1100.s.20221012.1738.005.html. [CHEN B, SIMA W Y, WANG Y, et al. Detection of coumoxystrobin in apples using molecularly imprinted polymers prepared by Pickering emulsion polymerization[J/OL]. Journal of Jilin Agricultural University:1−12 [2023-04-09]. http://kns.cnki.net/kcms/detail/22.1100.s.20221012.1738.005.html.
CHEN B, SIMA W Y, WANG Y, et al. Detection of coumoxystrobin in apples using molecularly imprinted polymers prepared by Pickering emulsion polymerization[J/OL]. Journal of Jilin Agricultural University: 1−12 [2023-04-09]. http://kns.cnki.net/kcms/detail/22.1100.s.20221012.1738.005.html.
|
[97] |
CHANG F, VIS C M, CIPTONUGROHO W, et al. Recent developments in catalysis with Pickering emulsions[J]. Green Chemistry,2021,23(7):2575−2594. doi: 10.1039/D0GC03604H
|
[98] |
GONSALVI L. Homogeneous catalysis and mechanisms in water and biphasic media[J]. Catalysts,2018,8(11):543. doi: 10.3390/catal8110543
|
[99] |
HUANG X M, LUO Z J, GUO J, et al. Enzyme-adsorbed chitosan nanogel particles as edible Pickering interfacial biocatalysts and lipase-responsive phase inversion of emulsions[J]. Journal of Agricultural and Food Chemistry,2020,68(33):8890−8899. doi: 10.1021/acs.jafc.0c00116
|
[100] |
YU X H, ZHOU F Z, XI Y K, et al. Ethyl cellulose-chitosan complex particles stabilized W/O Pickering emulsion as a recyclable bio-catalytic microreactor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,639:128375. doi: 10.1016/j.colsurfa.2022.128375
|
[101] |
XI Y, LIU B, WANG S, et al. CO2-responsive Pickering emulsions stabilized by soft protein particles for interfacial biocatalysis[J]. Chemical Science,2022,13(10):2884−2890. doi: 10.1039/D1SC06146A
|
[102] |
TIBBITS S. 4D Printing:Multi-material shape change[J]. Architectural Design,2014,84(1):116−121. doi: 10.1002/ad.1710
|
[103] |
RAMESH S, KIRAN REDDY S, USHA C, et al. Advancements in the research of 4D printing-A review[J]. IOP Conference Series:Materials Science and Engineering,2018,376(1):012123.
|
[104] |
FENG C, ZHANG M, BHANDARI B. Materials properties of printable edible inks and printing parameters optimization during 3D printing:A review[J]. Critical Reviews in Food Science and Nutrition,2019,59(19):3074−3081. doi: 10.1080/10408398.2018.1481823
|
[105] |
ESCALANTE-ABURTO A, TRUJILLO-DE SANTIAGO G, ÁLVAREZ M M, et al. Advances and prospective applications of 3D food printing for health improvement and personalized nutrition[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):5722−5741. doi: 10.1111/1541-4337.12849
|
[106] |
CEN S, LI Z, GUO Z, et al. 4D printing of a citrus pectin/ β-CD Pickering emulsion:A study on temperature induced color transformation[J]. Additive Manufacturing,2022,56:102925. doi: 10.1016/j.addma.2022.102925
|
[107] |
JIANG Q, BINKS B P, MENG Z. Double scaffold networks regulate edible Pickering emulsion gel for designing thermally actuated 4D printing[J]. Food Hydrocolloids,2022,133:107969. doi: 10.1016/j.foodhyd.2022.107969
|
[108] |
LI X, FAN L, LI R, et al. 3D/4D printing of β-cyclodextrin-based high internal phase emulsions[J]. Journal of Food Engineering,2023,348:111455. doi: 10.1016/j.jfoodeng.2023.111455
|