Citation: | WANG Zexian, ZHAO Yunan, JIA Dandan, et al. Effect and Mechanism of Armillaria mellea 07-22 Fermentation on the Degradation of Zearalenone[J]. Science and Technology of Food Industry, 2024, 45(1): 162−169. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030070. |
[1] |
WU N, OU W, ZHANG Z, et al. Recent advances in detoxification strategies for zearalenone contamination in food and feed[J]. Chinese Journal of Chemical Engineering,2021,30(2):168−177.
|
[2] |
WANG J, XIE Y. Review on microbial degradation of zearalenone and aflatoxins[J]. Grain & Oil Science and Technology,2020,3(3):117−125.
|
[3] |
HUEZA I M, RASPANTINI P C, RASPANTINI L E, et al. Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound[J]. Toxins (Basel),2014,6(3):1080−1095. doi: 10.3390/toxins6031080
|
[4] |
XU J, LI S, JIANG L, et al. Baicalin protects against zearalenone-induced chicks liver and kidney injury by inhibiting expression of oxidative stress, inflammatory cytokines and caspase signaling pathway[J]. International Immunopharmacology,2021,100(11):108097.
|
[5] |
FLYNN K M, NEWBOLD R R, FERGUSON S A. Multigenerational exposure to dietary nonylphenol has no severe effects on spatial learning in female rats[J]. Neurotoxicology,2002,23(1):87−94. doi: 10.1016/S0161-813X(02)00007-4
|
[6] |
KOWALSKA K, HABROWSKA-GÓRCZYŃSKA D E, DOMIŃSKA K, et al. The dose-dependent effect of zearalenone on mitochondrial metabolism, plasma membrane permeabilization and cell cycle in human prostate cancer cell lines[J]. Chemosphere,2017,180(8):455−466.
|
[7] |
LU Q, LUO J Y, RUAN H N, et al. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone:A comprehensive review[J]. Science of The Total Environment,2022,806(P3):151192.
|
[8] |
ZHANG W, ZHANG L, JIANG X, et al. Enhanced adsorption removal of aflatoxin B1, zearalenone and deoxynivalenol from dairy cow rumen fluid by modified nano-montmorillonite and evaluation of its mechanism[J]. Animal Feed Science and Technology,2020,259(C):114366.
|
[9] |
QU M, TIAN S, YU H, et al. Single-kernel classification of deoxynivalenol and zearalenone contaminated maize based on visible light imaging under ultraviolet light excitation combined with polarized light imaging[J]. Food Control,2023,144(2):109354.
|
[10] |
MA C G, WANG Y D, HUANG W F, et al. Molecular reaction mechanism for elimination of zearalenone during simulated alkali neutralization process of corn oil[J]. Food Chemistry,2020,307(C):125546−125546.
|
[11] |
赵仁勇, 宋斌. 玉米赤霉烯酮生物脱毒研究进展[J]. 河南工业大学学报(自然科学版),2018,39(2):113−121. [ZHAO R Y, SONG B. Advances in biological detoxification of zearalenone[J]. Journal of Henan University of Technology(Natural Science Edition),2018,39(2):113−121.] doi: 10.3969/j.issn.1673-2383.2018.02.020
ZHAO R Y, SONG B. Advances in biological detoxification of zearalenone[J]. Journal of Henan University of Technology(Natural Science Edition), 2018, 39(2): 113−121. doi: 10.3969/j.issn.1673-2383.2018.02.020
|
[12] |
KOSAWANG C, KARLSSON M, VÉLËZ H, et al. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum[J]. Fungal Biology,2014,118(4):364−373. doi: 10.1016/j.funbio.2014.01.005
|
[13] |
VEKIRU E, FRUHAUF S, HAMETNER C, et al. Isolation and characterisation of enzymatic zearalenone hydrolysis reaction products[J]. World Mycotoxin Journal,2016,9(3):1−12.
|
[14] |
ZHAO L, JIN H, LAN J, et al. Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food in vitro[J]. Food Control,2015,54(8):158−164.
|
[15] |
XU J, WANG H, ZHU Z, et al. Isolation and characterization of Bacillus amyloliquefaciens ZDS-1:Exploring the degradation of zearalenone by Bacillus spp[J]. Food Control,2016,68(10):244−250.
|
[16] |
GONZÁLEZ PEREYRA M L, DI GIACOMO A L, LARA A L, et al. Aflatoxin-degrading Bacillus sp. strains degrade zearalenone and produce proteases, amylases and cellulases of agro-industrial interest[J]. Toxicon,2020,180(C):43−48.
|
[17] |
SUN X, HE X, XUE K S, et al. Biological detoxification of zearalenone by Aspergillus niger strain FS10[J]. Food and Chemical Toxicology,2014,72(10):76−82.
|
[18] |
OKWARA P C, AFOLABI I S, AHUEKWE E F. Application of laccase in aflatoxin B1 degradation:A review[J]. IOP Conference Series:Materials Science and Engineering,2021,1107(1):012178−012189. doi: 10.1088/1757-899X/1107/1/012178
|
[19] |
LOI M, FANELLI F, CIMMARUSTI M T, et al. In vitro single and combined mycotoxins degradation by Ery4 laccase from Pleurotus eryngii and redox mediators[J]. Food Control,2018,90(8):401−406.
|
[20] |
SONG Y, WANG Y, GUO Y, et al. Degradation of zearalenone and aflatoxin B1 by Lac2 from Pleurotus pulmonarius in the presence of mediators[J]. Toxicon,2021,201(15):1−8.
|
[21] |
何音华. 蜜环菌发酵玉米蛋白粉产物中活性蛋白分离纯化及功能活性研究[D]. 长春:吉林农业大学, 2018. [HE Y H. Separation, purification and function activities of active proteins from the fermentation products of Armillaria mellea[D]. Changchun:Jilin Agricultural Unversity, 2018.]
HE Y H. Separation, purification and function activities of active proteins from the fermentation products of Armillaria mellea[D]. Changchun: Jilin Agricultural Unversity, 2018.
|
[22] |
骆翼. 玉米赤霉烯酮的微生物脱毒研究[D]. 上海:上海交通大学, 2014. [LUO Y. Study of detoxification of zearalenone by Bacillus spp
D]. Shanghai:Shanghai Jiaotong University, 2014.
|
[23] |
金博文. 玉米赤霉烯酮降解菌株的分离、鉴定及降解特性的研究[D]. 大连:大连理工大学, 2020. [JIN B W. Isolation, identification and degradation of a zearalenone-degrading Sphingobacterium multivorum[D]. Dalian:Dalian University of Technology, 2020.]
JIN B W. Isolation, identification and degradation of a zearalenone-degrading Sphingobacterium multivorum[D]. Dalian: Dalian University of Technology, 2020.
|
[24] |
景思源. 玉米赤霉烯酮降解菌株的筛选及其降解效果研究[D]. 长春:吉林大学, 2021. [JING S Y. Screening of zearalenone degrading bacteria and its degradation effect[D]. Changchun:Jilin University, 2021.]
JING S Y. Screening of zearalenone degrading bacteria and its degradation effect[D]. Changchun: Jilin University, 2021.
|
[25] |
刘天睿, 张薇薇, 王忠巧, 等. 蜜环菌胞外酶和多糖含量变化规律研究[J]. 中药材,2019,42(1):57−61. [LIU T R, ZHANG W W, WANG Z Q, et al. Law of content change of extracellular enzymes and polysaccharides in Armillaria gallica[J]. Journal of Chinese Medicinal Materials,2019,42(1):57−61.] doi: 10.13863/j.issn1001-4454.2019.01.012
LIU T R, ZHANG W W, WANG Z Q, et al. Law of content change of extracellular enzymes and polysaccharides in Armillaria gallica[J]. Journal of Chinese Medicinal Materials, 2019, 42(1): 57−61. doi: 10.13863/j.issn1001-4454.2019.01.012
|
[26] |
韦锦范. 平菇漆酶菌株的筛选及其对黄曲霉毒素的降解研究[D]. 南宁:广西大学, 2019. [WEI J F. Screening of high-producing laccase Plurotus ostreatus strains and their degradation of aflatoxins[D]. Nanning:Guangxi University, 2019.]
WEI J F. Screening of high-producing laccase Plurotus ostreatus strains and their degradation of aflatoxins[D]. Nanning: Guangxi University, 2019.
|
[27] |
WANG Y Q, GUIQIN B I, ZHANG H L, et al. Screening of chlorobenzene-degrading bacteria and a study of their degrading performance[J]. Industrial Water & Wastewater,2003,34(6):35−36.
|
[28] |
TAN H, ZHANG Z, HU Y, et al. Isolation and characterization of Pseudomonas otitidis TH-N1 capable of degrading zearalenone[J]. Food Control,2015,47(1):285−290.
|
[29] |
IMADE F N, HUMZA M, DADA O A, et al. Isolation and characterization of novel soil bacterium, Klebsiella pneumoniae strain GS7-1 for the degradation of zearalenone in major cereals[J]. Food Control,2023,143(1):109287−109287.
|
[30] |
BANU I, LUPU A, APRODU I. Degradation of zearalenone by laccase enzyme[J]. Scientific Study & Research Chemistry & Chemical Engineering Biotechnology Food Industry,2014,14(2):79−84.
|
[31] |
白长胜, 刘秋瑾, 尹珺伊, 等. 产木质纤维素降解酶真菌的筛选及产酶特性[J]. 微生物学通报,2023,50(3):1098−1110. [BAI C S, LIU Q J, YIN J Y, et al. Screening and enzymatic characterization of the fungal strains producing lignocellulose-degrading enzymes[J]. Microbiology China,2023,50(3):1098−1110.] doi: 10.13344/j.microbiol.china.220632
BAI C S, LIU Q J, YIN J Y, et al. Screening and enzymatic characterization of the fungal strains producing lignocellulose-degrading enzymes[J]. Microbiology China, 2023, 50(3): 1098−1110. doi: 10.13344/j.microbiol.china.220632
|
[32] |
祝嫦巍, 鲍广稳, 黄顺. 平菇漆酶对不同重金属胁迫的响应[J]. 环境科学研究,2015,28(10):1631−1637. [ZHU C W, BAO G W, HUANG S. Change in laccase activities of Pleurotus ostreatus in response to heavy metals in liquid culture[J]. Research of Environmental Sciences,2015,28(10):1631−1637.] doi: 10.13198/j.issn.1001-6929.2015.10.19
ZHU C W, BAO G W, HUANG S. Change in laccase activities of Pleurotus ostreatus in response to heavy metals in liquid culture[J]. Research of Environmental Sciences, 2015, 28(10): 1631−1637. doi: 10.13198/j.issn.1001-6929.2015.10.19
|
1. |
吕欣然,王淑娟,张丹,朱婷婷,孙翔宇,马婷婷. 不同剂量电子束辐照杀菌处理对黑果腺肋花楸果汁品质的影响. 食品科学. 2025(05): 272-280 .
![]() | |
2. |
兰天,赵沁雨,王家琪,孙翔宇,马婷婷. 益生菌发酵猕猴桃果汁的贮藏特性及货架期预测. 食品工业科技. 2024(05): 301-308 .
![]() | |
3. |
张海军,李媛媛,钟祥静. 超高压灭菌技术在食品加工中的应用探讨. 粮油与饲料科技. 2024(02): 10-12 .
![]() | |
4. |
李媛媛,张海军,钟祥静. 基于超高压灭菌技术的农产品加工过程质量控制研究. 南方农机. 2024(17): 170-173 .
![]() | |
5. |
赵佳宇,易宗伟,蔡文超,马佳佳,王玉荣,单春会,郭壮. 动态超高压微射流技术对红枣酒品质的影响. 中国酿造. 2024(09): 147-151 .
![]() | |
6. |
程婧祺,秦雪,邱月,关宁,廖江,余志宝,裴晓燕,杨鑫焱,姜毓君,满朝新. 预测微生物学模型在乳及乳制品中的应用. 中国乳品工业. 2024(09): 50-55 .
![]() | |
7. |
张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,李璐. 不同打浆及杀菌处理对荔枝浆品质的影响. 食品工业科技. 2023(07): 329-336 .
![]() | |
8. |
朱卫芳,黄兰淇,张颂函,马琳,陈建波,方朝阳. 25%吡唑醚菌酯悬浮剂在蓝莓中的残留行为及膳食风险评估. 农药科学与管理. 2023(01): 47-53 .
![]() | |
9. |
马琳,赵颖,陈建波,赵莉. 基于胶体金免疫层析法快速检测蓝莓中的百菌清残留. 农药学学报. 2023(02): 435-443 .
![]() | |
10. |
高惠颖,宋娟,景缘,于泳渤,张瑞,刘静,胡雨晴,吕长鑫,马志恒. NFC冻梨苹果汁配方优化及其贮藏品质. 食品研究与开发. 2023(11): 93-99 .
![]() | |
11. |
武正芳,马意龙,金诺,胡飞,章建国,魏兆军. 臭氧对食品加工中多酚影响的研究进展. 农产品加工. 2023(18): 79-82+92 .
![]() | |
12. |
赵倩,谢彦纯,赵冲. 百香果红茶饮料的研制. 中国果菜. 2023(12): 7-13 .
![]() | |
13. |
马琳,朱卫芳,占绣萍,陈建波,赵莉. 嘧霉胺在蓝莓中的残留行为及膳食风险评估. 农药学学报. 2022(04): 884-889 .
![]() | |
14. |
任博文,董璇,何珊. 超高压技术在食品应用中的研究进展. 农产品加工. 2022(16): 61-63+67 .
![]() | |
15. |
黄丽萍,靳学远,谭演清,陈涛,王华民. 超高压微射流处理对火龙果汁微生物指标及理化特性的影响. 食品安全质量检测学报. 2022(20): 6563-6568 .
![]() | |
16. |
宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .
![]() | |
17. |
张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,温靖,李璐. 枸杞原浆低氧打浆联合不同杀菌技术的比较分析. 现代食品科技. 2022(11): 158-165 .
![]() |