JIAO Ruizhi, YUE Tianli, GAO Zhenpeng, et al. Effects of Different Drying Methods on Physicochemical Properties and Antibiotic Content of Auricularia auricularia[J]. Science and Technology of Food Industry, 2023, 44(24): 87−94. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020268.
Citation: JIAO Ruizhi, YUE Tianli, GAO Zhenpeng, et al. Effects of Different Drying Methods on Physicochemical Properties and Antibiotic Content of Auricularia auricularia[J]. Science and Technology of Food Industry, 2023, 44(24): 87−94. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020268.

Effects of Different Drying Methods on Physicochemical Properties and Antibiotic Content of Auricularia auricularia

More Information
  • Received Date: February 23, 2023
  • Available Online: October 22, 2023
  • In this paper, the drying efficiency of natural drying, hot air and vacuum microwave on Auricularia auricula were systematically investigated, and the changes of physicochemical properties of Auricularia auricula and the degradation effect of quinolones (enrofloxacin, ciprofloxacin) were also evaluated. The results showed that the drying time of Auricularia auricula was greatly shortened to 150 min with the hot air drying (80 ℃) and 15 min with vacuum microwave (2.4 kW) compared with the natural drying. With the treatments of hot air drying and vacuum microwave drying, there was no significant effect on the content of crude protein, fat, fiber and ash in Auricularia auricula, and the total sugar content decreased by 1.34% and 2.28%, respectively. The physicochemical indexes still met the National Standard requirements. In addition, the degradation rates of enrofloxacin and ciprofloxacin during natural drying were 16.32% and 14.22%, while that of hot air drying were 35.37% and 32.39%, and vacuum microwave drying were 36.11% and 33.19%, respectively. The results indicated that there was no significant difference in antibiotic degradation between the two treatments. Therefore, vacuum microwave drying exhibits the advantages of less treatment time and effect on the physicochemical indexes, higher drying efficiency and better antibiotic degradation effect, which provides a new idea for the drying and quality control of edible fungi.
  • [1]
    YAO H W, LIU Y, MA Z F, et al. Analysis of nutritional quality of black fungus cultivated with corn stalks[J]. The Scientific World Journal, 2019(9590251).
    [2]
    陈思羽, 白冰, 刘春山, 等. 木耳旋转式热风干燥装置研究[J]. 安徽农业科学,2017,45(4):202−204. [CHEN S Y, BAI B, LIU C S, et al. Study on rotary hot air drying device of fungus[J]. Anhui Agricultural Sciences,2017,45(4):202−204.] doi: 10.3969/j.issn.0517-6611.2017.04.063

    CHEN S Y, BAI B, LIU C S, et al. Study on rotary hot air drying device of fungus[J]. Anhui Agricultural Sciences, 2017, 45(4): 202−204. doi: 10.3969/j.issn.0517-6611.2017.04.063
    [3]
    李定金, 段秋霞, 段振华, 等. 黑木耳功能性成分及其干燥技术研究进展[J]. 保鲜与加工,2020,20(6):233−237. [LI D J, DUAN Q X, DUAN Z H, et al. Research progress on functional components and drying technology of black fungus[J]. Preservation and Processing,2020,20(6):233−237.]

    LI D J, DUAN Q X, DUAN Z H, et al. Research progress on functional components and drying technology of black fungus[J]. Preservation and Processing, 2020, 20(6): 233−237.
    [4]
    刘冬梅, 花军. 木耳微波干燥特性研究[J]. 安徽农业科学,2014,42(18):5956−5957. [LIU D M, HUA J. Study on microwave drying characteristics of fungus[J]. Anhui Agricultural Sciences,2014,42(18):5956−5957.]

    LIU D M, HUA J. Study on microwave drying characteristics of fungus[J]. Anhui Agricultural Sciences, 2014, 42(18): 5956−5957.
    [5]
    任爱清, 邓珊, 林芳, 等. 不同干燥处理对黑木耳粉理化特性和微观结构的影响[J]. 食品科学,2022,43(11):75−81. [REN A Q, DENG S, LIN F, et al. Effects of different drying treatments on physicochemical properties and microstructure of black fungus powder[J]. Food Science,2022,43(11):75−81.] doi: 10.7506/spkx1002-6630-20210602-017

    REN A Q, DENG S, LIN F, et al. Effects of different drying treatments on physicochemical properties and microstructure of black fungus powder[J]. Food Science, 2022, 43(11): 75−81. doi: 10.7506/spkx1002-6630-20210602-017
    [6]
    BACANLI M, BAŞARAN N. Importance of antibiotic residues in animal food[J]. Food and Chemical Toxicology, 2019, 125: 462-466.
    [7]
    RENNIE T J W, SOUZA N D, DONNAN P T, et al. Risk of acute kidney injury following community prescription of antibiotics:Self-controlled case series[J]. Nephrology Dialysis Transplantation,2019,34(11):1910−1916. doi: 10.1093/ndt/gfy187
    [8]
    MORALES A M C. Nephrotoxicity of antimicrobials and antibiotics[J]. Advances in Chronic Kidney Disease,2020,27(1):31−37. doi: 10.1053/j.ackd.2019.08.001
    [9]
    WANG Q, LIU B, CAO J, et al. The impacts of vacuum microwave drying on osmosis dehydration of tilapia fillets[J]. Journal of Food Process Engineering,2019,42(1):e12956. doi: 10.1111/jfpe.12956
    [10]
    段培宇, 陈寒玉, 张宝忠, 等. 动物源性食品中抗生素类污染物生物检测技术研究进展[J]. 环境化学,2022,41(2):581−590. [DUAN P Y, CHEN H Y, ZHANG B Z, et al. Research progress on biological detection technology of antibiotic pollutants in animal derived food[J]. Environmental Chemistry,2022,41(2):581−590.]

    DUAN P Y, CHEN H Y, ZHANG B Z, et al. Research progress on biological detection technology of antibiotic pollutants in animal derived food[J]. Environmental Chemistry, 2022, 41(2): 581−590.
    [11]
    GU H B, XIE W H, DU A, et al. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater[J]. Catalysis Reviews, 2021:1−51.
    [12]
    ZHANG Y K, SHI Q W, JIANG W, et al. Comparison of the chemical composition and antioxidant stress ability of polysaccharides from Auricularia auricula under different drying methods[J]. Food Function,2022,54(5):2938−2951.
    [13]
    黑木耳热风干燥操作规程[J]. 农业工程技术, 2015(17):45−46. [Hot air drying operation procedure of black fungus[J]. Agricultural Engineering Technology, 2015(17):45−46.]

    Hot air drying operation procedure of black fungus[J]. Agricultural Engineering Technology, 2015(17): 45−46.
    [14]
    刘清斌, 周宇. 复水黑木耳热风干燥特性的研究[J]. 食品科技,2008(11):87−90. [LIU Q B, ZHOU Y. Study on hot air drying characteristics of rehydration black fungus[J]. Food Science,2008(11):87−90.] doi: 10.3969/j.issn.1005-9989.2008.11.025

    LIU Q B, ZHOU Y. Study on hot air drying characteristics of rehydration black fungus[J]. Food Science, 2008(11): 87−90. doi: 10.3969/j.issn.1005-9989.2008.11.025
    [15]
    梁昌祥, 黄彩奕, 梁明华, 等. 真空微波干燥木耳技术研究[J]. 农产品加工,2022(1):32−36. [LIANG C X, HUANG C Y, LIANG M H, et al. Study on vacuum microwave drying technology of fungus[J]. Agricultural Product Processing,2022(1):32−36.]

    LIANG C X, HUANG C Y, LIANG M H, et al. Study on vacuum microwave drying technology of fungus[J]. Agricultural Product Processing, 2022(1): 32−36.
    [16]
    任爱清, 曹珍珍, 唐小闲, 等. 黑木耳真空微波干燥过程中水分迁移变化规律研究[J]. 粮食与油脂,2022,35(11):99−103. [REN A Q, CAO Z Z, TANG X X, et al. Study on the change law of moisture migration during vacuum microwave drying of black fungus[J]. Grain and Oil,2022,35(11):99−103.] doi: 10.3969/j.issn.1008-9578.2022.11.021

    REN A Q, CAO Z Z, TANG X X, et al. Study on the change law of moisture migration during vacuum microwave drying of black fungus[J]. Grain and Oil, 2022, 35(11): 99−103. doi: 10.3969/j.issn.1008-9578.2022.11.021
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 15672-2009 食用菌中总糖含量测定[S]. 北京:中国标准出版社, 2009:1−2. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 15672-2009 Determination of total sugar content in edible fungi[S]. Beijing:Standards Press of China, 2009:1−2.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 15672-2009 Determination of total sugar content in edible fungi[S]. Beijing: Standards Press of China, 2009: 1−2.
    [18]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 5009.5-2016 食品中蛋白质的测定[S]. 北京:中国标准出版社, 2016:1−3. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB 5009.5-2016 Determination of protein in food[S]. Beijing:Standards Press of China, 2016:1−3.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB 5009.5-2016 Determination of protein in food[S]. Beijing: Standards Press of China, 2016: 1−3.
    [19]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 5009.6-2016 食品中脂肪的测定[S]. 北京:中国标准出版社, 2016:1−2. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB 5009.6-2016 Determination of fat in food[S]. Beijing:Standards Press of China, 2016:1−2.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB 5009.6-2016 Determination of fat in food[S]. Beijing: Standards Press of China, 2016: 1−2.
    [20]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 5009.10-2003 植物类食品中粗纤维的测定[S]. 北京:中国标准出版社, 2003:68−69. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 5009.10-2003 Determination of crude fiber in plant food[S]. Beijing:Standards Press of China, 2003:68−69.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 5009.10-2003 Determination of crude fiber in plant food[S]. Beijing: Standards Press of China, 2003: 68−69.
    [21]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 5009.4-2016 食品中灰分的测定[S]. 北京:中国标准出版社, 2016:1−4. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB 5009.4-2016 Determination of ash in food[S]. Beijing:Standards Press of China, 2016:1−4.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB 5009.4-2016 Determination of ash in food[S]. Beijing: Standards Press of China, 2016: 1−4.
    [22]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 6192-2019 黑木耳[S]. 北京:中国标准出版社, 2019:1−4. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 6192-2019 Black fungus[S]. Beijing:Standards Press of China, 2019:1−4.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. GB/T 6192-2019 Black fungus[S]. Beijing: Standards Press of China, 2019: 1−4.
    [23]
    张科明, 梁飞燕, 邓鸣, 等. QuEChERS结合液相色谱-串联质谱法快速测定猪肉中多类兽药残留[J]. 色谱,2016,34(9):860−867. [ZHANG K M, LIANG F Y, DENG M, et al. Rapid determination of multiple veterinary drug residues in pork by QuEChERS combined with liquid chromatography-tandem mass spectrometry[J]. Chromatogram,2016,34(9):860−867.]

    ZHANG K M, LIANG F Y, DENG M, et al. Rapid determination of multiple veterinary drug residues in pork by QuEChERS combined with liquid chromatography-tandem mass spectrometry[J]. Chromatogram, 2016, 34(9): 860−867.
    [24]
    梁晓君, 廖才学, 黄振勇, 等. 不同干燥和粉碎方式对玉木耳粉粉体特性和营养成分的影响[J]. 食品工业科技,2021,42(1):96−100,109. [LIANG X J, LIAO C X, HUANG Z Y, et al. Effects of different drying and crushing methods on powder characteristics and nutritional components of Auricularia auricula powder[J]. Technology of Food Industry,2021,42(1):96−100,109.]

    LIANG X J, LIAO C X, HUANG Z Y, et al. Effects of different drying and crushing methods on powder characteristics and nutritional components of Auricularia auricula powder[J]. Technology of Food Industry, 2021, 42(1): 96−100,109.
    [25]
    BONDARUK J, MARKOWSKI M, BLASZCZAK W. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes[J]. Journal of Food Engineering,2007,81(2):306−312. doi: 10.1016/j.jfoodeng.2006.10.028
    [26]
    常东浩, 葛菁萍. 生态环境中抗生素检测与降解方法的研究进展[J]. 中国农学通报,2021,37(27):59−64. [CHANG D H, GE Q P. Research progress on detection and degradation methods of antibiotics in ecological environment[J]. Chinese Agricultural Science Bulletin,2021,37(27):59−64.]

    CHANG D H, GE Q P. Research progress on detection and degradation methods of antibiotics in ecological environment[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 59−64.
    [27]
    刘宏, 庞族族, 石林, 等. 光催化降解喹诺酮类抗生素的研究进展[J]. 工业水处理, 2023, 43(10):34−41. [LIU H, PANG Z Z, SHI L, et al. Research progress on photocatalytic degradation of quinolones antibiotics[J]. Industrial Water Treatment, 2023, 43(10):34−41.]

    LIU H, PANG Z Z, SHI L, et al. Research progress on photocatalytic degradation of quinolones antibiotics[J]. Industrial Water Treatment, 2023, 43(10): 34−41.
    [28]
    王浩楠, 李凤祥, 姜记威, 等. 光催化降解水体中磺胺类抗生素的研究进展[J]. 化工环保,2021,41(2):127−133. [WANG H N, LI F X, JIANG J W, et al. Research progress on photocatalytic degradation of sulfonamide antibiotics in water[J]. Chemical industry Environmental Protection,2021,41(2):127−133.] doi: 10.3969/j.issn.1006-1878.2021.02.001

    WANG H N, LI F X, JIANG J W, et al. Research progress on photocatalytic degradation of sulfonamide antibiotics in water[J]. Chemical industry Environmental Protection, 2021, 41(2): 127−133. doi: 10.3969/j.issn.1006-1878.2021.02.001
    [29]
    郭洪光, 刘杨, 柯亭伶, 等. UV/PS工艺降解水中环丙沙星的产物及机理分析[J]. 湖南大学学报(自然科学版),2017,44(6):151−157. [GUO H G, LIU Y, KE T L, et al. Analysis of degradation products and mechanism of ciprofloxacin in water by UV/PS process[J]. Journal of Hunan University (Natural Science Edition),2017,44(6):151−157.]

    GUO H G, LIU Y, KE T L, et al. Analysis of degradation products and mechanism of ciprofloxacin in water by UV/PS process[J]. Journal of Hunan University (Natural Science Edition), 2017, 44(6): 151−157.
    [30]
    刘杨, 张永丽, 周鹏. 软铋矿铁酸铋活化过一硫酸盐降解环丙沙星机理及产物研究[J]. 工程科学与技术,2022,54(5):203−209. [LIU Y, ZHANG Y L, ZHOU P. Study on the mechanism and product of ciprofloxacin degradation by peroxymonosulfate activated by soft bismuth ferrite[J]. Engineering Science and Technology,2022,54(5):203−209.]

    LIU Y, ZHANG Y L, ZHOU P. Study on the mechanism and product of ciprofloxacin degradation by peroxymonosulfate activated by soft bismuth ferrite[J]. Engineering Science and Technology, 2022, 54(5): 203−209.
    [31]
    刘博, 薛南冬, 张石磊, 等. 热处理技术去除鸡粪中氟喹诺酮类抗生素及影响因素研究[J]. 环境工程,2015,33(2):84−87,68. [LIU B, XUE N D, ZHANG S L, et al. Study on the removal of fluoroquinolone antibiotics in chicken manure by heat treatment technology and its influencing factors[J]. Environmental Engineering,2015,33(2):84−87,68.]

    LIU B, XUE N D, ZHANG S L, et al. Study on the removal of fluoroquinolone antibiotics in chicken manure by heat treatment technology and its influencing factors[J]. Environmental Engineering, 2015, 33(2): 84−87,68.
    [32]
    张健, 陈栋华, 袁誉洪, 等. 喹诺酮类药物的热稳定性及其热分解非等温动力学研究[J]. 药学学报,2000(6):445−450. [ZHANG J, CHEN D H, YUAN Y H, et al. Study on thermal stability and non-isothermal kinetics of thermal decomposition of quinolones[J]. Acta Pharmaceutica Sinica,2000(6):445−450.]

    ZHANG J, CHEN D H, YUAN Y H, et al. Study on thermal stability and non-isothermal kinetics of thermal decomposition of quinolones[J]. Acta Pharmaceutica Sinica, 2000(6): 445−450.
    [33]
    唐小闲, 刘艳, 咸兆坤, 等. 小黄姜真空微波干燥特性及其动力学研究[J]. 食品科技,2021,46(10):87−94. [TANG X X, LIU Y, XIAN Z K, et al. Study on vacuum microwave drying characteristics and kinetics of Xiaohuangjiang[J]. Food Science and Technology,2021,46(10):87−94.]

    TANG X X, LIU Y, XIAN Z K, et al. Study on vacuum microwave drying characteristics and kinetics of Xiaohuangjiang[J]. Food Science and Technology, 2021, 46(10): 87−94.
  • Cited by

    Periodical cited type(2)

    1. 蔡柱山,孙敏. 药食同源食品在现代健康管理中的应用研究. 食品安全导刊. 2025(08): 86-88 .
    2. 贺子倩,游恩卓,吴志康,戴临雪,李朋宇,李加兴. 盐焗虾的工艺优化及智能感官评价. 食品工业. 2024(04): 58-63 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (83) PDF downloads (15) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return