Citation: | LIU Juntao, LIU Zhijing, LI Xiaojiang, et al. Electrochemical Aptasensor Based on Platinum @ Gold Nanowires as Signal Amplifier for Aflatoxin B1 Detection[J]. Science and Technology of Food Industry, 2023, 44(24): 294−300. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020181. |
[1] |
WANG C, ZHAO Q. A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine[J]. Biosensors and Bioelectronics,2020,167:112478−112483. doi: 10.1016/j.bios.2020.112478
|
[2] |
XU Z, LONG L L, CHEN Y Q, et al. A nanozyme-linked immunosorbent assay based on metal–organic frameworks (MOFs) for sensitive detection of aflatoxin B1[J]. Food Chemistry,2021,338:128039−128045. doi: 10.1016/j.foodchem.2020.128039
|
[3] |
QIAN J, REN C C, WANG C Q, et al. Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1[J]. Biosensors and Bioelectronics,2020,166:112443−112450. doi: 10.1016/j.bios.2020.112443
|
[4] |
LI S Q, ZHONG X Y, XU Y N, et al. Smartphone-based reading system integrated with phycocyanin-enhanced latex nanospheres immunoassay for on-site determination of aflatoxin B1 in foodstuffs[J]. [J]. Food Chemistry,2021,360:130019. doi: 10.1016/j.foodchem.2021.130019
|
[5] |
SUN C N, LIAO X F, JIA B Y, et al. Development of a ZnCdS@ZnS quantum dots-based label-free electrochemiluminescence immunosensor for sensitive determination of aflatoxin B1 in lotus seed[J]. Microchimica Acta,2020,187(4):236−244. doi: 10.1007/s00604-020-4179-x
|
[6] |
JIANG S, ZHANG L X, LI J Z, et al. Pressure/colorimetric dual-readout immunochromatographic test strip for point-of-care testing of aflatoxin B1[J]. Talanta,2021,227:122207−122213. doi: 10.1016/j.talanta.2021.122207
|
[7] |
BU T, BAI F E, SUN X Y, et al. An innovative prussian blue nanocubes decomposition-assisted signal amplification strategy suitable for competitive lateral flow immunoassay to sensitively detect aflatoxin B1[J]. Food Chemistry,2021,344:1287111−1287118.
|
[8] |
GELL R M, CARBONE I. HPLC quantitation of aflatoxin B1 from fungal mycelium culture[J]. Journal of Microbiological Methods,2019,158:14−17. doi: 10.1016/j.mimet.2019.01.008
|
[9] |
ALGAMMAL A M, ELSAYED M E, HASHEM H R, et al. Molecular and HPLC-based approaches for detection of aflatoxin B1 and ochratoxin A released from toxigenic Aspergillus species in processed meat[J]. BMC Microbiology,2021,21(1):82−91. doi: 10.1186/s12866-021-02144-y
|
[10] |
ZHANG B, YU L, LIU Z, et al. Rapid determination of aflatoxin B1 by an automated immunomagnetic bead purification sample pretreatment method combined with high-performance liquid chromatography[J]. Journal of Separation Science,2020,43(17):3509−3519. doi: 10.1002/jssc.202000293
|
[11] |
DENG Y J, WANG Y L, DENG Q, et al. Simultaneous quantification of aflatoxin B1, T-2 toxin, ochratoxin A and deoxynivalenol in dried seafood products by LC-MS/MS[J]. Toxins,2020,12(8):12,488−500.
|
[12] |
WANG C Q, ZHANG W H, QIAN J, et al. A FRET aptasensor for sensitive detection of aflatoxin B1 based on a novel donor-acceptor pair between ZnS quantum dots and Ag nanocubes[J]. Analytical Methods,2021,13(4):462−468. doi: 10.1039/D0AY02017F
|
[13] |
CHEN H F, HAN F, MAO B N, et al. Rapid and label free detection of aflatoxin B1 in alcoholic beverages with a microfluid fiber device[J]. Applied Optics,2021,60(7):1924−1929. doi: 10.1364/AO.414332
|
[14] |
WANG N, LIU Q Q, HU X F, et al. Electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene for rapid detection of aflatoxin B1 in peanut oil[J]. Analytical Biochemistry,2022,650:114710. doi: 10.1016/j.ab.2022.114710
|
[15] |
GUAN Y, SI P B, YANG T, et al. A novel method for detection of ochratoxin A in foods-Co-MOFs based dual signal ratiometric electrochemical aptamer sensor coupled with DNA walker[J] Food Chemistry, 2023, 403:134316.
|
[16] |
ZHANG K, WANG Y, WANG H Y, et al. Three-dimensional porous reduced graphene oxide modified electrode for highly sensitive detection of trace rifampicin in milk[J]. Analytical Methods,2022,14(23):2304−2310. doi: 10.1039/D2AY00517D
|
[17] |
ZHU C X, LIU X H, LI Y Y, et al. Dual-ratiometric electrochemical aptasensor based on carbon nanohorns/anthraquinone-2-carboxylic acid/Au nanoparticles for simultaneous detection of malathion and omethoate[J]. Talanta,2023,253:123966. doi: 10.1016/j.talanta.2022.123966
|
[18] |
PATIL J J, REESE M L, LEE E, et al. Oxynitride-encapsulated silver nanowire transparent electrode with enhanced thermal, electrical, and chemical stability[J]. ACS Applied Materials & Interfaces,2022,14(3):4423−4433.
|
[19] |
PARVIN S, KUMAR A, GHOSH A, et al. An earth-abundant bimetallic catalyst coated metallic nanowire grown electrode with platinum-like pH-universal hydrogen evolution activity at high current density[J]. Chemical Science,2020,11(15):3893−3902. doi: 10.1039/D0SC00754D
|
[20] |
LI W, DENG X, WU Z Y, et al. An electrochemical sensor for quantitation of the oral health care agent chlorogenic acid based on bimetallic nanowires with functionalized reduced graphene oxide nanohybrids[J]. ACS Omega,2022,7(5):4614−4623. doi: 10.1021/acsomega.1c06612
|
[21] |
SONG D D, LI Q, LU X, et al. Ultra-thin bimetallic alloy nanowires with porous architecture/monolayer MoS2 nanosheet as a highly sensitive platform for the electrochemical assay of hazardous omethoate pollutant[J]. Journal of Hazardous Materials,2018,357:466−474. doi: 10.1016/j.jhazmat.2018.06.021
|
[22] |
SHETTY S, GAYEN M, AGARWAL S, et al. Tuning catalytic activity in ultrathin bimetallic nanowires via surface segregation:some insights[J]. The Journal of Physical Chemistry Letters,2022,13(3):770−776. doi: 10.1021/acs.jpclett.1c03852
|
[23] |
WANG H, JIAO S, LIU S, et al. Mesoporous bimetallic au@rh core-shell nanowires as efficient electrocatalysts for ph-universal hydrogen evolution[J]. ACS Applied Materials & Interfaces,2021,13(26):30479−30485.
|
[24] |
SHARMA A S, ALI S, SABARINATHAN D, et al. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(6):5765−5801. doi: 10.1111/1541-4337.12834
|
[25] |
SUN J, LI L, GE S, et al. Dual-mode aptasensor assembled by a Wo3/Fe2O3 heterojunction for paper-based colorimetric prediction/photoelectrochemical multicomponent analysis[J]. ACS Applied Materials & Interfaces,2021,13(3):3645−3652.
|
[26] |
WEI H, BU S, ZHANG W, et al. An electrochemical biosensor for the detection of pathogenic bacteria based on dual signal amplification of Cu3(PO4)2− mediated click chemistry and DNAzymes[J]. Analyst,2021,146(15):4841−4847. doi: 10.1039/D1AN00982F
|
[27] |
JIANG Z W, ZHAO T T, LI C M, et al. 2D mof-based photoelectrochemical aptasensor for sars-cov-2 spike glycoprotein detection[J]. ACS Applied Materials & Interfaces,2021,13(42):49754−49761.
|
[28] |
ZHANG B, LU Y, YANG C, et al. Simple "signal-on" photoelectrochemical aptasensor for ultrasensitive detecting AFB1 based on electrochemically reduced graphene oxide/poly(5-formylindole)/Au nanocomposites[J]. Biosensors & Bioelectronics,2019,134:42−48.
|
[29] |
ZHU L, ZHAO Y, YAO S L, et al. A colorimetric aptasensor for the simple and rapid detection of human papillomavirus type 16 L1 proteins[J]. Analyst,2021,146(8):2712−2717. doi: 10.1039/D1AN00251A
|
[30] |
PAN L M, ZHAO X, WEI X, et al. Ratiometric luminescence aptasensor based on dual-emissive persistent luminescent nanoparticles for autofluorescence- and exogenous interference-free determination of trace aflatoxin B1 in food samples[J]. Analytical Chemistry,2022,94(16):6387−6393. doi: 10.1021/acs.analchem.2c00861
|
[31] |
HONG W, WANG J, WANG E K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic ctivity for methanol electrooxidation[J]. Small,2014,10(16):3262−3265. doi: 10.1002/smll.201400059
|
[32] |
YANG Y, CHEN M, WU Y J, et al. Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy[J]. RSC Advances 2019, 9 (49):28541−28547.
|
1. |
侯晓庆,张蕴哲,李子坤,卢鑫,杨倩,张伟. 基于催化发夹自组装比率电化学双适体传感器检测乳中四环素. 中国食品学报. 2025(02): 423-432 .
![]() |