Citation: | QIAN Yu, LIU Shuai, JIN Long, et al. Rapid Detection of the Oxidation of Almonds Based on Surface Enhanced Raman Spectroscopy[J]. Science and Technology of Food Industry, 2023, 44(24): 286−293. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020173. |
[1] |
ALASALVAR C, SALVADÓ J, ROS E. Bioactives and health benefits of nuts and dried fruits[J]. Food Chemistry,2020,314:126192. doi: 10.1016/j.foodchem.2020.126192
|
[2] |
LIPAN L, GARCÍA TEJERO I F, GUTIÉRREZ GORDILLO S, et al. Enhancing nut quality parameters and sensory profiles in three almond cultivars by different irrigation regimes[J]. Journal of Agricultural and Food Chemistry,2020,68(8):2316−2328. doi: 10.1021/acs.jafc.9b06854
|
[3] |
YADA S, HUANG G W, LAPSLEY K. Natural variability in the nutrient composition of California-grown almonds[J]. Journal of Food Composition and Analysis,2013,30(2):80−85. doi: 10.1016/j.jfca.2013.01.008
|
[4] |
李鹏, 殷继英, 田嘉, 等. 扁桃种仁氨基酸组分及加工品质分析[J]. 中国食品学报,2018,18(12):270−282. [LI P, YIN J Y, TIAN J, et al. Analysis of processing quality and amino acid components of almond kernels[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(12):270−282.] doi: 10.16429/j.1009-7848.2018.12.034
LI P, YIN J Y, TIAN J, et al. Analysis of processing quality and amino acid components of almond kernels[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(12): 270−282. doi: 10.16429/j.1009-7848.2018.12.034
|
[5] |
BODOIRA R, MAESTRI D. Phenolic compounds from nuts:Extraction, chemical profiles, and bioactivity[J]. Journal of Agricultural and Food Chemistry,2020,68(4):927−942. doi: 10.1021/acs.jafc.9b07160
|
[6] |
GAMA T, WALLACE H M, TRUEMAN S J, et al. Quality and shelf life of tree nuts:A review[J]. Scientia Horticulturae,2018,242:116−126. doi: 10.1016/j.scienta.2018.07.036
|
[7] |
VALDÉS G A, JUÁREZ S N, BELTRÁN S A, et al. Novel antioxidant packaging films based on poly (ε-caprolactone) and almond skin extract:Development and effect on the oxidative stability of fried almonds[J]. Antioxidants,2020,9(7):629. doi: 10.3390/antiox9070629
|
[8] |
中华人民共和国国家卫生健康委员会. GB 19300-2014 食品安全国家标准 坚果与籽类食品[S]. 北京:中国标准出版社,2014. [National Health Commission of the People's Republic of China. GB 19300-2014 National Standard for Food Safety. Nuts and seeds[S]. Beijing: Standards Press of China, 2014.]
National Health Commission of the People's Republic of China. GB 19300-2014 National Standard for Food Safety. Nuts and seeds[S]. Beijing: Standards Press of China, 2014.
|
[9] |
FRANKLIN L M, MITCHELL A E. Review of the sensory and chemical characteristics of almond (prunus dulcis) flavor[J]. Journal of Agricultural and Food Chemistry,2019,67(10):2743−2753. doi: 10.1021/acs.jafc.8b06606
|
[10] |
SCHLÚCKER S. Surface-enhanced Raman spectroscopy:Concepts and chemical applications[J]. Angewandte Chemie-International Edition,2014,53(19):4756−4795. doi: 10.1002/anie.201205748
|
[11] |
JIANG L, HASSAN M M, ALI S, et al. Evolving trends in SERS-based techniques for food quality and safety:A review[J]. Trends in Food Science & Technology,2021,112:225−240.
|
[12] |
PEREZ JIMENEZ A I, LYU D, LU Z X, et al. Surface-enhanced Raman spectroscopy:Benefits, trade-offs and future developments[J]. Chenical Science,2020,11(18):4563−4577.
|
[13] |
XIANG S T, XU Y, LIAO X, et al. Dynamic monitoring of the oxidation process of phosphatidylcholine using SERS analysis[J]. Analytical Chemistry,2018,90(22):13751−13758. doi: 10.1021/acs.analchem.8b04216
|
[14] |
JIANG Y F, SU M K, YU T, et al. Quantitative determination of peroxide value of edible oil by algorithm-assisted liquid interfacial surface enhanced Raman spectroscopy[J]. Food Chemistry,2021,344:128709. doi: 10.1016/j.foodchem.2020.128709
|
[15] |
HU R, HE T, ZHANG Z W, et al. Safety analysis of edible oil products via Raman spectroscopy[J]. Talanta,2019,191:324−332. doi: 10.1016/j.talanta.2018.08.074
|
[16] |
XING L X, XIAHOU Y J, ZHANG X, et al. Large-area monolayer films of hexagonal close-packed Au@Ag nanoparticles as substrates for SERS-based quantitative determination[J]. ACS Appl. Mater. Interfaces,2022,14:13480−13489. doi: 10.1021/acsami.1c23638
|
[17] |
LI Y P, LI Y J, DUAN J L, et al. Rapid and ultrasensitive detection of mercury ion (II) by colorimetric and SERS method based on silver nanocrystals[J]. Microchemical Journal,2021,161:105790. doi: 10.1016/j.microc.2020.105790
|
[18] |
ZHANG R, GENG L, ZHANG X, et al. A robust nanofilm co-assembled from poly (4-vinylpyridine) grafted carbon nanotube and gold nanoparticles at the water/oil interface as highly active SERS substrate for antibiotics detection[J]. Applied Surface Science,2022,605:154737. doi: 10.1016/j.apsusc.2022.154737
|
[19] |
ZHANG P N, LI Y J, XIA H B, et al. High-yield production of uniform gold nanoparticles with sizes from 31 to 577 nm via one-pot seeded growth and size-dependent SERS property[J]. Particle & Particle Systems Characterization,2016,33(12):924−932.
|
[20] |
HASSINEN J, LILJESTRÖM V, KOSTIAINEN M A, et al. Rapid cationization of gold nanoparticles by two-step phase transfer[J]. Angewandte Chemie-International Edition,2015,54(27):7990−7993. doi: 10.1002/anie.201503655
|
[21] |
LEE Y J, JANG W J, YOON J H, et al. Phase transfer-driven rapid and complete ligand exchange for molecular assembly of phospholipid bilayers on aqueous gold nanocrystals[J]. Chemical Communications,2019,55(22):3195−3198. doi: 10.1039/C8CC10037C
|
[22] |
DEMIREL G, USTA H, YILMAZ M, et al. Surface-enhanced Raman spectroscopy (SERS):An adventure from plasmonic metals to organic semiconductors as SERS platforms[J]. Journal of Materials Chemistry,2018,6(20):5314−5335.
|
[23] |
MOSIER BOSS P A. Review of SERS substrates for chemical sensing[J]. Nanomaterials,2017,7(6):142. doi: 10.3390/nano7060142
|
[24] |
HUANG Y J, DAI L W, SONG L P, et al. Engineering gold nanoparticles in compass shape with broadly tunable plasmon resonances and high-performance SERS[J]. ACS Applied Materials and Interfaces,2016,8(41):27949−27955. doi: 10.1021/acsami.6b05258
|
[25] |
DARIENZO R E, CHEN O, SULLIVAN M, et al. Au nanoparticles for SERS:Temperature-controlled nanoparticle morphologies and their Raman enhancing properties[J]. Materials Chemistry and Physics,2020,240:122143. doi: 10.1016/j.matchemphys.2019.122143
|
[26] |
HE M, LIU X F, LIU B, et al. Investigation of antisolvent effect on gold nanoparticles during postsynthesis purification[J]. Journal of Colloid and Interface Science,2019,537:414−421. doi: 10.1016/j.jcis.2018.11.043
|
[27] |
杨小超. 阳离子配体修饰的纳米金用于细胞转运和微囊自组装研究[D]. 重庆:重庆大学, 2010. [YANG X C. Cationic ligands functionalized gold nanoparticles for intracellular delivery and microcapsule self-assembly applications[D]. Chongqing: Chongqing University, 2010.]
YANG X C. Cationic ligands functionalized gold nanoparticles for intracellular delivery and microcapsule self-assembly applications[D]. Chongqing: Chongqing University, 2010.
|
[28] |
OJEA JIMÉNEZ I, GARCÍA FEMÁNDEZ L, LORENZO J, et al. Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting[J]. ACS Nano,2012,6(9):7692−7702. doi: 10.1021/nn3012042
|
[29] |
WANG M, ZHANG Z L, HE J. A SERS Study on the assembly behavior of gold nanoparticles at the oil/water interface[J]. Langmuir,2015,31(47):12911−12919. doi: 10.1021/acs.langmuir.5b03131
|
[30] |
LI Y, DRIVER M, DECKER E, et al. Lipid and lipid oxidation analysis using surface enhanced Raman spectroscopy (SERS) coupled with silver dendrites[J]. Food Research International,2014,58:1−6. doi: 10.1016/j.foodres.2014.01.056
|
[31] |
VARNHOLT B, OULEVEY P, LUBER S, et al. Structural information on the Au-S interface of thiolate-protected gold clusters:A Raman spectroscopy study[J]. Journal of Physical Chemistry C,2014,118(18):9604−9611. doi: 10.1021/jp502453q
|
[32] |
INAGAKI M, MOTOBAYASHI K, IKEDA K. In situ surface-enhanced electronic and vibrational Raman scattering spectroscopy at metal/molecule interfaces[J]. Nanoscale,2020,12(45):22988−22994. doi: 10.1039/D0NR06150F
|
[33] |
JIN H Q, LI H, YIN Z K, et al. Application of Raman spectroscopy in the rapid detection of waste cooking oil[J]. Food Chemistry,2021,362:130191. doi: 10.1016/j.foodchem.2021.130191
|
[34] |
DU S S, SU M K, JIANG Y F, et al. Direct discrimination of edible oil type, oxidation, and adulteration by liquid interfacial surface-enhanced Raman spectroscopy[J]. ACS Sensors,2019,7(4):1798−1805.
|
[35] |
摆小琴, 张娅俐, 洪晶, 等. 坚果品质检测方法研究进展[J]. 食品安全质量检测学报,2021,12(22):8737−8744. [BAI X Q, ZHANG Y L, HONG J, et al. Research progress on the quality detection methods for nuts[J]. Journal of Food Safety and Quality,2021,12(22):8737−8744.] doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.014
BAI X Q, ZHANG Y L, HONG J, et al. Research progress on the quality detection methods for nuts[J]. Journal of Food Safety and Quality, 2021, 12(22): 8737−8744. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.014
|
[36] |
周妍宇. 拉曼和红外光谱评估坚果油脂氧化的研究[D]. 无锡:江南大学, 2020. [ZHOU Y Y. Study on Raman and infrared spectroscopy to evaluate the oxidation of nut oils[D]. Wuxi:Jiangnan University, 2020.]
ZHOU Y Y. Study on Raman and infrared spectroscopy to evaluate the oxidation of nut oils[D]. Wuxi: Jiangnan University, 2020.
|
1. |
张瑜. 气质膨化即食牛蹄筋加工工艺研究. 保鲜与加工. 2024(03): 40-46 .
![]() | |
2. |
卢相龙,胡秦晓,秦斐. 杏皮水酸奶冻饮品制作工艺优化及品质研究. 饮料工业. 2024(05): 45-50 .
![]() | |
3. |
薛山,黄艺萍. 四维辅助三维响应面法优化菠萝蜜种泥果冻配方. 食品工业. 2022(01): 156-161 .
![]() | |
4. |
李想,宋弘扬,赵存朝,盛军,陶亮,田洋. 一种特色百香果果冻产品的研制. 食品工业科技. 2021(06): 159-165 .
![]() |