Citation: | SHAO Tian, FAN Hongxiu, LIU Bingli, et al. Preparation of Modified Corn Straw Cellulose and Its Effect on the Stability of Pickering Emulsion[J]. Science and Technology of Food Industry, 2023, 44(15): 25−33. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020144. |
[1] |
BAI L, XIANG W C, HUAN S Q, et al. Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (ethyl lauroyl arginate) and cellulose nanocrystals[J]. Biomacromolecules,2018,19(5):1674−1685. doi: 10.1021/acs.biomac.8b00233
|
[2] |
ZHANG T, LIU F, WU J, et al. Pickering emulsions stabilized by biocompatible particles: A review of preparation, bioapplication, and perspective[J]. Particuology,2021,64(5):110−120.
|
[3] |
CHEN Q H, ZHENG J, XU Y T, et al. Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals[J]. Food Hydrocolloids,2018,19(5):1674−1685.
|
[4] |
LUO J, HUANG K, ZHOU X, et al. Elucidation of oil-in-water emulsions stabilized with celery cellulose[J]. Fuel,2021,291(5):120210.
|
[5] |
LU X X, ZHANG H W, LI Y Q, et al. Fabrication of milled cellulose particles-stabilized Pickering emulsions[J]. Food Hydrocolloid,2018,77:427−435. doi: 10.1016/j.foodhyd.2017.10.019
|
[6] |
苏柳方, 冯晓龙, 张祎彤, 等. 秸秆还田: 技术模式、成本收益与补贴政策优化[J]. 农业经济问题,2021(6):100−110. [SU L F, FENG X L, ZHANG Y T, et al. Straw returning: Technical model, cost-benefit and subsidy policy optimization[J]. Issues in Agricultural Economy,2021(6):100−110.
SU L F, FENG X L, ZHANG Y T, et al. Straw returning: Technical model, cost-benefit and subsidy policy optimization [J]. Issues in Agricultural Economy, 2021(6): 100-110.
|
[7] |
张冬丽, 程力, 顾正彪, 等. 玉米秸秆微晶纤维素的制备及其性质[J]. 食品与生物技术学报,2016,35(10):1113−1119. [ZHANG D L, CHENG L, GU Z B, et al. Preparation and properties of microcrystalline cellulose from corn straw[J]. Journal of Food Science and Biotechnology,2016,35(10):1113−1119. doi: 10.3969/j.issn.1673-1689.2016.10.016
ZHANG D L, CHENG L, GU Z B, et al. Preparation and properties of microcrystalline cellulose from corn straw[J]. Journal of Food Science and Biotechnology, 2016, 35(10): 1113-1119. doi: 10.3969/j.issn.1673-1689.2016.10.016
|
[8] |
王磊, 常乃丹, 张笑影, 等. 碱化处理对玉米秸秆纤维素结构的影响[J]. 现代畜牧科技,2023(2):56−59. [WANG L, CHANG N D, ZHANG X Y, et al. The influence of alkaline treatment on corn straw stalk fiber structure[J]. Modern Animal Husbandry Science & Technology,2023(2):56−59. doi: 10.19369/j.cnki.2095-9737.2023.02.016
WANG L, CHANG N D, ZHANG X Y, et al. The influence of alkaline treatment on corn straw stalk fiber structure [J]. Modern Animal Husbandry Science & Technology, 2023(2): 56-59. doi: 10.19369/j.cnki.2095-9737.2023.02.016
|
[9] |
ZELJKOVIC S C, MAKSIMOVIC M. Chemical composition and bioactivity of essential oil from thymus species in Balkan Peninsula[J]. Phytochem Rev,2015,14(3):335−352. doi: 10.1007/s11101-014-9378-9
|
[10] |
AL-MOGHAZY M, NADA A A. Edible packaging coating of encapsulated thyme essential oil in liposomal chitosan emulsions to improve the shelf life of Karish cheese[J]. Food Bioscience,2021,43(10):101230.
|
[11] |
SOUZA A G, FERREIRA R R, PAULA L C, et al. The effect of essential oil chemical structures on Pickering emulsion stabilized with cellulose nanofibrils[J]. Journal of Molecular Liquids,2020,320:114458. doi: 10.1016/j.molliq.2020.114458
|
[12] |
ZHOU Y, SUN S S, BEI W Y, et al. Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals[J]. Int J Biol Macromol,2018,112:7−13. doi: 10.1016/j.ijbiomac.2018.01.102
|
[13] |
赵昊. 玉米秸秆纤维素膜的制备、结构表征及在茶叶包装中的应用[D]. 合肥: 安徽农业大学, 2018
ZHAO H. Preparation, characterization and application of corn straw cellulose film in tea packaging [D]. Hefei: Anhui Agricultural University, 2018.
|
[14] |
郭艳, 王悦, 张依, 等. 不同方法提取的橄榄果渣纤维素的性质表征[J]. 中国食品学报,2022,22(1):306−313. [GUO Y, WANG Y, ZHANG Y, et al. Characterization of cellulose from olive residue extracted by different methods[J]. Acta Food Sinica,2022,22(1):306−313. doi: 10.16429/j.1009-7848.2022.01.033
GUO Y, WANG Y, ZHANG Y, et al. Characterization of cellulose from olive residue extracted by different methods [J]. Acta Food Sinica, 2022, 22(1): 306-313. doi: 10.16429/j.1009-7848.2022.01.033
|
[15] |
LIU C, FAN L, YANG Y, et al. Characterization of surimi particles stabilized novel Pickering emulsions: Effect of particles concentration, pH and NaCl levels[J]. Food Hydrocolloids,2021,117(23):106731.
|
[16] |
葛思彤, 李琦, 贾睿, 等. 基于玉米醇溶蛋白/没食子酸复合纳米颗粒提升玉米油Pickering乳液的氧化稳定性[J]. 食品科学,2022,43(20):78−85. [GE S T, LI Q, JIA R, et al. Improvement of oxidation stability of corn oil Pickering emulsion based on zein/gallic acid composite nanoparticles[J]. Food Science,2022,43(20):78−85. doi: 10.7506/spkx1002-6630-20210913-140
GE S T, LI Q, JIA R, et al. Improvement of oxidation stability of corn oil Pickering emulsion based on zein/gallic acid composite nanoparticles [J]. Food Science, 2022, 43(20): 78-85. doi: 10.7506/spkx1002-6630-20210913-140
|
[17] |
DAI H, ZHANG H, CHEN Y, et al. Co-stabilization and properties regulation of Pickering emulsions by cellulose nanocrystals and nanofibrils from lemon seeds[J]. Food Hydrocolloids,2021,120:106884. doi: 10.1016/j.foodhyd.2021.106884
|
[18] |
IQBAL S, HAMEED G, BALOCH M K, et al. Formation of semi-solid lipid phases by aggregation of protein microspheres in water-in-oil emulsions[J]. Food Res Int,2012,48(2):544−550. doi: 10.1016/j.foodres.2012.04.020
|
[19] |
MAO L K, MIAO S, YUAN F, et al. Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes[J]. Food Res Int,2018,103:1−7. doi: 10.1016/j.foodres.2017.10.024
|
[20] |
LU X X, XIAO J, HUANG Q R. Pickering emulsions stabilized by media-milled starch particles[J]. Food Res Int,2018,105:140−9. doi: 10.1016/j.foodres.2017.11.006
|
[21] |
邢琳琳, 朱力杰. 大豆分离蛋白-多糖体系对甜菊糖苷苦味的抑制作用及复合乳液稳定性研究[J]. 中国食品学报,2022,22(9):153−162. [XING L L, ZHU L J. Inhibitory effect of soybean protein-polysaccharide system on the bitterness of stevia glycoside and stability of complex emulsion[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(9):153−162. doi: 10.16429/j.1009-7848.2022.09.016
XING L L, ZHU L J. Inhibitory effect of soybean protein-polysaccharide system on the bitterness of stevia glycoside and stability of complex emulsion [J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(9): 153-162. doi: 10.16429/j.1009-7848.2022.09.016
|
[22] |
SAELEE K, YINGKAMHAENG N, NIMCHUA T, et al. An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization[J]. Industrial Crops and Products,2016,82:149−160. doi: 10.1016/j.indcrop.2015.11.064
|
[23] |
王硕, 李森, 李嘉怡, 等. 咖啡果壳微晶纤维素制备及其吸附性能研究[J]. 食品与机械,2021,37(10):150−154. [WANG S, LI S, LI J Y, et al. Preparation and adsorption properties of microcrystalline cellulose from coffee shell[J]. Food & Machinery,2021,37(10):150−154. doi: 10.13652/j.issn.1003-5788.2021.10.026
WANG S, LI S, LI J Y, et al. Preparation and adsorption properties of microcrystalline cellulose from coffee shell [J]. Food & Machinery, 2021, 37(10): 150-154. doi: 10.13652/j.issn.1003-5788.2021.10.026
|
[24] |
张益嘉, 张甫生, 李彬, 等. 单甘酯对高压均质处理竹笋膳食纤维理化及结构特性的影响[J]. 食品与发酵工业,2022,22(8):1−9. [ZHANG Y J, ZHANG F S, LI B, et al. Effects of single ester on physicochemical and structural properties of dietary fibers of bamboo shoots treated with high pressure homogenization[J]. Food and Fermentation Industries,2022,22(8):1−9. doi: 10.13995/j.cnki.11-1802/ts.032581
ZHANG Y J, ZHANG F S, LI B, et al. Effects of single ester on physicochemical and structural properties of dietary fibers of bamboo shoots treated with high pressure homogenization[J]. Food and Fermentation Industries, 2022, 22(8): 1-9. doi: 10.13995/j.cnki.11-1802/ts.032581
|
[25] |
MA M M, MU T H. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure[J]. Carbohydrate Polymers,2016,136:87−94. doi: 10.1016/j.carbpol.2015.09.030
|
[26] |
姚远, 张洋, 赵华, 等. 酸法制备纳米纤维素特性及其气凝胶的制备[J]. 纤维素科学与技术,2017,25(2):38−44. [YAO Y, ZHANG Y, ZHAO H, et al. Preparation of nanocellulose by acid method and preparation of aerogel[J]. Journal of Cellulose Science and Technology,2017,25(2):38−44. doi: 10.16561/j.cnki.xws.2017.02.11
YAO Y, ZHANG Y, ZHAO H, et al. Preparation of nanocellulose by acid method and preparation of aerogel[J]. Journal of Cellulose Science and Technology, 2017, 25(2): 38-44. doi: 10.16561/j.cnki.xws.2017.02.11
|
[27] |
WANG Q H, SHU Z P, XU B Q, et al. Structural characterization and antioxidant activities of polysaccharides from Citrus auranitium L.[J]. International Journal of Biological Macromolecules,2014,67:112−123. doi: 10.1016/j.ijbiomac.2014.03.004
|
[28] |
AHMADI M, MADADLOU A, SABOURI A A. Isolation of micro- and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel[J]. Food Chemistry,2015,174(1):97−103.
|
[29] |
MKMHA B, AZMAN A, ZAKARIA C, et al. Physicochemical characterization of cellulose nanowhiskers extracted from oil palm biomass microcrystalline cellulose[J]. Materials Letters,2013,113(15):87−89.
|
[30] |
NI Y, LI J, FAN L P. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions[J]. International Journal of Biological Macromolecules:Structure, Function and Interactions,2020,149:617−626.
|
[31] |
SAELICES C J, CAPRON I. Design of pickering micro- and nanoemulsions based on the structural characteristics of nanocelluloses[J]. Biomacromolecules,2018,19(2):460−469. doi: 10.1021/acs.biomac.7b01564
|
[32] |
BAI L, GRECA L, XIANG W, et al. Adsorption and assembly of cellulosic and lignin colloids at oil/water interfaces[J]. Langmuir,2019,35,(3):571−588. doi: 10.1021/acs.langmuir.8b01288
|
[33] |
COSTA A L R, GOMES A, TIBOLLA H, et al. Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes[J]. Carbohydrate Polymers,2018,194(15):122−131.
|
[34] |
XIE B, ZHANG X, LUO X, et al. Edible coating based on beeswax-in-water Pickering emulsion stabilized by cellulose nanofibrils and carboxymethyl chitosan[J]. Food Chem,2020,331:108−127.
|
[35] |
NOMENA E M, REMIJN C, ROGIER F, et al. Unravelling the mechanism of stabilization and microstructure of oil-in-water emulsions by native cellulose microfibrils in primary plant cells dispersions[J]. ACS Applied Bio Materials,2018,1(5):1440−1447. doi: 10.1021/acsabm.8b00385
|
[36] |
KALE R D, BANSAL P S, GORADE V G, et al. Extraction of microcrystalline cellulose from cotton sliver and its comparison with commercial microcrystalline cellulose[J]. Journal of Polymers and the Environment,2018,26(1):355−364. doi: 10.1007/s10924-017-0936-2
|
[37] |
BAI L, LÜ S, XIANG W, et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability[J]. Food Hydrocolloids,2019,96(11):699−708.
|
[38] |
UMANA M, TURCHIULI C, EIM V, et al. Stabilization of oil-in-water emulsions with a mushroom (Agaricus bisporus) by-product[J]. Food Eng,2021,307:110667. doi: 10.1016/j.jfoodeng.2021.110667
|
[39] |
LI F F, LI X H, HUANG K L, et al. Preparation and characterization of pickering emulsion stabilized by hordein-chitosan complex particles[J]. Food Eng,2021,292:110275. doi: 10.1016/j.jfoodeng.2020.110275
|
[40] |
李杨, 李礼佳, 和铭钰, 等. 大豆亲脂蛋白-甲基纤维素W/O/W乳液稳定性研究[J]. 农业机械学报,2022,53(7):395−403. [LI Y, LI L J, HE M Y, et al. Study on stability of W/O/W emulsion of soybean propoprotein-methyl cellulose[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):395−403. doi: 10.6041/j.issn.1000-1298.2022.07.043
LI Y, LI L J, HE M Y, et al. Study on stability of W/O/W emulsion of soybean propoprotein-methyl cellulose[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 395-403. doi: 10.6041/j.issn.1000-1298.2022.07.043
|
[41] |
SUN J, LIU W Y, FENG M Q, et al. Characterization of olive oil emulsions stabilized by flaxseed gum[J]. Food Eng,2019,247:74−79. doi: 10.1016/j.jfoodeng.2018.11.023
|
[42] |
ORTIZ D G, POCHAT-BOHATIER C, CAMBEDOUZOU J, et al. Current trends in Pickering emulsions: Particle morphology and applications[J]. Engineering,2020,6(4):468−482. doi: 10.1016/j.eng.2019.08.017
|
[43] |
MOMEN S, SALAMI M, ALAVI F, et al. The techno-functional properties of camel whey protein compared to bovine whey protein for fabrication a model high protein emulsion[J]. LWT-Food Sci Technol,2019,101:543−550. doi: 10.1016/j.lwt.2018.11.063
|
[44] |
ZHAI X C, LIN D H, LIU D J, et al. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions[J]. Food Res Int,2018,103:12−20. doi: 10.1016/j.foodres.2017.10.030
|
[45] |
SANDOVAL-CUELLAR C E, PEREA-FLORES M, QUINTANILLA-CARVAJAL M X. In-vitro digestion of whey protein- and soy lecithin-stabilized high oleic palm oil emulsions[J]. Journal of Food Engineering,2020,278:109918. doi: 10.1016/j.jfoodeng.2020.109918
|
[46] |
LI X M, ZHU J, PAN Y, et al. Fabrication and characterization of pickering emulsions stabilized by octenyl succinic anhydride -modified gliadin nanoparticle[J]. Food Hydrocolloid,2019,90:19−27. doi: 10.1016/j.foodhyd.2018.12.012
|
[47] |
ELLIOTT P J, JIROUSEK M. Novel targets for metabolic disease[J]. Curr Opin Invest,2008,9(4):371−378.
|
[48] |
WINUPRASITH T, SUPHANTHARIKA M. Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind[J]. Food Hydrocolloid,2015,43:690−699. doi: 10.1016/j.foodhyd.2014.07.027
|
[49] |
HUANG K, LIU R N, ZHANG Y, et al. Characteristics of two cedarwood essential oil emulsions and their antioxidant and antibacterial activities[J]. Food Chem,2021,346:128970. doi: 10.1016/j.foodchem.2020.128970
|
[50] |
XU D X, ZHANG J J, CAO Y P, et al. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion[J]. LWT-Food Sci Technol,2016,66:590−597. doi: 10.1016/j.lwt.2015.11.002
|
[51] |
ZOU H, ZHAO N, SUN S, et al. High-intensity ultrasonication treatment improved physicochemical and functional properties of mussel sarcoplasmic proteins and enhanced the stability of oil-in-water emulsion[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,589:124463. doi: 10.1016/j.colsurfa.2020.124463
|