LIN Congcong, ZHAO Yan, LIU Rui, et al. Research Progress in the Application of Proteomics andMetabolomics in Bee Products[J]. Science and Technology of Food Industry, 2023, 44(22): 377−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020136.
Citation: LIN Congcong, ZHAO Yan, LIU Rui, et al. Research Progress in the Application of Proteomics andMetabolomics in Bee Products[J]. Science and Technology of Food Industry, 2023, 44(22): 377−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020136.

Research Progress in the Application of Proteomics andMetabolomics in Bee Products

More Information
  • Received Date: February 14, 2023
  • Available Online: September 14, 2023
  • Bee products are gaining increasing popularity among consumers for their high nutritional value and various biological activities. However, adulteration is becoming a prominent problem in the production and sale of bee products, and the mechanisms underlying their biological activities have not been fully elucidated. Proteomics and metabolomics can provide complete and comprehensive descriptions on the overall characteristics of proteins and small-molecular metabolites. In recent years, these two omics approaches have been widely used in the field of bee products, and become a powerful means to solve the problem of adulteration in bee products and elucidate the mechanisms underlying their biological activities. This paper reviews the research progress in the application of proteomics and metabolomics in bee products. Based on an overview of the advantages of proteomics and metabolomics in simultaneous identification of whole components and screening of characteristic markers, the paper also summarizes their applications in the identification of components, discrimination and authentication, and elucidation of mechanisms for biological activities of bee products in detail. In addition, the existing problems are analyzed and the future research directions are proposed. The paper is expected to provide a reference for extensive and in-depth application of omics technologies in the research of bee products.
  • [1]
    赵彤, 王宣, 吴黎明, 等. 发酵蜂产品研究进展[J]. 食品工业科技,2022,43(14):461−466

    ZHAO T, WANG X, WU L M, et al. Research progress of fermented bee products[J]. Science and Technology of Food Industry,2022,43(14):461−466.
    [2]
    NASCIMENTO K S D, GASPAROTTO SATTLER J A, LAUER MACEDO L F, et al. Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys[J]. LWT,2018,91:85−94. doi: 10.1016/j.lwt.2018.01.016
    [3]
    EL-SEEDI H R, KHALIIFA S A M, ABD EL-WAHED A, et al. Honeybee products:An updated review of neurological actions[J]. Trends in Food Science & Technology,2020,101:17−27.
    [4]
    旬利杰. 我国蜂蜜生产现状及国内外市场形势分析[J]. 南方农业学报,2021,52(11):3174−3184

    XUN L J. Chinese honey production status and the market situation at home and abroad[J]. Journal of Southern Agriculture,2021,52(11):3174−3184.
    [5]
    ELMASRY G, MORSY N, AL-REJAIE S, et al. Real-time quality authentication of honey using atmospheric pressure chemical ionisation mass spectrometry (APCI-MS)[J]. International Journal of Food Science & Technology,2019,54(11):2983−2997.
    [6]
    静平, 吴振兴, 厉艳, 等. 组学技术在食品安全检测中的应用[J]. 分析科学学报,2019,35(6):766−770

    JING P, WU Z X, LI Y, et al. The application of omics in food safety detection[J]. Journal of Analytical Science,2019,35(6):766−770.
    [7]
    刘昊天, 李媛媛, 孔保华. 组学技术在鉴定及预测猪肉质量特性生物标志物中的应用[J]. 食品工业科技,2016,37(13):381−385

    LIU H T, LI Y Y, KONG B H. Application of omics techniques in identification and prediction of biomarkers of quality attributes of pork:A review[J]. Science and Technology of Food Industry,2016,37(13):381−385.
    [8]
    王洋, 陈孟涵, 张锦锦, 等. 蛋白质组学在食品领域的应用研究进展[J]. 食品科技,2022,47(3):43−48

    WANG Y, CHEN M H, ZHANG J J, et al. Application research progress of proteomics in food field[J]. Food Science and Technology,2022,47(3):43−48.
    [9]
    田尉婧, 张九凯, 程海燕, 等. 基于质谱的蛋白质组学技术在食品真伪鉴别及品质识别方面的应用[J]. 色谱,2018,36(7):588−598 doi: 10.3724/SP.J.1123.2018.01016

    TIAN W J, ZHANG J K, CHENG H Y, et al. Applications of mass spectrometry-based proteomics in food authentication and quality identification[J]. Chinese Journal of Chromatography,2018,36(7):588−598. doi: 10.3724/SP.J.1123.2018.01016
    [10]
    PEIREN N, VANROBAEYS F, DE GRAAF D C, et al. The protein composition of honeybee venom reconsidered by a proteomic approach[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2005,1752(1):1−5. doi: 10.1016/j.bbapap.2005.07.017
    [11]
    MATYSIAK J, HAJDUK J, PIETRZAK Ł, et al. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies[J]. Toxicon,2014,90:255−264. doi: 10.1016/j.toxicon.2014.08.069
    [12]
    FERREIRA RESENDE V M, VASILJ A, SANTOS K S, et al. Proteome and phosphoproteome of Africanized and European honeybee venoms[J]. Proteomics,2013,13(17):2638−2648. doi: 10.1002/pmic.201300038
    [13]
    MATYSIAK J, HAJDUK J, MAYER F, et al. Hyphenated LC-MALDI-TOF/TOF and LC-ESI-QTOF approach in proteomic characterization of honeybee venom[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,121:69−76. doi: 10.1016/j.jpba.2016.01.009
    [14]
    VAN VAERENBERGH M, DEBYSER G, DEVREESE B, et al. Exploring the hidden honeybee ( Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS[J]. Journal of Proteomics,2014,99:169−178. doi: 10.1016/j.jprot.2013.04.039
    [15]
    SCHOENLEBEN S, SICKMANN A, MUELLER M J, et al. Proteome analysis of Apis mellifera royal jelly[J]. Analytical and Bioanalytical Chemistry,2007,389(4):1087−1093. doi: 10.1007/s00216-007-1498-2
    [16]
    HAN B, LI C X, ZHANG L, et al. Novel royal jelly proteins identified by gel-based and gel-free proteomics[J]. Journal of Agricultural and Food Chemistry,2011,59(18):10346−10355. doi: 10.1021/jf202355n
    [17]
    郭静, 晏嘉泽, 郭明, 等. 反相液相色谱-串联质谱法鉴定油菜蜂花粉中的蛋白质及活性肽[J]. 色谱,2014,32(3):284−289 doi: 10.3724/SP.J.1123.2013.12032

    GUO J, YAN J Z, GUO M, et al. Application of reversed-phase liquid chromatography-tandem mass spectrometry in the identification of protein and bioactivity peptides from rape bee pollen[J]. Chinese Journal of Chromatography,2014,32(3):284−289. doi: 10.3724/SP.J.1123.2013.12032
    [18]
    MAQSOUDLOU A, MAHOONAK A S, MORA L, et al. Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly[J]. Food Research International,2019,116:905−915. doi: 10.1016/j.foodres.2018.09.027
    [19]
    YIN S T, TAO Y X, JIANG Y S, et al. A combined proteomic and metabolomic strategy for allergens characterization in natural and fermented Brassica napus bee pollen[J]. Frontiers in Nutrition,2022,9:822033. doi: 10.3389/fnut.2022.822033
    [20]
    TAO Y X, YIN S T, FU L L, et al. Identification of allergens and allergen hydrolysates by proteomics and metabolomics:A comparative study of natural and enzymolytic bee pollen[J]. Food Research International,2022,158:111572. doi: 10.1016/j.foodres.2022.111572
    [21]
    ZHAO F Y, WU Y J, GUO L L, et al. Using proteomics platform to develop a potential immunoassay method of royal jelly freshness[J]. European Food Research and Technology,2013,236(5):799−815. doi: 10.1007/s00217-013-1939-4
    [22]
    LI J K, FEN M, ZHANG L, et al. Proteomics analysis of major royal jelly protein changes under different storage conditions[J]. Journal of Proteome Research,2008,7(8):3339−3353. doi: 10.1021/pr8002276
    [23]
    HU H, WEI Q H, SUN Z H, et al. Development of a freshness assay for royal jelly based on the temperature- and time-dependent changes of antimicrobial effectiveness and proteome dynamics of royal jelly proteins[J]. Journal of Agricultural and Food Chemistry,2021,69(36):10731−10740. doi: 10.1021/acs.jafc.1c02843
    [24]
    QU N, JIANG J, SUN L X, et al. Proteomic characterization of royal jelly proteins in Chinese ( Apis cerana cerana) and European ( Apis mellifera) honeybees[J]. Biochemistry-Moscow,2008,73(6):676−680. doi: 10.1134/S0006297908060072
    [25]
    MA C, MA B B, LI J K, et al. Changes in chemical composition and antioxidant activity of royal jelly produced at different floral periods during migratory beekeeping[J]. Food Research International,2022,155:111091. doi: 10.1016/j.foodres.2022.111091
    [26]
    SONG Y Q, MILNE R I, ZHOU H X, et al. Floral nectar chitinase is a potential marker for monofloral honey botanical origin authentication:A case study from loquat ( Eriobotrya japonica Lindl.)[J]. Food Chemistry,2019,282 :76−83. doi: 10.1016/j.foodchem.2018.12.107
    [27]
    严丽娟, 徐敦明, 薛晓锋, 等. 基于液相色谱-高分辨质谱的代谢组学技术用于麦卢卡蜂蜜的甄别[J]. 色谱,2019,37(6):589−596 doi: 10.3724/SP.J.1123.2018.12011

    YAN L J, XU D M, XUE X F, et al. Authenticity identification of manuka honey using liquid chromatography-high resolution mass spectrometry based metabolomic technique[J]. Chinese Journal of Chromatography,2019,37(6):589−596. doi: 10.3724/SP.J.1123.2018.12011
    [28]
    BONG J, MIDDLEDITCH M, LOOMES K M, et al. Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ manuka ( Leptospermum scoparium) honey[J]. Food Chemistry,2021,350:128442. doi: 10.1016/j.foodchem.2020.128442
    [29]
    JIANG W J, YING M R, ZHANG J J, et al. Quantification of major royal jelly proteins using ultra performance liquid chromatography tandem triple quadrupole mass spectrometry and application in honey authenticity[J]. Journal of Food Composition and Analysis,2021,97:103801. doi: 10.1016/j.jfca.2021.103801
    [30]
    孙杰. 蜂毒干预胶原诱导型关节炎小鼠模型的蛋白质组学研究[D]. 福州:福建农林大学, 2014

    SUN J. Proteomics research on effect of bee venom in type Ⅱ collagen-induced arthritis mice model[D]. Fuzhou:Fujian Agricultural and Forestry University, 2014.
    [31]
    FAN P, HAN B, FENG M, et al. Functional and proteomic investigations reveal major royal jelly protein 1 associated with anti-hypertension activity in mouse vascular smooth muscle cells[J]. Scientific Reports,2016,6:30230. doi: 10.1038/srep30230
    [32]
    BILIKOVA K, MIRGORODSKAYA E, BUKOVSKA G, et al. Towards functional proteomics of minority component of honeybee royal jelly:The effect of post-translational modifications on the antimicrobial activity of apalbumin2[J]. Proteomics,2009,9(8):2131−2138. doi: 10.1002/pmic.200800705
    [33]
    FAN P, SHA F F, MA C, et al. 10-Hydroxydec-2-enoic acid reduces hydroxyl free radical-induced damage to vascular smooth muscle cells by rescuing protein and energy metabolism[J]. Frontiers in Nutrition,2022,9:873892. doi: 10.3389/fnut.2022.873892
    [34]
    ERBAN T, SHCHERBACHENKO E, TALACKO P, et al. The unique protein composition of honey revealed by comprehensive proteomic analysis:Allergens, venom-like proteins, antibacterial properties, royal jelly proteins, serine proteases, and their inhibitors[J]. Journal of Natural Products,2019,82(5):1217−1226. doi: 10.1021/acs.jnatprod.8b00968
    [35]
    PACKER J M, IRISH J, HERBERT B R, et al. Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome[J]. International Journal of Antimicrobial Agents,2012,40(1):43−50. doi: 10.1016/j.ijantimicag.2012.03.012
    [36]
    JENKINS R, BURTON N, COOPER R. Effect of manuka honey on the expression of universal stress protein A in meticillin-resistant Staphylococcus aureus[J]. International Journal of Antimicrobial Agents,2011,37(4):373−376. doi: 10.1016/j.ijantimicag.2010.11.036
    [37]
    AMRAN N, ABDUL-RAHMAN P S. Differential proteome and functional analysis of NSCLC cell lines in response to Tualang honey treatment[J]. Journal of Ethnopharmacology,2022,293:115264. doi: 10.1016/j.jep.2022.115264
    [38]
    FROZZA C O D S, RIBEIRO T D S, GAMBATO G, et al. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells[J]. Food and Chemical Toxicology,2014,63:195−204. doi: 10.1016/j.fct.2013.11.003
    [39]
    赖博文, 刘玢, 梁永康. 基于高分辨质谱的非靶向代谢组学在食品造假鉴定中的研究进展[J]. 生物技术通报,2019,35(2):192−197 doi: 10.13560/j.cnki.biotech.bull.1985.2018-0632

    LAI B W, LIU B, LIANG Y K. Research progress on food fraud using non-targeted metabolomics based on high-resolution mass spectrometry[J]. Biotechnology Bulletin,2019,35(2):192−197. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0632
    [40]
    张丽翠, 马川, 冯毛, 等. 基于高分辨质谱和代谢组学技术评估和优化蜂王浆代谢物提取方法[J]. 中国农业科学,2020,53(18):3833−3845 doi: 10.3864/j.issn.0578-1752.2020.18.017

    ZHANG L C, MA C, FENG M, et al. Evaluation and optimization of metabolite extraction protocols for royal jelly by high resolution mass spectrometry and metabolomics[J]. Scientia Agricultura Sinica,2020,53(18):3833−3845. doi: 10.3864/j.issn.0578-1752.2020.18.017
    [41]
    MA C, ZHANG L C, FENG M, et al. Metabolic profiling unravels the effects of enhanced output and harvesting time on royal jelly quality[J]. Food Research International,2021,139:109974. doi: 10.1016/j.foodres.2020.109974
    [42]
    KLUPCZYNSKA A, PLEWA S, DEREZINSKI P, et al. Identification and quantification of honeybee venom constituents by multiplatform metabolomics[J]. Scientific Reports,2020,10(1):21645. doi: 10.1038/s41598-020-78740-1
    [43]
    ROCCHETTI G, CASTIGLIONI S, MALDARIZZI G, et al. UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin[J]. International Journal of Food Science and Technology,2019,54(2):335−346. doi: 10.1111/ijfs.13941
    [44]
    ZHANG H F, LU Q, LIU R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen[J]. Food Chemistry,2022,375:131908. doi: 10.1016/j.foodchem.2021.131908
    [45]
    WANG X R, ROGERS K M, LI Y, et al. Untargeted and targeted discrimination of honey collected by Apis cerana and Apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC-MS[J]. Journal of Agricultural and Food Chemistry,2019,67(43):12144−12152. doi: 10.1021/acs.jafc.9b04438
    [46]
    ZUCCATO V, FINOTELLO C, MENEGAZZO I, et al. Entomological authentication of stingless bee honey by H-1 NMR-based metabolomics approach[J]. Food Control,2017,82:145−153. doi: 10.1016/j.foodcont.2017.06.024
    [47]
    ZHAO L W, REN C J, XUE X F, et al. Safflomin A:A novel chemical marker for Carthamus tinctorius L. (Safflower) monofloral honey[J]. Food Chemistry,2022,366:130584. doi: 10.1016/j.foodchem.2021.130584
    [48]
    YAN S, WANG X, ZHAO H M, et al. Metabolomics-based screening and chemically identifying abundant stachydrine as quality characteristic of rare Leucosceptrum canum Smith honey[J]. Journal of Food Composition and Analysis,2022,114:104759. doi: 10.1016/j.jfca.2022.104759
    [49]
    LI Y, JIN Y, YANG S P, et al. Strategy for comparative untargeted metabolomics reveals honey markers of different floral and geographic origins using ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry[J]. Journal of Chromatography A,2017,1499:78−89. doi: 10.1016/j.chroma.2017.03.071
    [50]
    KORTESNIEMI M, SLUPSKY C M, OLLIKKA T, et al. NMR profiling clarifies the characterization of Finnish honeys of different botanical origins[J]. Food Research International,2016,86:83−92. doi: 10.1016/j.foodres.2016.05.014
    [51]
    ANDELKOVIC B, VUJISIC L, VUCKOVIC I, et al. Metabolomics study of Populus type propolis[J]. Journal of Pharmaceutical and Biomedical Analysis,2017,135:217−226. doi: 10.1016/j.jpba.2016.12.003
    [52]
    SCHIEVANO E, STOCCHERO M, ZUCCATO V, et al. NMR assessment of European acacia honey origin and composition of EU-blend based on geographical floral markers[J]. Food Chemistry,2019,288:96−101. doi: 10.1016/j.foodchem.2019.02.062
    [53]
    WANG T T, LIU Q H, WANG M, et al. Metabolomics reveals discrimination of Chinese propolis from different climatic regions[J]. Foods,2020,9(4):491. doi: 10.3390/foods9040491
    [54]
    STAVROPOULOU M I, TERMENTZI A, KASIOTIS K M, et al. Untargeted ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry (UHPLC-HRMS) metabolomics reveals propolis markers of Greek and Chinese origin[J]. Molecules,2021,26(2):456. doi: 10.3390/molecules26020456
    [55]
    MAZZEI P, PICCOLO A, BRESCIA M, et al. Assessment of geographical origin and production period of royal jelly by NMR metabolomics[J]. Chemical and Biological Technologies in Agriculture,2020,7(1):24. doi: 10.1186/s40538-020-00190-8
    [56]
    YONG C H, MUHAMMAD S A, AZIZ F A, et al. Detecting adulteration of stingless bee honey using untargeted H-1 NMR metabolomics with chemometrics[J]. Food Chemistry,2022,368:130808. doi: 10.1016/j.foodchem.2021.130808
    [57]
    YAN S, WANG X, WU Y C, et al. A metabolomics approach revealed an Amadori compound distinguishes artificially heated and naturally matured acacia honey[J]. Food Chemistry,2022,385:132631. doi: 10.1016/j.foodchem.2022.132631
    [58]
    MUSTAFA M Z, ZULKIFLI F N, FERNANDEZ I, et al. Stingless bee honey improves spatial memory in mice, probably associated with brain-derived neurotrophic factor (BDNF) and inositol 1, 4, 5-triphosphate receptor type 1 (Itpr1) genes[J]. Evidence-Based Complementary and Alternative Medicine,2019,2019:8258307. doi: 10.1155/2019/8258307
    [59]
    BITTENCOURT M L F, RIBEIRO P R, FRANCO R L P, et al. Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis:Use of correlation and multivariate analyses to identify potential bioactive compounds[J]. Food Research International,2015,76:449−457. doi: 10.1016/j.foodres.2015.07.008
    [60]
    GHALLAB D S, MOHYELDIN M M, SHAWKY E, et al. Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics[J]. LWT,2021,136:110298. doi: 10.1016/j.lwt.2020.110298
    [61]
    ZHANG W W, MARGARITA G E, WU D, et al. Antibacterial activity of Chinese red propolis against Staphylococcus aureus and MRSA[J]. Molecules,2022,27(5):1693. doi: 10.3390/molecules27051693
    [62]
    SAWICKI R, WIDELSKI J, OKINCZYC P, et al. Exposure to Nepalese propolis alters the metabolic state of Mycobacterium tuberculosis[J]. Frontiers in Microbiology,2022,13:929476. doi: 10.3389/fmicb.2022.929476
    [63]
    ALSHERBINY M A, BHUYAN D J, RADWAN I, et al. Metabolomic identification of anticancer metabolites of Australian propolis and proteomic elucidation of its synergistic mechanisms with doxorubicin in the MCF7 cells[J]. International Journal of Molecular Sciences,2021,22(15):7840. doi: 10.3390/ijms22157840
    [64]
    TIAN S H, ZHAO H T, LIU J J, et al. Metabolomics reveals that alcohol extract of propolis alleviates D-gal-induced skeletal muscle senescence in mice[J]. Food Bioscience,2022,49:101885. doi: 10.1016/j.fbio.2022.101885
    [65]
    ZHU Y Y, MENG X C, ZHOU Y J, et al. Major royal jelly proteins alleviate non-alcoholic fatty liver disease in mice model by regulating disordered metabolic pathways[J]. Journal of Food Biochemistry,2022,46(9):e14214. doi: 10.1111/jfbc.14214
    [66]
    CHEN D, LIU F, WAN J B, et al. Effect of major royal jelly proteins on spatial memory in aged rats:Metabolomics analysis in urine[J]. Journal of Agricultural and Food Chemistry,2017,65(15):3151−3159. doi: 10.1021/acs.jafc.7b00202
    [67]
    HU X Y, LIU Z G, LU Y T, et al. Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice[J]. Food & Function,2022,13(19):9931−9946.
    [68]
    高虹. 基于GC-MS的蜂毒干预类风湿性关节炎小鼠模型的代谢组学研究[D]. 福州:福建农林大学, 2014

    GAO H. Metabolomics study based on gas chromatography mass spectrometry of rheumatoid arthritis in mice intervened by bee venom[D]. Fuzhou:Fujian Agricultural and Forestry University, 2014.
    [69]
    LI Q Q, SUN M H, WANG Z R, et al. Bee pollen extracts modulate serum metabolism in lipopolysaccharide-induced acute lung injury mice with anti-inflammatory effects[J]. Journal of Agricultural and Food Chemistry,2019,67(28):7855−7868. doi: 10.1021/acs.jafc.9b03082
    [70]
    TUOHETI T, RASHEED H A, MENG L, et al. High hydrostatic pressure enhances the anti-proliferative properties of lotus bee pollen on the human prostate cancer PC-3 cells via increased metabolites[J]. Journal of Ethnopharmacology,2020,261:113057. doi: 10.1016/j.jep.2020.113057
    [71]
    LI Q Q, LIANG X W, GUO N N, et al. Protective effects of bee pollen extract on the Caco-2 intestinal barrier dysfunctions induced by dextran sulfate sodium[J]. Biomedicine & Pharmacotherapy,2019,117:109200. doi: 10.1016/j.biopha.2019.109200
    [72]
    ZHANG X X, YU M H, ZHU X L, et al. Metabolomics reveals that phenolamides are the main chemical components contributing to the anti-tyrosinase activity of bee pollen[J]. Food Chemistry,2022,389:133071. doi: 10.1016/j.foodchem.2022.133071
    [73]
    刘景芳, 李维林, 王莉, 等. 多组学技术及其在生命科学研究中应用概述[J]. 生物工程学报,2022,38(10):3581−3593

    LIU J F, LI W L, WANG L, et al. Multi-omics technology and its applications to life science:A review[J]. Chinese Journal of Biotechnology,2022,38(10):3581−3593.
  • Cited by

    Periodical cited type(4)

    1. 白建瑞. 蛋白质组学在生物植物逆境适应中的作用研究. 现代农业研究. 2025(02): 47-49 .
    2. 杨磊,郝悦,曾志将,彭文君. 2023年蜂产业与技术发展报告. 中国畜牧杂志. 2024(03): 342-347 .
    3. 陈立帆,江炜菲,王清艳,张夏雨,李文凤,李瑞萍,苏志勇,金俊杰,赵燕. 智能化养蜂技术在乡村振兴战略中的实践与探索. 蜜蜂杂志. 2024(02): 18-21 .
    4. 白建瑞. 蛋白质组学的发展及其在生物领域的重要性. 农业开发与装备. 2024(12): 148-150 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (234) PDF downloads (18) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return