Citation: | LIN Congcong, ZHAO Yan, LIU Rui, et al. Research Progress in the Application of Proteomics andMetabolomics in Bee Products[J]. Science and Technology of Food Industry, 2023, 44(22): 377−386. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020136. |
[1] |
赵彤, 王宣, 吴黎明, 等. 发酵蜂产品研究进展[J]. 食品工业科技,2022,43(14):461−466
ZHAO T, WANG X, WU L M, et al. Research progress of fermented bee products[J]. Science and Technology of Food Industry,2022,43(14):461−466.
|
[2] |
NASCIMENTO K S D, GASPAROTTO SATTLER J A, LAUER MACEDO L F, et al. Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys[J]. LWT,2018,91:85−94. doi: 10.1016/j.lwt.2018.01.016
|
[3] |
EL-SEEDI H R, KHALIIFA S A M, ABD EL-WAHED A, et al. Honeybee products:An updated review of neurological actions[J]. Trends in Food Science & Technology,2020,101:17−27.
|
[4] |
旬利杰. 我国蜂蜜生产现状及国内外市场形势分析[J]. 南方农业学报,2021,52(11):3174−3184
XUN L J. Chinese honey production status and the market situation at home and abroad[J]. Journal of Southern Agriculture,2021,52(11):3174−3184.
|
[5] |
ELMASRY G, MORSY N, AL-REJAIE S, et al. Real-time quality authentication of honey using atmospheric pressure chemical ionisation mass spectrometry (APCI-MS)[J]. International Journal of Food Science & Technology,2019,54(11):2983−2997.
|
[6] |
静平, 吴振兴, 厉艳, 等. 组学技术在食品安全检测中的应用[J]. 分析科学学报,2019,35(6):766−770
JING P, WU Z X, LI Y, et al. The application of omics in food safety detection[J]. Journal of Analytical Science,2019,35(6):766−770.
|
[7] |
刘昊天, 李媛媛, 孔保华. 组学技术在鉴定及预测猪肉质量特性生物标志物中的应用[J]. 食品工业科技,2016,37(13):381−385
LIU H T, LI Y Y, KONG B H. Application of omics techniques in identification and prediction of biomarkers of quality attributes of pork:A review[J]. Science and Technology of Food Industry,2016,37(13):381−385.
|
[8] |
王洋, 陈孟涵, 张锦锦, 等. 蛋白质组学在食品领域的应用研究进展[J]. 食品科技,2022,47(3):43−48
WANG Y, CHEN M H, ZHANG J J, et al. Application research progress of proteomics in food field[J]. Food Science and Technology,2022,47(3):43−48.
|
[9] |
田尉婧, 张九凯, 程海燕, 等. 基于质谱的蛋白质组学技术在食品真伪鉴别及品质识别方面的应用[J]. 色谱,2018,36(7):588−598 doi: 10.3724/SP.J.1123.2018.01016
TIAN W J, ZHANG J K, CHENG H Y, et al. Applications of mass spectrometry-based proteomics in food authentication and quality identification[J]. Chinese Journal of Chromatography,2018,36(7):588−598. doi: 10.3724/SP.J.1123.2018.01016
|
[10] |
PEIREN N, VANROBAEYS F, DE GRAAF D C, et al. The protein composition of honeybee venom reconsidered by a proteomic approach[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2005,1752(1):1−5. doi: 10.1016/j.bbapap.2005.07.017
|
[11] |
MATYSIAK J, HAJDUK J, PIETRZAK Ł, et al. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies[J]. Toxicon,2014,90:255−264. doi: 10.1016/j.toxicon.2014.08.069
|
[12] |
FERREIRA RESENDE V M, VASILJ A, SANTOS K S, et al. Proteome and phosphoproteome of Africanized and European honeybee venoms[J]. Proteomics,2013,13(17):2638−2648. doi: 10.1002/pmic.201300038
|
[13] |
MATYSIAK J, HAJDUK J, MAYER F, et al. Hyphenated LC-MALDI-TOF/TOF and LC-ESI-QTOF approach in proteomic characterization of honeybee venom[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,121:69−76. doi: 10.1016/j.jpba.2016.01.009
|
[14] |
VAN VAERENBERGH M, DEBYSER G, DEVREESE B, et al. Exploring the hidden honeybee ( Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS[J]. Journal of Proteomics,2014,99:169−178. doi: 10.1016/j.jprot.2013.04.039
|
[15] |
SCHOENLEBEN S, SICKMANN A, MUELLER M J, et al. Proteome analysis of Apis mellifera royal jelly[J]. Analytical and Bioanalytical Chemistry,2007,389(4):1087−1093. doi: 10.1007/s00216-007-1498-2
|
[16] |
HAN B, LI C X, ZHANG L, et al. Novel royal jelly proteins identified by gel-based and gel-free proteomics[J]. Journal of Agricultural and Food Chemistry,2011,59(18):10346−10355. doi: 10.1021/jf202355n
|
[17] |
郭静, 晏嘉泽, 郭明, 等. 反相液相色谱-串联质谱法鉴定油菜蜂花粉中的蛋白质及活性肽[J]. 色谱,2014,32(3):284−289 doi: 10.3724/SP.J.1123.2013.12032
GUO J, YAN J Z, GUO M, et al. Application of reversed-phase liquid chromatography-tandem mass spectrometry in the identification of protein and bioactivity peptides from rape bee pollen[J]. Chinese Journal of Chromatography,2014,32(3):284−289. doi: 10.3724/SP.J.1123.2013.12032
|
[18] |
MAQSOUDLOU A, MAHOONAK A S, MORA L, et al. Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly[J]. Food Research International,2019,116:905−915. doi: 10.1016/j.foodres.2018.09.027
|
[19] |
YIN S T, TAO Y X, JIANG Y S, et al. A combined proteomic and metabolomic strategy for allergens characterization in natural and fermented Brassica napus bee pollen[J]. Frontiers in Nutrition,2022,9:822033. doi: 10.3389/fnut.2022.822033
|
[20] |
TAO Y X, YIN S T, FU L L, et al. Identification of allergens and allergen hydrolysates by proteomics and metabolomics:A comparative study of natural and enzymolytic bee pollen[J]. Food Research International,2022,158:111572. doi: 10.1016/j.foodres.2022.111572
|
[21] |
ZHAO F Y, WU Y J, GUO L L, et al. Using proteomics platform to develop a potential immunoassay method of royal jelly freshness[J]. European Food Research and Technology,2013,236(5):799−815. doi: 10.1007/s00217-013-1939-4
|
[22] |
LI J K, FEN M, ZHANG L, et al. Proteomics analysis of major royal jelly protein changes under different storage conditions[J]. Journal of Proteome Research,2008,7(8):3339−3353. doi: 10.1021/pr8002276
|
[23] |
HU H, WEI Q H, SUN Z H, et al. Development of a freshness assay for royal jelly based on the temperature- and time-dependent changes of antimicrobial effectiveness and proteome dynamics of royal jelly proteins[J]. Journal of Agricultural and Food Chemistry,2021,69(36):10731−10740. doi: 10.1021/acs.jafc.1c02843
|
[24] |
QU N, JIANG J, SUN L X, et al. Proteomic characterization of royal jelly proteins in Chinese ( Apis cerana cerana) and European ( Apis mellifera) honeybees[J]. Biochemistry-Moscow,2008,73(6):676−680. doi: 10.1134/S0006297908060072
|
[25] |
MA C, MA B B, LI J K, et al. Changes in chemical composition and antioxidant activity of royal jelly produced at different floral periods during migratory beekeeping[J]. Food Research International,2022,155:111091. doi: 10.1016/j.foodres.2022.111091
|
[26] |
SONG Y Q, MILNE R I, ZHOU H X, et al. Floral nectar chitinase is a potential marker for monofloral honey botanical origin authentication:A case study from loquat ( Eriobotrya japonica Lindl.)[J]. Food Chemistry,2019,282 :76−83. doi: 10.1016/j.foodchem.2018.12.107
|
[27] |
严丽娟, 徐敦明, 薛晓锋, 等. 基于液相色谱-高分辨质谱的代谢组学技术用于麦卢卡蜂蜜的甄别[J]. 色谱,2019,37(6):589−596 doi: 10.3724/SP.J.1123.2018.12011
YAN L J, XU D M, XUE X F, et al. Authenticity identification of manuka honey using liquid chromatography-high resolution mass spectrometry based metabolomic technique[J]. Chinese Journal of Chromatography,2019,37(6):589−596. doi: 10.3724/SP.J.1123.2018.12011
|
[28] |
BONG J, MIDDLEDITCH M, LOOMES K M, et al. Proteomic analysis of honey. Identification of unique peptide markers for authentication of NZ manuka ( Leptospermum scoparium) honey[J]. Food Chemistry,2021,350:128442. doi: 10.1016/j.foodchem.2020.128442
|
[29] |
JIANG W J, YING M R, ZHANG J J, et al. Quantification of major royal jelly proteins using ultra performance liquid chromatography tandem triple quadrupole mass spectrometry and application in honey authenticity[J]. Journal of Food Composition and Analysis,2021,97:103801. doi: 10.1016/j.jfca.2021.103801
|
[30] |
孙杰. 蜂毒干预胶原诱导型关节炎小鼠模型的蛋白质组学研究[D]. 福州:福建农林大学, 2014
SUN J. Proteomics research on effect of bee venom in type Ⅱ collagen-induced arthritis mice model[D]. Fuzhou:Fujian Agricultural and Forestry University, 2014.
|
[31] |
FAN P, HAN B, FENG M, et al. Functional and proteomic investigations reveal major royal jelly protein 1 associated with anti-hypertension activity in mouse vascular smooth muscle cells[J]. Scientific Reports,2016,6:30230. doi: 10.1038/srep30230
|
[32] |
BILIKOVA K, MIRGORODSKAYA E, BUKOVSKA G, et al. Towards functional proteomics of minority component of honeybee royal jelly:The effect of post-translational modifications on the antimicrobial activity of apalbumin2[J]. Proteomics,2009,9(8):2131−2138. doi: 10.1002/pmic.200800705
|
[33] |
FAN P, SHA F F, MA C, et al. 10-Hydroxydec-2-enoic acid reduces hydroxyl free radical-induced damage to vascular smooth muscle cells by rescuing protein and energy metabolism[J]. Frontiers in Nutrition,2022,9:873892. doi: 10.3389/fnut.2022.873892
|
[34] |
ERBAN T, SHCHERBACHENKO E, TALACKO P, et al. The unique protein composition of honey revealed by comprehensive proteomic analysis:Allergens, venom-like proteins, antibacterial properties, royal jelly proteins, serine proteases, and their inhibitors[J]. Journal of Natural Products,2019,82(5):1217−1226. doi: 10.1021/acs.jnatprod.8b00968
|
[35] |
PACKER J M, IRISH J, HERBERT B R, et al. Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome[J]. International Journal of Antimicrobial Agents,2012,40(1):43−50. doi: 10.1016/j.ijantimicag.2012.03.012
|
[36] |
JENKINS R, BURTON N, COOPER R. Effect of manuka honey on the expression of universal stress protein A in meticillin-resistant Staphylococcus aureus[J]. International Journal of Antimicrobial Agents,2011,37(4):373−376. doi: 10.1016/j.ijantimicag.2010.11.036
|
[37] |
AMRAN N, ABDUL-RAHMAN P S. Differential proteome and functional analysis of NSCLC cell lines in response to Tualang honey treatment[J]. Journal of Ethnopharmacology,2022,293:115264. doi: 10.1016/j.jep.2022.115264
|
[38] |
FROZZA C O D S, RIBEIRO T D S, GAMBATO G, et al. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells[J]. Food and Chemical Toxicology,2014,63:195−204. doi: 10.1016/j.fct.2013.11.003
|
[39] |
赖博文, 刘玢, 梁永康. 基于高分辨质谱的非靶向代谢组学在食品造假鉴定中的研究进展[J]. 生物技术通报,2019,35(2):192−197 doi: 10.13560/j.cnki.biotech.bull.1985.2018-0632
LAI B W, LIU B, LIANG Y K. Research progress on food fraud using non-targeted metabolomics based on high-resolution mass spectrometry[J]. Biotechnology Bulletin,2019,35(2):192−197. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0632
|
[40] |
张丽翠, 马川, 冯毛, 等. 基于高分辨质谱和代谢组学技术评估和优化蜂王浆代谢物提取方法[J]. 中国农业科学,2020,53(18):3833−3845 doi: 10.3864/j.issn.0578-1752.2020.18.017
ZHANG L C, MA C, FENG M, et al. Evaluation and optimization of metabolite extraction protocols for royal jelly by high resolution mass spectrometry and metabolomics[J]. Scientia Agricultura Sinica,2020,53(18):3833−3845. doi: 10.3864/j.issn.0578-1752.2020.18.017
|
[41] |
MA C, ZHANG L C, FENG M, et al. Metabolic profiling unravels the effects of enhanced output and harvesting time on royal jelly quality[J]. Food Research International,2021,139:109974. doi: 10.1016/j.foodres.2020.109974
|
[42] |
KLUPCZYNSKA A, PLEWA S, DEREZINSKI P, et al. Identification and quantification of honeybee venom constituents by multiplatform metabolomics[J]. Scientific Reports,2020,10(1):21645. doi: 10.1038/s41598-020-78740-1
|
[43] |
ROCCHETTI G, CASTIGLIONI S, MALDARIZZI G, et al. UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin[J]. International Journal of Food Science and Technology,2019,54(2):335−346. doi: 10.1111/ijfs.13941
|
[44] |
ZHANG H F, LU Q, LIU R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen[J]. Food Chemistry,2022,375:131908. doi: 10.1016/j.foodchem.2021.131908
|
[45] |
WANG X R, ROGERS K M, LI Y, et al. Untargeted and targeted discrimination of honey collected by Apis cerana and Apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC-MS[J]. Journal of Agricultural and Food Chemistry,2019,67(43):12144−12152. doi: 10.1021/acs.jafc.9b04438
|
[46] |
ZUCCATO V, FINOTELLO C, MENEGAZZO I, et al. Entomological authentication of stingless bee honey by H-1 NMR-based metabolomics approach[J]. Food Control,2017,82:145−153. doi: 10.1016/j.foodcont.2017.06.024
|
[47] |
ZHAO L W, REN C J, XUE X F, et al. Safflomin A:A novel chemical marker for Carthamus tinctorius L. (Safflower) monofloral honey[J]. Food Chemistry,2022,366:130584. doi: 10.1016/j.foodchem.2021.130584
|
[48] |
YAN S, WANG X, ZHAO H M, et al. Metabolomics-based screening and chemically identifying abundant stachydrine as quality characteristic of rare Leucosceptrum canum Smith honey[J]. Journal of Food Composition and Analysis,2022,114:104759. doi: 10.1016/j.jfca.2022.104759
|
[49] |
LI Y, JIN Y, YANG S P, et al. Strategy for comparative untargeted metabolomics reveals honey markers of different floral and geographic origins using ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry[J]. Journal of Chromatography A,2017,1499:78−89. doi: 10.1016/j.chroma.2017.03.071
|
[50] |
KORTESNIEMI M, SLUPSKY C M, OLLIKKA T, et al. NMR profiling clarifies the characterization of Finnish honeys of different botanical origins[J]. Food Research International,2016,86:83−92. doi: 10.1016/j.foodres.2016.05.014
|
[51] |
ANDELKOVIC B, VUJISIC L, VUCKOVIC I, et al. Metabolomics study of Populus type propolis[J]. Journal of Pharmaceutical and Biomedical Analysis,2017,135:217−226. doi: 10.1016/j.jpba.2016.12.003
|
[52] |
SCHIEVANO E, STOCCHERO M, ZUCCATO V, et al. NMR assessment of European acacia honey origin and composition of EU-blend based on geographical floral markers[J]. Food Chemistry,2019,288:96−101. doi: 10.1016/j.foodchem.2019.02.062
|
[53] |
WANG T T, LIU Q H, WANG M, et al. Metabolomics reveals discrimination of Chinese propolis from different climatic regions[J]. Foods,2020,9(4):491. doi: 10.3390/foods9040491
|
[54] |
STAVROPOULOU M I, TERMENTZI A, KASIOTIS K M, et al. Untargeted ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry (UHPLC-HRMS) metabolomics reveals propolis markers of Greek and Chinese origin[J]. Molecules,2021,26(2):456. doi: 10.3390/molecules26020456
|
[55] |
MAZZEI P, PICCOLO A, BRESCIA M, et al. Assessment of geographical origin and production period of royal jelly by NMR metabolomics[J]. Chemical and Biological Technologies in Agriculture,2020,7(1):24. doi: 10.1186/s40538-020-00190-8
|
[56] |
YONG C H, MUHAMMAD S A, AZIZ F A, et al. Detecting adulteration of stingless bee honey using untargeted H-1 NMR metabolomics with chemometrics[J]. Food Chemistry,2022,368:130808. doi: 10.1016/j.foodchem.2021.130808
|
[57] |
YAN S, WANG X, WU Y C, et al. A metabolomics approach revealed an Amadori compound distinguishes artificially heated and naturally matured acacia honey[J]. Food Chemistry,2022,385:132631. doi: 10.1016/j.foodchem.2022.132631
|
[58] |
MUSTAFA M Z, ZULKIFLI F N, FERNANDEZ I, et al. Stingless bee honey improves spatial memory in mice, probably associated with brain-derived neurotrophic factor (BDNF) and inositol 1, 4, 5-triphosphate receptor type 1 (Itpr1) genes[J]. Evidence-Based Complementary and Alternative Medicine,2019,2019:8258307. doi: 10.1155/2019/8258307
|
[59] |
BITTENCOURT M L F, RIBEIRO P R, FRANCO R L P, et al. Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis:Use of correlation and multivariate analyses to identify potential bioactive compounds[J]. Food Research International,2015,76:449−457. doi: 10.1016/j.foodres.2015.07.008
|
[60] |
GHALLAB D S, MOHYELDIN M M, SHAWKY E, et al. Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics[J]. LWT,2021,136:110298. doi: 10.1016/j.lwt.2020.110298
|
[61] |
ZHANG W W, MARGARITA G E, WU D, et al. Antibacterial activity of Chinese red propolis against Staphylococcus aureus and MRSA[J]. Molecules,2022,27(5):1693. doi: 10.3390/molecules27051693
|
[62] |
SAWICKI R, WIDELSKI J, OKINCZYC P, et al. Exposure to Nepalese propolis alters the metabolic state of Mycobacterium tuberculosis[J]. Frontiers in Microbiology,2022,13:929476. doi: 10.3389/fmicb.2022.929476
|
[63] |
ALSHERBINY M A, BHUYAN D J, RADWAN I, et al. Metabolomic identification of anticancer metabolites of Australian propolis and proteomic elucidation of its synergistic mechanisms with doxorubicin in the MCF7 cells[J]. International Journal of Molecular Sciences,2021,22(15):7840. doi: 10.3390/ijms22157840
|
[64] |
TIAN S H, ZHAO H T, LIU J J, et al. Metabolomics reveals that alcohol extract of propolis alleviates D-gal-induced skeletal muscle senescence in mice[J]. Food Bioscience,2022,49:101885. doi: 10.1016/j.fbio.2022.101885
|
[65] |
ZHU Y Y, MENG X C, ZHOU Y J, et al. Major royal jelly proteins alleviate non-alcoholic fatty liver disease in mice model by regulating disordered metabolic pathways[J]. Journal of Food Biochemistry,2022,46(9):e14214. doi: 10.1111/jfbc.14214
|
[66] |
CHEN D, LIU F, WAN J B, et al. Effect of major royal jelly proteins on spatial memory in aged rats:Metabolomics analysis in urine[J]. Journal of Agricultural and Food Chemistry,2017,65(15):3151−3159. doi: 10.1021/acs.jafc.7b00202
|
[67] |
HU X Y, LIU Z G, LU Y T, et al. Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice[J]. Food & Function,2022,13(19):9931−9946.
|
[68] |
高虹. 基于GC-MS的蜂毒干预类风湿性关节炎小鼠模型的代谢组学研究[D]. 福州:福建农林大学, 2014
GAO H. Metabolomics study based on gas chromatography mass spectrometry of rheumatoid arthritis in mice intervened by bee venom[D]. Fuzhou:Fujian Agricultural and Forestry University, 2014.
|
[69] |
LI Q Q, SUN M H, WANG Z R, et al. Bee pollen extracts modulate serum metabolism in lipopolysaccharide-induced acute lung injury mice with anti-inflammatory effects[J]. Journal of Agricultural and Food Chemistry,2019,67(28):7855−7868. doi: 10.1021/acs.jafc.9b03082
|
[70] |
TUOHETI T, RASHEED H A, MENG L, et al. High hydrostatic pressure enhances the anti-proliferative properties of lotus bee pollen on the human prostate cancer PC-3 cells via increased metabolites[J]. Journal of Ethnopharmacology,2020,261:113057. doi: 10.1016/j.jep.2020.113057
|
[71] |
LI Q Q, LIANG X W, GUO N N, et al. Protective effects of bee pollen extract on the Caco-2 intestinal barrier dysfunctions induced by dextran sulfate sodium[J]. Biomedicine & Pharmacotherapy,2019,117:109200. doi: 10.1016/j.biopha.2019.109200
|
[72] |
ZHANG X X, YU M H, ZHU X L, et al. Metabolomics reveals that phenolamides are the main chemical components contributing to the anti-tyrosinase activity of bee pollen[J]. Food Chemistry,2022,389:133071. doi: 10.1016/j.foodchem.2022.133071
|
[73] |
刘景芳, 李维林, 王莉, 等. 多组学技术及其在生命科学研究中应用概述[J]. 生物工程学报,2022,38(10):3581−3593
LIU J F, LI W L, WANG L, et al. Multi-omics technology and its applications to life science:A review[J]. Chinese Journal of Biotechnology,2022,38(10):3581−3593.
|