Processing math: 100%
LEI Sijia, XIE Yujie, YU Libo, et al. Proficiency Testing of High-throughput Non-targeted Detection of Pesticide Residues in Edible Agricultural Products[J]. Science and Technology of Food Industry, 2023, 44(24): 270−278. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020131.
Citation: LEI Sijia, XIE Yujie, YU Libo, et al. Proficiency Testing of High-throughput Non-targeted Detection of Pesticide Residues in Edible Agricultural Products[J]. Science and Technology of Food Industry, 2023, 44(24): 270−278. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020131.

Proficiency Testing of High-throughput Non-targeted Detection of Pesticide Residues in Edible Agricultural Products

More Information
  • Received Date: February 13, 2023
  • Available Online: October 22, 2023
  • In order to understand the technical level of high-throughput non-targeted detection of pesticide residues in China's inspection and testing institutions and improve the ability of food safety risk monitoring. Blank and added samples were prepared with organic apples as raw materials. F test and SS≤0.3σ criterion were used to evaluate the uniformity of the samples. T test and |¯x¯y|≤0.3σ criterion were used to evaluate the stability of the samples. In view of the fact that the existing evaluation technology did not consider the problem of high-throughput non-targeted detection, a new evaluation method was proposed. By establishing a two-dimensional (XY) classification, the number of pesticide detection (dimension X: qualitative) and the number of acceptable z-scores (dimension Y: quantitative) were evaluated. The c value was introduced as the primary evaluation index through qualitative satisfaction rate and quantitative satisfaction rate, while the false positive rate and false negative rate were used as the secondary evaluation index to comprehensively evaluate the detection ability of the laboratory. The results showed that a total of 20 laboratories participated in this proficiency testing, with a qualitative satisfaction rate of 70%, a quantitative satisfaction rate of 45%, and a comprehensive satisfaction rate of 40%. For laboratories with a c value of 0, further evaluation by secondary indicators showed that 87.5% of the laboratories did not show false positives and false negatives. In this study, qualitative analysis and quantitative analysis were combined to evaluate the results of high-throughput non-targeted detection of pesticide residues, which provided new ideas for the optimization of other ability evaluation methods.
  • [1]
    ALAN W. Compendium of Pesticide Common Names[OL]. (2023-01-18)[2023-02-02]. http://www. alanwood. net/pesticides.
    [2]
    BLANKSON G K, OSEI-FOSU P, ADEENDZE E A, et al. Contamination levels of organophosphorus and synthetic pyrethroid pesticides in vegetables marketed in Accra, Ghana[J]. Food Control,2016,68(10):174−180.
    [3]
    CHOWDHURY M A Z, FAKHRUDDIN A N M, ISLAM M N, et al. Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography–mass spectrometry[J]. Food Control,2013,34(2):457−465. doi: 10.1016/j.foodcont.2013.05.006
    [4]
    GIRAME R, SHABEER T P A, GHOSH B, et al. Multi-residue method validation and safety evaluation of pesticide residues in seed spices cumin (Cuminum cyminum) and coriander (Co riandrum sativum) by gas chromatography tandem mass spectrometry (GC–MS/MS)[J]. Food Chemistry,2022,374(10):131782.1−131782.11.
    [5]
    KASPERKIEWICZ A, PAWLISZYN J. Multiresidue pesticide quantitation in multiple fruit matrices via automated coated blade spray and liquid chromatography coupled to triple quadrupole mass spectrometry[J]. Food Chemistry,2021,339(6):127815.1−127815.7.
    [6]
    CHU Y, TONG Z, DONG X, et al. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS[J]. Microchemical Journal,2020,156(5):104975.1−104975.6.
    [7]
    LI J X, LI X Y, CHANG Q Y, et al. Screening of 439 pesticide residues in fruits and vegetables by gas chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and Q-TOF spectrum library[J]. Journal of AOAC International,2018,101(5):1631−1638. doi: 10.5740/jaoacint.17-0105
    [8]
    PANG G F, FAN C L, CHANG Q Y, et al. Screening of 485 pesticide residues in fruits and vegetables by liquid chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and QTOF spectrum library[J]. Journal of AOAC International,2018,101(4):1156−1182. doi: 10.5740/jaoacint.17-0125
    [9]
    PICO Y, ALFARHAN A H, BARCELO D. How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination:An alternative technique to be in your radar[J]. TrAC Trends in Analytical Chemistry,2020,122(1):115720.1−115720.8.
    [10]
    陈婷, 张文, 刘光瑞, 等. 超高效液相色谱-四极杆-飞行时间质谱法快速筛查香橼中180种农药残留[J]. 农药学学报,2022,24(3):610−620. [CHEN T, ZHANG W, LIU G R, et al. Rapid screening of 180 pesticide residues in Fructus citri by ultra performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry[J]. Chinese Journal of Pesticide Science,2022,24(3):610−620.]

    CHEN T, ZHANG W, LIU G R, et al. Rapid screening of 180 pesticide residues in Fructus citri by ultra performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry[J]. Chinese Journal of Pesticide Science, 2022, 24(3): 610−620.
    [11]
    黎才婷, 雷紫依, 丁胜华, 等. 基于色谱-质谱联用技术的食品中农药残留高通量非靶向检测技术研究进展[J]. 食品科学, 2023, 44(5):231-240. [LI C T, LEI Z Y, DING S H, et al. Progress in high-throughput and non-targeted detection of pesticide residues in foods by chromatography-mass spectrometry[J]. Food Science, 2023, 44(5):231-240.]

    LI C T, LEI Z Y, DING S H, et al. Progress in high-throughput and non-targeted detection of pesticide residues in foods by chromatography-mass spectrometry[J]. Food Science, 2023, 44(5): 231-240.
    [12]
    刘攀. 应用主成分分析综合评价实验室间的能力验证结果[J]. 理化检验-化学分册,2019,53(9):1060−1064. [LIU P. Application of main component analysis comprehensive evaluation laboratory capacity verification results[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2019,53(9):1060−1064.]

    LIU P. Application of main component analysis comprehensive evaluation laboratory capacity verification results[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 53(9): 1060−1064.
    [13]
    TANGNI E K, HUYBRECHTS B, MASQUELIER J, et al. Organisation of multi-mycotoxin proficiency tests:Evaluation of the performances of the laboratories using the triple a rating approach[J]. [J]. Toxins,2021,13(9):591. doi: 10.3390/toxins13090591
    [14]
    VALVERDE A, FERNÁNDEZ-ALBA A R, FERRER C, et al. Laboratory Triple-A rating:A new approach to evaluate performance-underperformance of laboratories participating in EU proficiency tests for multi-residue analysis of pesticides in fruits and vegetables[J]. Food Control,2016,63(5):255−258.
    [15]
    MEDINA-PASTOR P, MEZCUA M, RODRÍGUEZ-TORREBLANCA C, et al. Laboratory assessment by combined z score values in proficiency tests:experience gained through the European Union proficiency tests for pesticide residues in fruits and vegetables[J]. Analytical and Bioanalytical Chemistry,2010,397(7):3061−3070. doi: 10.1007/s00216-010-3877-3
    [16]
    LEAL L H C, ROCHA W F C. A new approach for multivariate data analysis in interlaboratory comparisons based on multidimensional scaling and robust confidence ellipse[J]. Journal of the Brazilian Chemical Society,2023,34(3):434−440.
    [17]
    农业农村部. NY/T 789-2004农药残留分析样本的采样方法[S]. 北京:中国农业出版社, 2004. [Ministry of Agriculture and Rural Affairs of the People's Republic of China. NY/T 789-2004 Guideline on sampling for pesticide residue analusis[S]. Beijing:China Agriculture Press, 2004.]

    Ministry of Agriculture and Rural Affairs of the People's Republic of China. NY/T 789-2004 Guideline on sampling for pesticide residue analusis[S]. Beijing: China Agriculture Press, 2004.
    [18]
    国家市场监督管理总局. JJF 1343-2022标准物质的定值及均匀性、稳定性评估[S]. 北京:中国标准出版社, 2022. [State Administration for Market Regulation. JJF 1343-2022 Characterization, homogenity and stability assessment of reference materials[S]. Beijing:Standards Press of China, 2022.]

    State Administration for Market Regulation. JJF 1343-2022 Characterization, homogenity and stability assessment of reference materials[S]. Beijing: Standards Press of China, 2022.
    [19]
    PANG G F, CHANG Q Y, BAI R B, et al. Simultaneous screening of 733 pesticide residues in fruits and vegetables by a GC/LC-Q-TOFMS combination technique[J]. Engineering,2020,6(4):432−441. doi: 10.1016/j.eng.2019.08.008
    [20]
    中国合格评定国家认可委员会. CNAS-GL003 能力验证样品均匀性和稳定性评价指南[S]. 北京:中国标准出版社, 2018. [China National Accreditation Service for Conformity Assessment. CNAS-GL003 Guidance on evaluating the homogeneity and stability of samples used for proficiency testing[S]. Beijing:Standards Press of China, 2018.]

    China National Accreditation Service for Conformity Assessment. CNAS-GL003 Guidance on evaluating the homogeneity and stability of samples used for proficiency testing[S]. Beijing: Standards Press of China, 2018.
    [21]
    中国合格评定国家认可委员会. CNAS-RL02 能力验证规则[S]. 北京:中国标准出版社, 2018. [China National Accreditation Service for Conformity Assessment. CNAS-RL02 Rules for proficiency testing[S]. Beijing:Standards Press of China, 2018.]

    China National Accreditation Service for Conformity Assessment. CNAS-RL02 Rules for proficiency testing[S]. Beijing: Standards Press of China, 2018.
    [22]
    International Organization for Standardization. ISO 13528 Statistical methods for use in proficiency testing by interlaboratory comparison[S]. Switzerland, 2015.
    [23]
    全国统计方法应用标准化技术委员会. GB/T 28043-2019 利用实验室间比对进行能力验证的统计方法[S]. 北京:中国标准出版社, 2019. [Application of Statistical Methods. GB/T 28043-2019 Statistical methods for use in proficiency testing by interlaboratory comparison[S]. Beijing:Standards Press of China, 2019.]

    Application of Statistical Methods. GB/T 28043-2019 Statistical methods for use in proficiency testing by interlaboratory comparison[S]. Beijing: Standards Press of China, 2019.
    [24]
    谢瑜杰, 陈辉, 盖丽娟, 等. 液相色谱-四极杆-飞行时间质谱法快速筛查与确证紫甘蓝中415种农药残留[J]. 色谱,2021,39(3):301−315. [XIE Y J, CHEN H, GAI L J, et al. Rapid screening and confirmation of 415 pesticide residues in red cabbages by liquid chromatography-quadrupole-time of flight-mass spectrometry[J]. Chinese Journal of Chromatography,2021,39(3):301−315.] doi: 10.3724/SP.J.1123.2020.05006

    XIE Y J, CHEN H, GAI L J, et al. Rapid screening and confirmation of 415 pesticide residues in red cabbages by liquid chromatography-quadrupole-time of flight-mass spectrometry[J]. Chinese Journal of Chromatography, 2021, 39(3): 301−315. doi: 10.3724/SP.J.1123.2020.05006
    [25]
    谢瑜杰, 盖丽娟, 徐凤华, 等. 气相色谱-四极杆/飞行时间质谱快速筛查紫甘蓝中406种农药残留及其在欧盟能力验证中的应用[J]. 食品安全质量检测学报,2020,11(18):6437−6445. [XIE Y J, GAI L J, XU F H, et al. Simultaneous screening and confirmation of 406 pesticide residues in red cabbage by gas chromatography-quadrupole-time of flight-mass spectrometry and the application in European Union proficiency test[J]. Journal of Food Safety & Quality,2020,11(18):6437−6445.]

    XIE Y J, GAI L J, XU F H, et al. Simultaneous screening and confirmation of 406 pesticide residues in red cabbage by gas chromatography-quadrupole-time of flight-mass spectrometry and the application in European Union proficiency test[J]. Journal of Food Safety & Quality, 2020, 11(18): 6437−6445.
    [26]
    中国国家标准化管理委员会. GB/T 10111-2008 随机数的产生及其在产品质量抽样检验中的应用程序[S]. 北京:中国标准出版社, 2008. [Standardization Administration of the People's Republic of China. GB/T 10111-2008 Generation of random numbers and procedures applied to sampling inspection for product quality[S]. Beijing:Standards Press of China, 2008.]

    Standardization Administration of the People's Republic of China. GB/T 10111-2008 Generation of random numbers and procedures applied to sampling inspection for product quality[S]. Beijing: Standards Press of China, 2008.
    [27]
    ISO Reference Materials Committee. Guidance for characterization and assessment of homogeneity and stability[R]. Geneva:2017.
    [28]
    张帆, 刘胜楠, 王海涛, 等. 能力验证中的稳健统计方法应用浅析[J]. 标准科学,2018,55(2):61−64. [ZHANG F, LIU S N, WANG H T, et al. Application of robust statistical methods in proficiency testing[J]. Standard Science,2018,55(2):61−64.]

    ZHANG F, LIU S N, WANG H T, et al. Application of robust statistical methods in proficiency testing[J]. Standard Science, 2018, 55(2): 61−64.
    [29]
    李耀磊, 金红宇, 项新华, 等. 药品中重金属及有害元素残留检测能力验证结果评价模式探讨[J]. 中国中药杂志,2019,44(8):1724−1728. [LI Y L, JIN H Y, XIANG X H, et al. Discussion on evaluation mode of proficiency testing for heavy metal and harmful element detection in medicines[J]. China Journal of Chinese Materia Medica,2019,44(8):1724−1728.]

    LI Y L, JIN H Y, XIANG X H, et al. Discussion on evaluation mode of proficiency testing for heavy metal and harmful element detection in medicines[J]. China Journal of Chinese Materia Medica, 2019, 44(8): 1724−1728.
    [30]
    MEDINA-PASTOR P, FERNÁNDEZ-ALBA A R, ANDERSSON A, et al. European commission proficiency tests for pesticide residues in fruits and vegetables[J]. TrAC: Trends in Analytical Chemistry,2010,29(1):70−83. doi: 10.1016/j.trac.2009.11.001
  • Cited by

    Periodical cited type(6)

    1. 任书凝,宋永程,李缘,邢亚阁,毕秀芳. 超高压和热处理对沙棘-哈密瓜复合果汁品质的影响. 食品与发酵工业. 2023(02): 195-201 .
    2. 刘彩红,王雪,王静,王新宇,李慧,毕莹. 正丁醇对冷藏哈密瓜果实脯氨酸代谢的调控. 中国食品学报. 2023(05): 281-290 .
    3. 苏常红,寻雅雯,宋子豪. CaCl_2、甜菜碱、5-氨基乙酰丙酸提升番茄耐低温弱光研究. 山西大学学报(自然科学版). 2023(05): 1217-1226 .
    4. 毕莹,李慧,马鑫,王新宇,王雪,王富鑫,许文昌,王静. 不同品种哈密瓜果实采后品质与耐冷性关系分析. 食品科技. 2023(10): 27-34 .
    5. 杨慧,吴洪斌,贾文婷,刘战霞. 基于品质分析的哈密瓜真空冷冻-变温压差膨化联合干燥工艺研究. 保鲜与加工. 2022(05): 56-62 .
    6. 刘彩红,王雅琪,李乾,王雪,古丽丹·塔勒达吾,木合塔尔江·艾海提,冯作山,王静. 正丁醇对采后哈密瓜冷害及活性氧代谢的影响. 果树学报. 2021(11): 1984-1994 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (79) PDF downloads (15) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return