XIE Xuan, YAO Yuxue, YAN Shizhang, et al. Modifying Soy Hydrolysed Peptide with Tea Saponin and Characterising the Emulsification of the Complex[J]. Science and Technology of Food Industry, 2023, 44(24): 72−78. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020129.
Citation: XIE Xuan, YAO Yuxue, YAN Shizhang, et al. Modifying Soy Hydrolysed Peptide with Tea Saponin and Characterising the Emulsification of the Complex[J]. Science and Technology of Food Industry, 2023, 44(24): 72−78. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020129.

Modifying Soy Hydrolysed Peptide with Tea Saponin and Characterising the Emulsification of the Complex

More Information
  • Received Date: February 13, 2023
  • Available Online: October 22, 2023
  • In order to analyze the effects of tea saponin (TS) on soy hydrolyzed peptide (SHP) structure and functional properties in SHP-TS complex, comparative analysis SHP and TS were 1:0, 1:0.5, 1:1, 1:2 (w/w) respectively. The Fourier transformed infrared spectrum, fluorescence spectrum and UV-visible absorption spectrum were used to characterize the spatial structural changes of the protein in the SHP-TS complex and to clarify the relationship between SHP conformational changes and functional properties in the complex. The results showed that the addition of TS could change the secondary structure of SHP, and the hydrogen bond was involved in the formation of the SHP-TS complex. SHP strongly interacted with TS and the spatial conformation changes. In addition, the more TS content increased, the more emulsifying and antioxidant properties of the complex were enhanced, the mean of particle size first decreased and then increased, and the absolute value of the ζ-potential first increased and then decreased. When the SHP:TS ratio was 1:1 (w/w), an excellent comprehensive SHP-TS complex was obtained. Compared with the single SHP system, the emulsion stability coefficient of the complex was the highest at this time. The mean particle size of the emulsion was the smallest and the absolute value of the ζ-potential was the highest. This study would provide a theoretical basis for the development of new emulsifiers in the food industry.
  • [1]
    ASHAOLU T J. Applications of soy protein hydrolysates in the emerging functional foods:A review[J]. International Journal of Food Science & Technology,2020,55(2):421−428.
    [2]
    COSCUETA E R, CAMPOS D A, OSORIO H, et al. Enzymatic soy protein hydrolysis:A tool for biofunctional food ingredient production[J]. Food Chemistry: X,2019,1:100006. doi: 10.1016/j.fochx.2019.100006
    [3]
    YING X, GAO J X, LU J, et al. Preparation and drying of water-in-oil-in-water (W/O/W) double emulsion to encapsulate soy peptides[J]. Food Research International,2021,141:110148. doi: 10.1016/j.foodres.2021.110148
    [4]
    WANG X, XIONG Y L. Oxidative polyaldehyde production:a novel approach to the conjugation of dextran with soy peptides for improved emulsifying properties[J]. Journal of Food Science and Technology,2016,53(8):3215−3224. doi: 10.1007/s13197-016-2296-7
    [5]
    LOPES-DA-SILVA J A, MONTEIRO S R. Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide[J]. Food Chemistry,2019,294:216−223. doi: 10.1016/j.foodchem.2019.05.039
    [6]
    ZANG X D, LIU P, CHEN Y, et al. Improved freeze-thaw stability of o/w emulsions prepared with soybean protein isolate modified by papain and transglutaminase[J]. LWT,2019,104:195−201. doi: 10.1016/j.lwt.2019.01.013
    [7]
    MA M J, YUAN Y K, YANG S, et al. Fabrication and characterization of zein/tea saponin composite nanoparticles as delivery vehicles of lutein[J]. LWT,2020,125:109270. doi: 10.1016/j.lwt.2020.109270
    [8]
    ZHAO Y, SU R Q, ZHANG W T, et al. Antibacterial activity of tea saponin from Camellia oleifera shell by novel extraction method[J]. Industrial Crops and Products,2020,153:112604. doi: 10.1016/j.indcrop.2020.112604
    [9]
    ZHU Z B, WEN Y, YI J H, et al. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions:Tea saponin, Quillaja saponin, and Tween 80[J]. Journal of Colloid and Interface Science,2019,536:80−87. doi: 10.1016/j.jcis.2018.10.024
    [10]
    ZHAO Q L, HONG X, FAN L P, et al. Freeze-thaw stability and rheological properties of high internal phase emulsions stabilized by phosphorylated perilla protein isolate:Effect of tea saponin concentration[J]. Food Hydrocolloids,2023,134:108001. doi: 10.1016/j.foodhyd.2022.108001
    [11]
    王亚杰, 韩佳佳, 谭志发, 等. 制备工艺对油莎豆油理化性质、营养成分和氧化稳定性的影响[J]. 食品科学,2023,44(11):64−71. [WANG Y J, HAN J J, TAN Z F, et al. Effects of preparation techniques on physicochemical properties, nutritional components and oxidation stability of tiger nut oil[J]. Food Science,2023,44(11):64−71.] doi: 10.7506/spkx1002-6630-20220523-285

    WANG Y J, HAN J J, TAN Z F, et al. Effects of preparation techniques on physicochemical properties, nutritional components and oxidation stability of tiger nut oil[J]. Food Science, 2023, 44(11): 64−71. doi: 10.7506/spkx1002-6630-20220523-285
    [12]
    DAS D, PANESAR P S, SAINI C S. PH shifting treatment of ultrasonically extracted soybean meal protein isolate:Effect on functional, structural, morphological and thermal properties[J]. Process Biochemistry,2022,120:227−238. doi: 10.1016/j.procbio.2022.06.015
    [13]
    ZHANG Q Z, CHENG Z Z, WANG Y, et al. Combining Alcalase hydrolysis and transglutaminase-cross-linking improved bitterness and techno-functional properties of hypoallergenic soybean protein hydrolysates through structural modifications[J]. LWT,2021,151:112096. doi: 10.1016/j.lwt.2021.112096
    [14]
    YAN S Z, XU J W ZHANG S, et al. Effects of flexibility and surface hydrophobicity on emulsifying properties:Ultrasound-treated soybean protein isolate[J]. LWT,2021,142:110881. doi: 10.1016/j.lwt.2021.110881
    [15]
    GUO Y, BAO Y H, SUN K F, et al. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions[J]. Food Hydrocolloids,2021,112:106293. doi: 10.1016/j.foodhyd.2020.106293
    [16]
    HUANG Y X, LI J Z, LIU Y, et al. Improving gas-water interface properties and bioactivities of α-lactalbumin induced by three structurally different saponins[J]. Food Hydrocolloids,2023,138:108463. doi: 10.1016/j.foodhyd.2023.108463
    [17]
    ZHANG A Q, YU J, WANG G R, et al. Improving the emulsion freeze-thaw stability of soy protein hydrolysate-dextran conjugates[J]. LWT,2019,116:108506. doi: 10.1016/j.lwt.2019.108506
    [18]
    CHEN Y R, NAI X, LI M Y, et al. A comprehensive research on lactone sophorolipid (LSL) and soy protein isolate (SPI) interacting mixture[J]. Journal of Molecular Liquids,2021,339:117239. doi: 10.1016/j.molliq.2021.117239
    [19]
    TANG Y Y, HE X M, SUN J, et al. Comprehensive evaluation on tailor-made deep eutectic solvents (DESs) in extracting tea saponins from seed pomace of Camellia oleifera Abel[J]. Food Chemistry,2021,342:128243. doi: 10.1016/j.foodchem.2020.128243
    [20]
    PRADHAN A, BHUYAN S, CHHETRI K, et al. Saponins from Albizia procera extract:Surfactant activity and preliminary analysis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,643:128778. doi: 10.1016/j.colsurfa.2022.128778
    [21]
    XUE F, LI C, ADHIKARI B. Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound[J]. Ultrasonics Sonochemistry,2020,64:104990. doi: 10.1016/j.ultsonch.2020.104990
    [22]
    CHENG J, LIU J H, PRASANNA G, et al. Spectrofluorimetric and molecular docking studies on the interaction of cyanidin-3-O-glucoside with whey protein, β-lactoglobulin[J]. International Journal of Biological Macromolecules,2017,105:965−972. doi: 10.1016/j.ijbiomac.2017.07.119
    [23]
    SUN S, ZHANG C H, LI S H, et al. Improving emulsifying properties using mixed natural emulsifiers:Tea saponin and golden pompano protein[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,656:130311. doi: 10.1016/j.colsurfa.2022.130311
    [24]
    CERQUEIRA M A, SOUZA B W S, TEIXEIRA J A, et al. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films-A comparative study[J]. Food Hydrocolloids,2012,27(1):175−184. doi: 10.1016/j.foodhyd.2011.07.007
    [25]
    ZHANG Y, CHEN S, QI B K, et al. Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility[J]. Food Research International,2018,106:619−625. doi: 10.1016/j.foodres.2018.01.040
    [26]
    CHEN W J, WANG W J, MA X B, et al. Effect of pH-shifting treatment on structural and functional properties of whey protein isolate and its interaction with (-)-epigallocatechin-3-gallate[J]. Food Chemistry,2019,274:234−241. doi: 10.1016/j.foodchem.2018.08.106
    [27]
    CHEN Z Q, WANG C, GAO X D, et al. Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts[J]. Food Chemistry,2019,271:266−273. doi: 10.1016/j.foodchem.2018.07.170
    [28]
    DU L Y, LI S Y, JIANG Q B, et al. Interfacial interaction of small molecular emulsifiers tea saponin and monoglyceride:Relationship to the formation and stabilization of emulsion gels[J]. Food Hydrocolloids,2021,117:106737. doi: 10.1016/j.foodhyd.2021.106737
    [29]
    WEI Y, LI C, DAI L, et al. The construction of resveratrol-loaded protein–polysaccharide–tea saponin complex nanoparticles for controlling physicochemical stability and in vitro digestion[J]. Food & Function,2020,11(11):9973−9983.
    [30]
    YU H F, DONG S Z, WANG L Y, et al. The effect of triterpenoid saponins on pancreatic lipase in vitro:Activity, conformation, kinetics, thermodynamics and morphology[J]. Biochemical Engineering Journal,2017,125:1−9. doi: 10.1016/j.bej.2017.05.010
    [31]
    LI D, ZHAO Y, WANG X, et al. Effects of (+)-catechin on a rice bran protein oil-in-water emulsion:Droplet size, zeta-potential, emulsifying properties, and rheological behavior[J]. Food Hydrocolloids,2020,98:105306. doi: 10.1016/j.foodhyd.2019.105306
    [32]
    GAO W, JIANG Z F, DU X J, et al. Impact of surfactants on nanoemulsions based on fractionated coconut oil:Emulsification stability and in vitro digestion[J]. Journal of Oleo Science,2020,69(3):227−239.
    [33]
    KARNAUKHOVA E. Interactions of human serum albumin with retinoic acid, retinal and retinyl acetate[J]. Biochemical Pharmacology,2007,73(6):901−910. doi: 10.1016/j.bcp.2006.11.023
    [34]
    TCHOLAKOVA S, DENKOV N D, DANNER T. Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow[J]. Langmuir,2004,20(18):7444−7458. doi: 10.1021/la049335a
    [35]
    WEI Y, TONG Z, DAI L, et al. Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions[J]. Food Hydrocolloids,2020,104:105738. doi: 10.1016/j.foodhyd.2020.105738
    [36]
    LIU J, HU L L, CHEN Y T, et al. Effects and mechanism of camellia saponin on the physicochemical and oxidative stability of camellia oil body-based emulsions[J]. LWT,2022,165:113773. doi: 10.1016/j.lwt.2022.113773
    [37]
    MACKIE A, WILDE P. The role of interactions in defining the structure of mixed protein–surfactant interfaces[J]. Advances in Colloid and Interface Science,2005,117(1):3−13.
  • Cited by

    Periodical cited type(10)

    1. 张丹丹,李国辉,唐德红,李梅. GC-MS/MS法测定苹果中乙螨唑含量的不确定度评定. 现代食品. 2024(01): 156-162 .
    2. 易霞,吴兵,李俊. 结球甘蓝中3种有机磷类农药残留量标准不确定度评定. 粮食科技与经济. 2024(06): 74-78 .
    3. 张君丽,张迪雅,迟恒,葛驰宇. 气相色谱-串联质谱法测定果汁中4种六六六残留量的不确定度评定. 食品与发酵工业. 2023(21): 264-269 .
    4. 刘艳云. QuEChERS-气相色谱-质谱联用法测定香蕉中苯醚甲环唑残留量的测量不确定度评定. 食品安全导刊. 2022(01): 82-86 .
    5. 徐幸,张燕,舒平,杨卫花,赵浩军,董依依. 高效液相色谱-串联质谱同位素内标法测定鸡肉中头孢菌素的不确定度评定. 食品工业科技. 2022(08): 312-319 . 本站查看
    6. 张丽霞,郭庆园,华启诚,李向梅. GC-MS法测定保健食品中他汀类药物含量的不确定度评定. 食品与机械. 2022(06): 82-87 .
    7. 郭妍妍,陈丽丽. GC-MS测定芹菜中毒死蜱含量的不确定度评定. 现代食品. 2022(14): 132-135+140 .
    8. 陆振华,于丽芳,蔡丹萍,李成. QuEChERS-气相色谱——串联质谱法测定茶叶中水胺硫磷农药残留的不确定度评定. 食品与机械. 2022(10): 55-60+68 .
    9. 周芳梅,陈茹,罗小宝,陈晓嘉. 超高效液相色谱-串联质谱法测定凉茶中对乙酰氨基酚的不确定度评定. 食品安全质量检测学报. 2021(09): 3514-3521 .
    10. 牛立沙,张亚丽,孟志娟,孙磊,赵丽敏,孙文毅,郭丽敏,李强. 气相色谱法测定韭菜中氯氰菊酯残留量的不确定度评定. 中国测试. 2021(S2): 58-62 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (82) PDF downloads (13) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return